1
|
Simpson AI. Enhancing access to prostheses in sports: a call to action for the future of Paralympic athletes. Br J Sports Med 2024:bjsports-2024-109113. [PMID: 39694628 DOI: 10.1136/bjsports-2024-109113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2024] [Indexed: 12/20/2024]
Affiliation(s)
- Ashley Iain Simpson
- Peripheral Nerve Injury Unit, Royal National Orthopaedic Hospital, London, UK
| |
Collapse
|
2
|
Kumar S, Bhowmik S. Principles and biomechanical response of normal gait cycle to measure gait parameters for the alignment of prosthetics limb: A technical report. Prosthet Orthot Int 2024:00006479-990000000-00305. [PMID: 39692733 DOI: 10.1097/pxr.0000000000000391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 07/29/2024] [Indexed: 12/19/2024]
Abstract
The limb amputations caused due to emergent incidents of trauma injuries and vascular diseases currently represent crucial global problems. The patients/amputees with limb amputation who lost the residual limb (knee-ankle foot system) must depend on the prosthetic limb. Prosthetic clinicians and technicians have attempted to develop optimal limb prosthetics that will enhance the ability and functional elements of the patients/users. However, the amputees still do not gain the same level of comfort and functional stability as compared to normal limbs (without amputation). Thus, to provide that comfort and stability, proper construction with accurate positioning and alignment of constructed prosthetic limb is crucial to reconstitute these amputees/patients to do their activities for daily life. The objective of technical report is to provide the brief summary about basic principle and biomechanics regarding gait analysis, construction, and alignment of prosthetic limb during gait cycle. The study also summarized the kinematics and kinetic biomechanical response of prosthetic limbs to assess the biomechanics of limb prosthetics, socket assembly principle, gait parameters, and static and dynamic alignment during walking. The basic principle of positioning and alignment with different flexion and torque moment at hip, knee, and ankle joint has been analyzed.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Mechanical Engineering, National Institute of Technology Silchar, Assam, India
| | - Sumit Bhowmik
- Department of Mechanical Engineering, National Institute of Technology Silchar, Assam, India
| |
Collapse
|
3
|
Rehani M, Stafinski T, Round J, Jones CA, Hebert JS. Bone-anchored prostheses for transfemoral amputation: a systematic review of outcomes, complications, patient experiences, and cost-effectiveness. FRONTIERS IN REHABILITATION SCIENCES 2024; 5:1336042. [PMID: 38628292 PMCID: PMC11018971 DOI: 10.3389/fresc.2024.1336042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/05/2024] [Indexed: 04/19/2024]
Abstract
Introduction Bone-anchored prostheses (BAP) are an advanced reconstructive surgical approach for individuals who had transfemoral amputation and are unable to use the conventional socket-suspension systems for their prostheses. Access to this technology has been limited in part due to the lag between the start of a new procedure and the availability of evidence that is required before making decisions about widespread provision. This systematic review presents as a single resource up-to-date information on aspects most relevant to decision makers, i.e., clinical efficacy, safety parameters, patient experiences, and health economic outcomes of this technology. Methods A systematic search of the literature was conducted by an information specialist in PubMed, MEDLINE, Embase, CINAHL, Cochrane Library, the Core Collection of Web of Science, CADTH's Grey Matters, and Google Scholar up until May 31, 2023. Peer-reviewed original research articles on the outcomes of clinical effectiveness (health-related quality of life, mobility, and prosthesis usage), complications and adverse events, patient experiences, and health economic outcomes were included. The quality of the studies was assessed using the Oxford Centre for Evidence-Based Medicine Levels of Evidence and ROBINS-I, as appropriate. Results Fifty studies met the inclusion criteria, of which 12 were excluded. Thirty-eight studies were finally included in this review, of which 21 reported on clinical outcomes and complications, 9 case series and 1 cohort study focused specifically on complications and adverse events, and 2 and 5 qualitative studies reported on patient experience and health economic assessments, respectively. The most common study design is a single-arm trial (pre-/post-intervention design) with varying lengths of follow-up. Discussion The clinical efficacy of this technology is evident in selected populations. Overall, patients reported increased health-related quality of life, mobility, and prosthesis usage post-intervention. The most common complication is a superficial or soft-tissue infection, and more serious complications are rare. Patient-reported experiences have generally been positive. Evidence indicates that bone-anchored implants for prosthesis fixation are cost-effective for those individuals who face significant challenges in using socket-suspension systems, although they may offer no additional advantage to those who are functioning well with their socket-suspended prostheses.
Collapse
Affiliation(s)
- Mayank Rehani
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Tania Stafinski
- Health Technology and Policy Unit, School of Public Health, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jeff Round
- Institute of Health Economics, Edmonton, AB, Canada
| | - C. Allyson Jones
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Jacqueline S. Hebert
- Division of Physical Medicine and Rehabilitation, Department of Medicine, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
- Glenrose Rehabilitation Hospital, Edmonton, AB, Canada
| |
Collapse
|
4
|
Knight AD, Jayaraman C, Elrod JM, Schnall BL, McGuire MS, Sleeman TJ, Hoppe-Ludwig S, Dearth CL, Hendershot BD, Jayaraman A. Functional Performance Outcomes of a Powered Knee-Ankle Prosthesis in Service Members With Unilateral Transfemoral Limb Loss. Mil Med 2023; 188:3432-3438. [PMID: 35895305 DOI: 10.1093/milmed/usac231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/29/2022] [Accepted: 07/23/2022] [Indexed: 11/14/2022] Open
Abstract
INTRODUCTION Clinical knowledge surrounding functional outcomes of a powered knee-ankle (PKA) device is limited, particularly among younger and active populations with limb loss. Here, three service members (SM) with unilateral transfemoral limb loss received an optimally tuned PKA prosthesis and device-specific training. MATERIALS AND METHODS Once proficiency with the PKA device was demonstrated on benchmark activities, and outcomes with the PKA and standard-of-care (SoC) prostheses were obtained via a modified graded treadmill test, 6-minute walk test, and overground gait assessment. RESULTS All SM demonstrated proficiency with the PKA prosthesis within the minimum three training sessions. With the PKA versus SoC prosthesis, cost of transport during the modified graded treadmill test was 4.0% ± 5.2% lower at slower speeds (i.e., 0.6-1.2 m/s), but 7.0% ± 5.1% greater at the faster walking speeds (i.e., ≥1.4 m/s). For the 6-minute walk test, SM walked 83.9 ± 13.2 m shorter with the PKA versus SoC prosthesis. From the overground gait assessment, SM walked with 20.6% ± 10.5% greater trunk lateral flexion and 31.8% ± 12.8% greater trunk axial rotation ranges of motion, with the PKA versus SoC prosthesis. CONCLUSIONS Compared to prior work with the PKA in a civilian cohort, although SM demonstrated faster device proficiency (3 versus 12 sessions), SM walked with greater compensatory motions compared to their SoC prostheses (contrary to the civilian cohort). As such, it is important to understand patient-specific factors among various populations with limb loss for optimizing device-specific training and setting functional goals for occupational and/or community reintegration, as well as reducing the risk for secondary complications over the long term.
Collapse
Affiliation(s)
- Ashley D Knight
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Chandrasekaran Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Jonathan M Elrod
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Barri L Schnall
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Matt S McGuire
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Todd J Sleeman
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Shenan Hoppe-Ludwig
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Christopher L Dearth
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Surgery, Walter Reed National Military Medical Center-Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Brad D Hendershot
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Arun Jayaraman
- Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Center for Bionic Medicine, Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
5
|
Welke B, Hurschler C, Schwarze M, Jakubowitz E, Aschoff HH, Örgel M. Comparison of conventional socket attachment and bone-anchored prosthesis for persons living with transfemoral amputation - mobility and quality of life. Clin Biomech (Bristol, Avon) 2023; 105:105954. [PMID: 37075546 DOI: 10.1016/j.clinbiomech.2023.105954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 03/29/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
BACKGROUND For patients with transfemoral amputation experiencing issues with their sockets, bone-anchored prosthesis systems are an alternative and sometimes the only way to be mobile and independent. The present cross-sectional study aimed to investigate the gait performance and quality of life of a group of patients treated with bone-anchored systems compared to those of participants treated with a conventional socket-suspended prosthesis. METHODS A total of 17 participants with a socket-suspended and 20 with a bone-anchored prosthesis were included. Gait patterns were examined for symmetry, and performance was assessed using the six-minute walk test and the timed "Up & Go" test. Magnetic resonance imaging was performed to detect signs of osteoarthritis in both hips. Mobility in everyday life and quality of life were assessed using questionnaires. FINDINGS There were no differences between the groups regarding the quality of life, daily mobility, and gait performance. The step width was significantly higher for the patients using socket-suspended prosthesis. The socket-suspended group showed a significant asymmetry regarding the step length. In the socket-suspended group, the prosthetic leg showed significantly higher cartilage abrasion than the contralateral leg did. INTERPRETATION Large differences in the measured outcomes in both groups illustrate the very different capabilities of the individual participants, which is apparently not primarily determined by the type of treatment. For patients who are satisfied with the socket treatment and perform well, bone-anchored prosthesis systems may not necessarily improve their functional capabilities and perceived quality of life.
Collapse
Affiliation(s)
- Bastian Welke
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedics, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Christof Hurschler
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedics, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Michael Schwarze
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedics, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Eike Jakubowitz
- Laboratory for Biomechanics and Biomaterials, Department of Orthopaedics, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Horst-Heinrich Aschoff
- Department of Trauma, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| | - Marcus Örgel
- Department of Trauma, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover 30625, Germany.
| |
Collapse
|
6
|
Örgel M, Aschoff HH, Sedlacek L, Graulich T, Krettek C, Roth S, Ranker A. Twenty-four months of bacterial colonialization and infection rates in patients with transcutaneous osseointegrated prosthetic systems after lower limb amputation-A prospective analysis. Front Microbiol 2022; 13:1002211. [PMID: 36386723 PMCID: PMC9659948 DOI: 10.3389/fmicb.2022.1002211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/07/2022] [Indexed: 09/23/2024] Open
Abstract
BACKGROUND Transcutaneous osseointegrated prosthesis systems (TOPS) are alternative rehabilitation methods to socket prosthetics, after limb amputation. TOPS compromise a two-step surgery: starting with the implantation of the stem which is then followed by the creation of the transcutaneous stoma through which the exoprosthesis can be connected. Immediately after surgery, this opening is permanently exposed to pathogens. This study aimed to investigate the dynamics of bacterial colonization of the stoma to analyze whether obligate bacterial colonization leads to a risk of periprosthetic infections after TOPS treatment. METHODS This prospective study analyzed data from 66 patients (aged 26-75 years) after TOPS treatment between 2017 and 2019. Microbiological swabs from the stoma were analyzed on the first postoperative day and 3, 6, 12, and 24 months after stoma creation. Infection rates, laboratory values (CRP, leukocyte count, hemoglobin), and body temperature were recorded at these points in time. Statistical analysis was performed using SPSS 28. RESULTS The results show the formation of a stable environment dominated by Gram-positive bacteria in the stoma of TOPS patients over 24 months. Staphylococcus aureus, Staphylococcus spp., and Streptococcus spp. were the most common species found. With regard to the cohort up to the 3 months follow-up, 7.9% (five patients) developed infections surrounding the TOPS procedure. In relation to the whole cohort with loss to follow-up of 80.3% at the 24 months follow-up the infection rates increased up to 38.3%. CONCLUSION The soft tissue inside and around the transcutaneous stoma is colonialized by multiple taxa and changes over time. A stable Gram-positive dominated bacterial taxa could be a protective factor for ascending periprosthetic infections and could possibly explain the relatively low infection rate in this study as well as in literature.
Collapse
Affiliation(s)
- Marcus Örgel
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | | | - Ludwig Sedlacek
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School (MHH), Hannover, Germany
| | - Tilman Graulich
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | | | - Sabine Roth
- Trauma Department, Hannover Medical School (MHH), Hannover, Germany
| | - Alexander Ranker
- Department of Rehabilitation Medicine, Hannover Medical School (MHH), Hannover, Germany
| |
Collapse
|
7
|
Mahon CE, Hendershot BD. Biomechanical accommodation to walking with an ankle-foot prosthesis: An exploratory analysis of novice users with transtibial limb loss within the first year of ambulation. Prosthet Orthot Int 2022; 46:452-458. [PMID: 35333820 DOI: 10.1097/pxr.0000000000000124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 02/15/2022] [Indexed: 02/03/2023]
Abstract
BACKGROUND The way in which a person with limb loss interacts with a prosthesis changes over time; however, there remains a lack of guidance for defining accommodation to walking with a prosthesis, limiting consistency and generalizability of research. OBJECTIVE To evaluate accommodations to walking with dynamic elastic response prosthetic ankle-foot devices among novice users with unilateral transtibial limb loss during the first year of ambulation. STUDY DESIGN This is a retrospective cohort study. METHODS Prosthetic and intact ankle-foot mechanical power profiles and mechanical work during step-to-step transitions were calculated using the Unified Deformable model for 22 male individuals with limb loss at five time points within the first year of independent ambulation (0, 2, 4, 6, and 12 months). Subjects walked at a self-selected walking velocity and controlled walking velocity (CWV). Subjective measures included the Prosthetic Evaluation Questionnaire and the 36-Item Short-Form Health Survey. RESULTS Self-selected walking velocity ranged from 1.24 ± 0.06 m/s at 0 month to 1.38 ± 0.04 m/s at 12 months, whereas CWV was 1.20 ± 0.02 m/s. At both velocities, positive work/peak power during prosthetic push-off trended upward until the 4-month time point. In addition, negative peak power during intact foot-strike seemed to qualitatively become less negative until 4 months. Positive work during intact push-off trended downward until 4 months at CWV, whereas positive peak power during intact push-off qualitatively became more positive at self-selected walking velocity. CONCLUSIONS These trends may partially indicate (biomechanical) accommodation to walking by appearance of a "plateau" at 4 months after initial ambulation with a prosthesis.
Collapse
Affiliation(s)
- Caitlin E Mahon
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Brad D Hendershot
- Research & Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD, USA
- Research and Development Section, Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, USA
- Department of Rehabilitation Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
8
|
Knight AD, Bass SR, Elrod JM, Hassinger LM, Dearth CL, Gonzalez-Vargas J, Hendershot BD, Han Z. Toward Developing a Powered Ankle-Foot Prosthesis With Electromyographic Control to Enhance Functional Performance: A Case Study in a U.S. Service Member. Mil Med 2022; 188:usac038. [PMID: 35234252 DOI: 10.1093/milmed/usac038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/26/2022] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
The only commercially available ankle-foot prosthesis with powered propulsion lacks ruggedization and other capabilities for service members seeking to return to duty and/or other physically demanding activities. Here, we evaluated a ruggedized powered ankle-foot prosthesis with electromyographic control ("Warrior Ankle"; WA) in an experienced male user of the predicate (Empower) prosthesis. The participant (age = 56 years, mass = 86.8 kg, stature = 173 cm) completed a 650 m simulated hike with varying terrain at a fixed, self-selected speed in the WA and predicate prosthesis, with and without a 22.8 kg weighted vest ("loaded" and "unloaded," respectively). Peak dorsiflexion and plantarflexion angles were extracted from each gait cycle throughout the simulated hike (∼500 prosthetic-side steps). The participant walked faster with the WA (1.15 m/s) compared to predicate (0.80 m/s) prosthesis. On the prosthetic side, peak dorsiflexion angles were larger for the WA (loaded: 27.9°; unloaded: 26.9°) compared to the predicate (loaded: 19.4°; unloaded: 21.3°); peak plantarflexion angles were similar between prostheses and loading conditions [WA (loaded: 15.5°; unloaded: 14.9°), predicate (loaded: 16.9°; unloaded: 14.8°). The WA better accommodated the varying terrain profile, evidenced by greater peak dorsiflexion angles, as well as dorsiflexion and plantarflexion angles that more closely matched or exceeded those of the innate ankle [dorsiflexion (WA: 31.6°, predicate: 27.5°); plantarflexion (WA: 20.7°, predicate: 20.5°)]. Furthermore, the WA facilitated a faster walking speed, suggesting a greater functional capacity with the WA prosthesis. Although further design enhancements are needed, this case study demonstrated feasibility of a proof-of-concept, ruggedized powered ankle-foot prosthesis with electromyographic control.
Collapse
Affiliation(s)
- Ashley D Knight
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Sarah R Bass
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Jonathan M Elrod
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Louise M Hassinger
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
| | - Christopher L Dearth
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Surgery, Uniformed Services University of the Health Sciences-Walter Reed National Military Medical Center, Bethesda, MD 20814, USA
| | | | - Brad D Hendershot
- Research and Surveillance Division, DoD-VA Extremity Trauma and Amputation Center of Excellence, Bethesda, MD 20889, USA
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD 20889, USA
- Department of Rehabilitation Medicine, Uniformed Services of the Health Sciences, Bethesda, MD 20814, USA
| | - Zhixiu Han
- Ottobock SE & Co. KGaA, Duderstadt 37115, Germany
| |
Collapse
|