1
|
Abdulsahib S, Boswell W, Boswell M, Savage M, Schartl M, Lu Y. Transcriptional background effects on a tumor driver gene in different pigment cell types of medaka. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:252-259. [PMID: 37877158 PMCID: PMC11043209 DOI: 10.1002/jez.b.23224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/28/2023] [Accepted: 09/14/2023] [Indexed: 10/26/2023]
Abstract
The Xiphophorus melanoma receptor kinase gene, xmrk, is a bona fide oncogene driving melanocyte tumorigenesis of Xiphophorus fish. When ectopically expressed in medaka, it not only induces development of several pigment cell tumor types in different strains of medaka but also induces different tumor types within the same animal, suggesting its oncogenic activity has a transcriptomic background effect. Although the central pathways that xmrk utilizes to lead to melanomagenesis are well documented, genes and genetic pathways that modulate the oncogenic effect and alter the course of disease have not been studied so far. To understand how the genetic networks between different histocytes of xmrk-driven tumors are composed, we isolated two types of tumors, melanoma and xanthoerythrophoroma, from the same xmrk transgenic medaka individuals, established the transcriptional profiles of both xmrk-driven tumors, and compared (1) genes that are co-expressed with xmrk in both tumor types, and (2) differentially expressed genes and their associated molecular functions, between the two tumor types. Transcriptomic comparisons between the two tumor types show melanoma and xanthoerythrophoroma are characterized by transcriptional features representing varied functions, indicating distinct molecular interactions between the driving oncogene and the cell-type-specific transcriptomes. Melanoma tumors exhibit gene signatures that are relevant to proliferation and invasion, while xanthoerythrophoroma tumors are characterized by expression profiles related to metabolism and DNA repair. We conclude the transcriptomic backgrounds, exemplified by cell-type-specific genes that are downstream of xmrk effected signaling pathways, contribute the potential to change the course of tumor development and may affect overall tumor outcomes.
Collapse
Affiliation(s)
- Shahad Abdulsahib
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - William Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Mikki Boswell
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Markita Savage
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| | - Manfred Schartl
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
- Developmental Biochemistry, Biozentrum, University of Würzburg, Würzburg, Germany
| | - Yuan Lu
- Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, 419 Centennial Hall, Texas State University, San Marcos, TX, USA
| |
Collapse
|
2
|
Schartl M, Lu Y. Validity of Xiphophorus fish as models for human disease. Dis Model Mech 2024; 17:dmm050382. [PMID: 38299666 PMCID: PMC10855230 DOI: 10.1242/dmm.050382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024] Open
Abstract
Platyfish and swordtails of the genus Xiphophorus provide a well-established model for melanoma research and have become well known for this feature. Recently, modelling approaches for other human diseases in Xiphophorus have been developed or are emerging. This Review provides a comprehensive summary of these models and discusses how findings from basic biological and molecular studies and their translation to medical research demonstrate that Xiphophorus models have face, construct and predictive validity for studying a broad array of human diseases. These models can thus improve our understanding of disease mechanisms to benefit patients.
Collapse
Affiliation(s)
- Manfred Schartl
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
- Developmental Biochemistry, Theodor-Boveri Institute, Biocenter, University of Würzburg, Würzburg 97074, Germany
| | - Yuan Lu
- The Xiphophorus Genetic Stock Center, Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| |
Collapse
|
3
|
Elzahabi HSA, Nossier ES, Alasfoury RA, El-Manawaty M, Sayed SM, Elkaeed EB, Metwaly AM, Hagras M, Eissa IH. Design, synthesis, and anti-cancer evaluation of new pyrido[2,3-d]pyrimidin-4(3H)-one derivatives as potential EGFRWT and EGFRT790M inhibitors and apoptosis inducers. J Enzyme Inhib Med Chem 2022; 37:1053-1076. [PMID: 35821615 PMCID: PMC9291687 DOI: 10.1080/14756366.2022.2062752] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A new series of pyrido[2,3-d]pyrimidin-4(3H)-one derivatives having the essential pharmacophoric features of EGFR inhibitors has been designed and synthesised. Cell viability screening was performed for these compounds against A-549, PC-3, HCT-116, and MCF-7 cell lines at a dose of 100 μM. The highest active derivatives (8a, 8 b, 8d, 9a, and 12b) were selected for IC50 screening. Compounds 8a, 8 b, and 9a showed the highest cytotoxic activities and were further investigated for wild EGFRWT and mutant EGFRT790M inhibitory activities. Compound 8a showed the highest inhibitory activities against EGFRWT and EGFRT790M with IC50 values of 0.099 and 0.123 µM, respectively. In addition, it arrested the cell cycle at pre-G1 phase and induced a significant apoptotic effect in PC-3 cells. Furthermore, compound 8a induced a 5.3-fold increase in the level of caspase-3 in PC-3 cells. Finally, docking studies were carried out to examine the binding mode of the synthesised compounds against both EGFRWT and EGFRT790M.
Collapse
Affiliation(s)
- Heba S A Elzahabi
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eman S Nossier
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rania A Alasfoury
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - May El-Manawaty
- Pharmacognosy Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sara M Sayed
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Eslam B Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Ahmed M Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.,Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, Egypt
| | - Mohamed Hagras
- Pharmaceutical Organic Chemistry, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| | - Ibrahim H Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
4
|
Monroe JD, Basheer F, Gibert Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021; 10:1132. [PMID: 34067095 PMCID: PMC8150686 DOI: 10.3390/cells10051132] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | - Faiza Basheer
- School of Medicine, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| |
Collapse
|
5
|
Fei F, Wang L, Sun S, Lv K, Yao Y, Wang J, Yu M, Wang X. Transgenic strategies to generate heterogeneous hepatic cancer models in zebrafish. J Mol Cell Biol 2020; 11:1021-1023. [PMID: 31370058 PMCID: PMC6927236 DOI: 10.1093/jmcb/mjz083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/30/2019] [Accepted: 07/11/2019] [Indexed: 01/30/2023] Open
Affiliation(s)
- Fei Fei
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Lei Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Shaoyang Sun
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Kunpeng Lv
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Yuxiao Yao
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Jingjing Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Min Yu
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xu Wang
- Key Laboratory of Metabolism and Molecular Medicine, Ministry of Education, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China.,Cancer Metabolism Laboratory, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| |
Collapse
|
6
|
Powell DL, García-Olazábal M, Keegan M, Reilly P, Du K, Díaz-Loyo AP, Banerjee S, Blakkan D, Reich D, Andolfatto P, Rosenthal GG, Schartl M, Schumer M. Natural hybridization reveals incompatible alleles that cause melanoma in swordtail fish. Science 2020; 368:731-736. [PMID: 32409469 PMCID: PMC8074799 DOI: 10.1126/science.aba5216] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 03/27/2020] [Indexed: 12/21/2022]
Abstract
The establishment of reproductive barriers between populations can fuel the evolution of new species. A genetic framework for this process posits that "incompatible" interactions between genes can evolve that result in reduced survival or reproduction in hybrids. However, progress has been slow in identifying individual genes that underlie hybrid incompatibilities. We used a combination of approaches to map the genes that drive the development of an incompatibility that causes melanoma in swordtail fish hybrids. One of the genes involved in this incompatibility also causes melanoma in hybrids between distantly related species. Moreover, this melanoma reduces survival in the wild, likely because of progressive degradation of the fin. This work identifies genes underlying a vertebrate hybrid incompatibility and provides a glimpse into the action of these genes in natural hybrid populations.
Collapse
Affiliation(s)
- Daniel L Powell
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Mateo García-Olazábal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | | | - Patrick Reilly
- Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kang Du
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bavaria, Germany
| | - Alejandra P Díaz-Loyo
- Laboratorio de Ecología de la Conducta, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Shreya Banerjee
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - Danielle Blakkan
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA
| | - David Reich
- Department of Genetics, Harvard Medical School, Howard Hughes Medical Institute, and the Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Peter Andolfatto
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Gil G Rosenthal
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
| | - Manfred Schartl
- Centro de Investigaciones Científicas de las Huastecas "Aguazarca", A.C., Calnali, Hidalgo, Mexico
- Department of Biology, Texas A&M University, College Station, TX, USA
- Developmental Biochemistry, Biocenter, University of Würzburg, Würzburg, Bavaria, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, USA
- Xiphophorus Genetic Stock Center, Texas State University San Marcos, San Marcos, TX, USA
| | - Molly Schumer
- Department of Biology, Stanford University and Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
7
|
BRAF inhibition causes resilience of melanoma cell lines by inducing the secretion of FGF1. Oncogenesis 2018; 7:71. [PMID: 30237393 PMCID: PMC6147791 DOI: 10.1038/s41389-018-0082-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/13/2018] [Accepted: 08/06/2018] [Indexed: 12/16/2022] Open
Abstract
Approximately half of all melanoma patients harbour activating mutations in the serine/threonine kinase BRAF. This is the basis for one of the main treatment strategies for this tumor type, the targeted therapy with BRAF and MEK inhibitors. While the initial responsiveness to these drugs is high, resistance develops after several months, frequently at sites of the previously responding tumor. This indicates that tumor response is incomplete and that a certain tumor fraction survives even in drug-sensitive patients, e.g., in a therapy-induced senescence-like state. Here, we show in several melanoma cell lines that BRAF inhibition induces a secretome with stimulating effect on fibroblasts and naive melanoma cells. Several senescence-associated factors were found to be transcribed and secreted in response to BRAF or MEK inhibition, among them members of the fibroblast growth factor family. We identified the growth factor FGF1 as mediator of resilience towards BRAF inhibition, which limits the pro-apoptotic effects of the drug and activates fibroblasts to secrete HGF. FGF1 regulation was mediated by the PI3K pathway and by FRA1, a direct target gene of the MAPK pathway. When FGFR inhibitors were applied in parallel to BRAF inhibitors, resilience was broken, thus providing a rationale for combined therapeutical application.
Collapse
|
8
|
Schartl M, Walter RB. Xiphophorus and Medaka Cancer Models. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 916:531-52. [PMID: 27165369 DOI: 10.1007/978-3-319-30654-4_23] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Besides recently developed zebrafish cancer models, other fish species have been employed for many years as cancer models in laboratory studies. Two models, namely in Xiphophorus and medaka have proven useful in providing important clues to cancer etiology. Medaka is a complementary model to zebrafish in many areas of research since it offers similar resources and experimental tools. Xiphophorus provides the advantages of a natural ("evolutionary mutant") model with established genetics. Xiphophorus hybrids can develop spontaneous and radiation or carcinogen induced cancers. This chapter describes the tumor models in both species, which mainly focus on melanoma, and summarizes the main findings and future research directions.
Collapse
Affiliation(s)
- Manfred Schartl
- Physiologische Chemie, Universität Würzburg, Biozentrum, Am Hubland, D-97074, Würzburg, Germany. .,Texas Institute for Advanced Study and Department of Biology, Texas A&M University, 100 Butler Hall, College Station, Texas, 77843-3258, USA.
| | - Ronald B Walter
- Chemistry and Biochemistry, 419A Centennial Hall, Texas State University, 601 University Drive, San Marcos, TX, 78666-4616, USA
| |
Collapse
|
9
|
Regneri J, Volff JN, Schartl M. Transcriptional control analyses of the Xiphophorus melanoma oncogene. Comp Biochem Physiol C Toxicol Pharmacol 2015; 178:116-127. [PMID: 26348392 PMCID: PMC4662873 DOI: 10.1016/j.cbpc.2015.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/25/2015] [Accepted: 09/01/2015] [Indexed: 02/07/2023]
Abstract
Melanoma development in interspecific hybrids of Xiphophorus is induced by the overexpression of the mutationally activated receptor tyrosine kinase Xmrk in pigment cells. Based on the melanocyte specificity of the transcriptional upregulation, a pigment cell-specific promoter region was postulated for xmrk, the activity of which is controlled in healthy purebred fish by the molecularly still unidentified regulator locus R. However, as yet the xmrk promoter region is still poorly characterized. In order to contribute to a better understanding of xmrk expression regulation, we performed a functional analysis of the entire putative gene regulatory region of the oncogene using conventional plasmid-based reporter systems as well as a newly established method employing BAC-derived luciferase reporter constructs in melanoma and non-melanoma cell lines. Using the melanocyte-specific mitfa promoter as control, we could demonstrate that our in vitro system is able to reliably monitor regulation of transcription through cell type-specific regulatory sequences. We found that sequences within 200kb flanking the xmrk oncogene do not lead to any specific transcriptional activation in melanoma compared to control cells. Hence, xmrk reporter constructs fail to faithfully reproduce the endogenous transcriptional regulation of the oncogene. Our data therefore strongly indicate that the melanocyte-specific transcription of xmrk is not the consequence of pigment cell-specific cis-regulatory elements in the promoter region. This hints at additional regulatory mechanisms involved in transcriptional control of the oncogene, thereby suggesting a key role for epigenetic mechanisms in oncogenic xmrk overexpression and thereby in tumor development in Xiphophorus.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Jean-Nicolas Volff
- Institut de Génomique Fonctionelle de Lyon, Ecole Normale Supérieure de Lyon, 46, allée d'Italie, 69364 Lyon cedex 07, France
| | - Manfred Schartl
- Physiological Chemistry, Biocenter, University of Würzburg, Am Hubland, Würzburg, Germany; Comprehensive Cancer Center Mainfranken, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
10
|
Hyperactivation of constitutively dimerized oncogenic EGF receptors by autocrine loops. Oncogene 2012; 32:2403-11. [PMID: 22751127 DOI: 10.1038/onc.2012.267] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor (EGF) receptor (EGFR) has a key role in normal embryonic development, adult tissue homeostasis and many pathological processes, in particular tumour formation. Aberrant EGFR activation occurs in many cancer types, and inhibition of this receptor is a promising anti-tumour strategy. Besides overexpression of the wild-type receptor, mutated oncogenic EGFR variants are often associated with malignant transformation. In human non-small-cell lung cancers, kinase mutants of the EGFR are rather common. Human glioblastoma often express the truncated EGFRvIII version as well as other dimerized and permanently activated mutants of the receptor, which are considered as tumour drivers. Similarly, the mutated and dimerized EGFR variant Xiphophorus melanoma receptor kinase (Xmrk) is causative for the development of malignant pigment cell tumours in medaka and Xiphophorus melanoma models. It is generally believed that oncogenic receptors that are active due to dimerizing mutations are ligand independent. Here, we show that different EGFR variants from fish and human efficiently induce autocrine loops by inducing EGFR ligands such as amphiregulin and HB-EGF. Importantly, the pre-dimerized oncogenic EGFR versions Xmrk from Xiphophorus and human EGFR(C600F), though already active in absence of ligands, respond to ligand stimulation with enhanced oncogenic signalling. In summary, our data show that autocrine or paracrine loops are still acting on pre-dimerized oncogenic EGFRs and contribute to their pro-tumorigenic signalling.
Collapse
|
11
|
Regneri J, Schartl M. Expression regulation triggers oncogenicity of xmrk alleles in the Xiphophorus melanoma system. Comp Biochem Physiol C Toxicol Pharmacol 2012; 155:71-80. [PMID: 21527356 DOI: 10.1016/j.cbpc.2011.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 11/28/2022]
Abstract
The Xiphophorus melanoma model has gained attention in biomedical research as a genetic model for tumor formation. Melanoma development in interspecific hybrids of Xiphophorus is connected to pigment cell specific overexpression of the mutationally activated receptor tyrosine kinase Xmrk. In purebred fish the oncogenic function of xmrk is suppressed by a so far unknown regulator locus R. To test the hypothesis that R is involved in transcriptional regulation of xmrk and consequently acts upstream of the xmrk signal, we performed a quantitative analysis of xmrk transcript levels in normal and melanoma tissues of different Xiphophorus genotypes carrying either a highly tumorigenic or a non-tumorigenic xmrk allele. Our results demonstrate that expression of the tumorigenic xmrk allele is highly increased in malignant melanomas compared to benign lesions, macromelanophore spots, and healthy skin. Transcription of the non-tumorigenic xmrk allele in pigment cells, in contrast, is not influenced by the presence or absence of R. These findings strongly indicate that differential transcriptional regulation of the xmrk promoter determines the tumorigenic potential of xmrk alleles in the Xiphophorus melanoma system, thereby supporting the hypothesis that R suppresses the oncogenic function of xmrk on the level of transcriptional control.
Collapse
Affiliation(s)
- Janine Regneri
- Physiological Chemistry I, University of Würzburg, Biocenter, Am Hubland, 97074 Würzburg, Germany
| | | |
Collapse
|
12
|
Ymer SI, Greenall SA, Cvrljevic A, Cao DX, Donoghue JF, Epa VC, Scott AM, Adams TE, Johns TG. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation. Cancers (Basel) 2011; 3:2032-49. [PMID: 24212795 PMCID: PMC3757403 DOI: 10.3390/cancers3022032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 03/29/2011] [Accepted: 04/07/2011] [Indexed: 02/04/2023] Open
Abstract
The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation.
Collapse
Affiliation(s)
- Susie I. Ymer
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; E-Mails: (S.I.Y.), (S.A.G.), (A.G.)
| | - Sameer A. Greenall
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; E-Mails: (S.I.Y.), (S.A.G.), (A.G.)
| | - Anna Cvrljevic
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; E-Mails: (S.I.Y.), (S.A.G.), (A.G.)
| | - Diana X. Cao
- Tumor Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, VIC 3084, Australia; E-Mails: (D.X.C.), (A.M.S.)
| | - Jacqui F. Donoghue
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; E-Mails: (S.I.Y.), (S.A.G.), (A.G.)
| | - V. Chandana Epa
- CSIRO Division of Materials Science and Engineering, Parkville, VIC 3052, Australia; E-Mails: (V.C.E.); (T.E.A.)
| | - Andrew M. Scott
- Tumor Targeting Laboratory, Ludwig Institute for Cancer Research, Heidelberg, VIC 3084, Australia; E-Mails: (D.X.C.), (A.M.S.)
| | - Timothy E. Adams
- CSIRO Division of Materials Science and Engineering, Parkville, VIC 3052, Australia; E-Mails: (V.C.E.); (T.E.A.)
| | - Terrance G. Johns
- Oncogenic Signaling Laboratory, Monash Institute of Medical Research, Monash University, Clayton, VIC 3168, Australia; E-Mails: (S.I.Y.), (S.A.G.), (A.G.)
- Author to whom correspondence should be addressed; E-Mail: Tel: +613-9594-7247; Fax: +613-9594-7114
| |
Collapse
|
13
|
Meierjohann S, Hufnagel A, Wende E, Kleinschmidt MA, Wolf K, Friedl P, Gaubatz S, Schartl M. MMP13 mediates cell cycle progression in melanocytes and melanoma cells: in vitro studies of migration and proliferation. Mol Cancer 2010; 9:201. [PMID: 20667128 PMCID: PMC2915980 DOI: 10.1186/1476-4598-9-201] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Accepted: 07/28/2010] [Indexed: 11/10/2022] Open
Abstract
Background Melanoma cells are usually characterized by a strong proliferative potential and efficient invasive migration. Among the multiple molecular changes that are recorded during progression of this disease, aberrant activation of receptor tyrosine kinases (RTK) is often observed. Activation of matrix metalloproteases goes along with RTK activation and usually enhances RTK-driven migration. The purpose of this study was to examine RTK-driven three-dimensional migration of melanocytes and the pro-tumorigenic role of matrix metalloproteases for melanocytes and melanoma cells. Results Using experimental melanocyte dedifferentiation as a model for early melanomagenesis we show that an activated EGF receptor variant potentiates migration through three-dimensional fibrillar collagen. EGFR stimulation also resulted in a strong induction of matrix metalloproteases in a MAPK-dependent manner. However, neither MAPK nor MMP activity were required for migration, as the cells migrated in an entirely amoeboid mode. Instead, MMPs fulfilled a function in cell cycle regulation, as their inhibition resulted in strong growth inhibition of melanocytes. The same effect was observed in the human melanoma cell line A375 after stimulation with FCS. Using sh- and siRNA techniques, we could show that MMP13 is the protease responsible for this effect. Along with decreased proliferation, knockdown of MMP13 strongly enhanced pigmentation of melanocytes. Conclusions Our data show for the first time that growth stimuli are mediated via MMP13 in melanocytes and melanoma, suggesting an autocrine MMP13-driven loop. Given that MMP13-specific inhibitors are already developed, these results support the evaluation of these inhibitors in the treatment of melanoma.
Collapse
Affiliation(s)
- Svenja Meierjohann
- Department of Physiological Chemistry I, Biocenter, University of Wurzburg, Am Hubland, 97074 Wuerzburg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Experimental animal models are extremely valuable for the study of human diseases, especially those with underlying genetic components. The exploitation of various animal models, from fruitflies to mice, has led to major advances in our understanding of the etiologies of many diseases, including cancer. Cutaneous malignant melanoma is a form of cancer for which both environmental insult (i.e., UV) and hereditary predisposition are major causative factors. Fish melanoma models have been used in studies of both spontaneous and induced melanoma formation. Genetic hybrids between platyfish and swordtails, different species of the genus Xiphophorus, have been studied since the 1920s to identify genetic determinants of pigmentation and melanoma formation. Recently, transgenesis has been used to develop zebrafish and medaka models for melanoma research. This review will provide a historical perspective on the use of fish models in melanoma research, and an updated summary of current and prospective studies using these unique experimental systems.
Collapse
Affiliation(s)
- E Elizabeth Patton
- Institute for Genetics and Molecular Medicine, MRC Human Genetics Unit and Division of Cancer Research, The University of Edinburgh, Edinburgh, UK.
| | | | | |
Collapse
|
15
|
Abstract
Genes that exert their function when they are introduced into a foreign genetic background pose many questions to our current understanding of the forces and mechanisms that promote either the maintenance or divergence of gene functions over evolutionary time. The melanoma inducing Xmrk oncogene of the Southern platyfish (Xiphophorus maculatus) is a stable constituent of the genome of this species. It displays its tumorigenic function, however, almost exclusively only after inter-populational or, even more severely, interspecific hybridization events. The Xiphophorus hybrid melanoma system has gained attention in biomedical research as a genetic model for studying tumor formation. From an evolutionary perspective, a prominent question is: how could this gene persist over millions of years? An attractive hypothesis is that Xmrk, acting as a detrimental gene in a hybrid genome, could be a speciation gene that shields the gene pool of its species from mixing with other closely related sympatric species. In this article, I briefly review our current knowledge of the molecular genetics and biochemical functions of the Xmrk gene and discuss aspects of its evolutionary history and presence with respect to this idea. While Xmrk as a potentially injurious oncogene has clearly survived for millions of years, its role as a speciation gene has to be questioned.
Collapse
Affiliation(s)
- Manfred Schartl
- University of Würzburg, Physiologische Chemie I, Theodor-Boveri Institut für Biowissenschaften der Universität Würzburg Am Hubland, 97074 Würzburg.
| |
Collapse
|
16
|
Recent papers on zebrafish and other aquarium fish models. Zebrafish 2008; 3:481-95. [PMID: 18377228 DOI: 10.1089/zeb.2006.3.481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|