1
|
Brown W, Wesalo J, Tsang M, Deiters A. Engineering Small Molecule Switches of Protein Function in Zebrafish Embryos. J Am Chem Soc 2023; 145:2395-2403. [PMID: 36662675 DOI: 10.1021/jacs.2c11366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Precise temporally regulated protein function directs the highly complex processes that make up embryo development. The zebrafish embryo is an excellent model organism to study development, and conditional control over enzymatic activity is desirable to target chemical intervention to specific developmental events and to investigate biological mechanisms. Surprisingly few, generally applicable small molecule switches of protein function exist in zebrafish. Genetic code expansion allows for site-specific incorporation of unnatural amino acids into proteins that contain caging groups that are removed through addition of small molecule triggers such as phosphines or tetrazines. This broadly applicable control of protein function was applied to activate several enzymes, including a GTPase and a protease, with temporal precision in zebrafish embryos. Simple addition of the small molecule to the media produces robust and tunable protein activation, which was used to gain insight into the development of a congenital heart defect from a RASopathy mutant of NRAS and to control DNA and protein cleavage events catalyzed by a viral recombinase and a viral protease, respectively.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Joshua Wesalo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael Tsang
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
2
|
Brown W, Rosenblum C, Deiters A. Small-Molecule Phosphine Activation of Protein Function in Zebrafish Embryos with an Expanded Genetic Code. Methods Mol Biol 2023; 2676:247-263. [PMID: 37277638 DOI: 10.1007/978-1-0716-3251-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Conditional control of protein function in a living model organism is an important tool for studying the effects of that protein during development and disease. In this chapter, we walk through the steps to generate a small-molecule-activatable enzyme in zebrafish embryos through the incorporation of a noncanonical amino acid into the protein active site. This method can be applied to many enzyme classes, which we highlight with temporal control of a luciferase and a protease. We demonstrate that strategic placement of the noncanonical amino acid completely blocks enzyme activity, which is then promptly restored after addition of the nontoxic small molecule inducer to the embryo water.
Collapse
Affiliation(s)
- Wes Brown
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Carolyn Rosenblum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Light-triggered release of photocaged therapeutics - Where are we now? J Control Release 2019; 298:154-176. [PMID: 30742854 DOI: 10.1016/j.jconrel.2019.02.006] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/04/2019] [Accepted: 02/06/2019] [Indexed: 01/02/2023]
Abstract
The current available therapeutics face several challenges such as the development of ideal drug delivery systems towards the goal of personalized treatments for patients benefit. The application of light as an exogenous activation mechanism has shown promising outcomes, owning to the spatiotemporal confinement of the treatment in the vicinity of the diseased tissue, which offers many intriguing possibilities. Engineering therapeutics with light responsive moieties have been explored to enhance the bioavailability, and drug efficacy either in vitro or in vivo. The tailor-made character turns the so-called photocaged compounds highly desirable to reduce the side effects of drugs and, therefore, have received wide research attention. Herein, we seek to highlight the potential of photocaged compounds to obtain a clear understanding of the mechanisms behind its use in therapeutic delivery. A deep overview on the progress achieved in the design, fabrication as well as current and possible future applications in therapeutics of photocaged compounds is provided, so that novel formulations for biomedical field can be designed.
Collapse
|
4
|
O’Connor MJ, Beebe LL, Deodato D, Ball RE, Page AT, VanLeuven AJ, Harris KT, Park S, Hariharan V, Lauderdale JD, Dore TM. Bypassing Glutamic Acid Decarboxylase 1 (Gad1) Induced Craniofacial Defects with a Photoactivatable Translation Blocker Morpholino. ACS Chem Neurosci 2019; 10:266-278. [PMID: 30200754 PMCID: PMC6337688 DOI: 10.1021/acschemneuro.8b00231] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
![]()
γ-Amino
butyric acid (GABA) mediated signaling is critical
in the central and enteric nervous systems, pancreas, lungs, and other
tissues. It is associated with many neurological disorders and craniofacial
development. Glutamic acid decarboxylase (GAD) synthesizes GABA from
glutamate, and knockdown of the gad1 gene results
in craniofacial defects that are lethal in zebrafish. To bypass this
and enable observation of the neurological defects resulting from
knocking down gad1 expression, a photoactivatable
morpholino oligonucleotide (MO) against gad1 was
prepared by cyclization with a photocleavable linker rendering the
MO inactive. The cyclized MO was stable in the dark and toward degradative
enzymes and was completely linearized upon brief exposure to 405 nm
light. In the course of investigating the function of the ccMOs in
zebrafish, we discovered that zebrafish possess paralogous gad1 genes, gad1a and gad1b. A gad1b MO injected at the 1–4 cell stage
caused severe morphological defects in head development, which could
be bypassed, enabling the fish to develop normally, if the fish were
injected with a photoactivatable, cyclized gad1b MO
and grown in the dark. At 1 day post fertilization (dpf), light activation
of the gad1b MO followed by observation at 3 and
7 dpf led to increased and abnormal electrophysiological brain activity
compared to wild type animals. The photocleavable linker can be used
to cyclize and inactivate any MO, and represents a general strategy
to parse the function of developmentally important genes in a spatiotemporal
manner.
Collapse
Affiliation(s)
- Matthew J. O’Connor
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Lindsey L. Beebe
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Davide Deodato
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
| | - Rebecca E. Ball
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - A. Tyler Page
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Ariel J. VanLeuven
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - Kyle T. Harris
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| | - Sungdae Park
- Department of Genetics, University of Georgia, Athens, Georgia 30602, United States
| | - Vani Hariharan
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
| | - James D. Lauderdale
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602, United States
- Neuroscience
Division
of the Biomedical and Health Sciences Institute, Athens, Georgia 30602, United States
| | - Timothy M. Dore
- New York University Abu Dhabi, PO Box 129188, Abu Dhabi, United Arab Emirates
- Department of Chemistry, University of Georgia, Athens, Georgia 30602 United States
| |
Collapse
|
5
|
Innovative Disease Model: Zebrafish as an In Vivo Platform for Intestinal Disorder and Tumors. Biomedicines 2017; 5:biomedicines5040058. [PMID: 28961226 PMCID: PMC5744082 DOI: 10.3390/biomedicines5040058] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the world’s most common cancers and is the second leading cause of cancer deaths, causing more than 50,000 estimated deaths each year. Several risk factors are highly associated with CRC, including being overweight, eating a diet high in red meat and over-processed meat, having a history of inflammatory bowel disease, and smoking. Previous zebrafish studies have demonstrated that multiple oncogenes and tumor suppressor genes can be regulated through genetic or epigenetic alterations. Zebrafish research has also revealed that the activation of carcinogenesis-associated signal pathways plays an important role in CRC. The biology of cancer, intestinal disorders caused by carcinogens, and the morphological patterns of tumors have been found to be highly similar between zebrafish and humans. Therefore, the zebrafish has become an important animal model for translational medical research. Several zebrafish models have been developed to elucidate the characteristics of gastrointestinal diseases. This review article focuses on zebrafish models that have been used to study human intestinal disorders and tumors, including models involving mutant and transgenic fish. We also report on xenograft models and chemically-induced enterocolitis. This review demonstrates that excellent zebrafish models can provide novel insights into the pathogenesis of gastrointestinal diseases and help facilitate the evaluation of novel anti-tumor drugs.
Collapse
|
6
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
7
|
Zebrafish as a Model for the Study of Human Myeloid Malignancies. BIOMED RESEARCH INTERNATIONAL 2015; 2015:641475. [PMID: 26064935 PMCID: PMC4433643 DOI: 10.1155/2015/641475] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/11/2014] [Accepted: 12/15/2014] [Indexed: 01/26/2023]
Abstract
Myeloid malignancies are heterogeneous disorders characterized by uncontrolled proliferation or/and blockage of differentiation of myeloid progenitor cells. Although a substantial number of gene alterations have been identified, the mechanism by which these abnormalities interact has yet to be elucidated. Over the past decades, zebrafish have become an important model organism, especially in biomedical research. Several zebrafish models have been developed to recapitulate the characteristics of specific myeloid malignancies that provide novel insight into the pathogenesis of these diseases and allow the evaluation of novel small molecule drugs. This report will focus on illustrative examples of applications of zebrafish models, including transgenesis, zebrafish xenograft models, and cell transplantation approaches, to the study of human myeloid malignancies.
Collapse
|
8
|
McGrath P, Seng WL. Use of zebrafish apoptosis assays for preclinical drug discovery. Expert Opin Drug Discov 2013; 8:1191-202. [DOI: 10.1517/17460441.2013.825244] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Novoa B, Figueras A. Zebrafish: model for the study of inflammation and the innate immune response to infectious diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 946:253-75. [PMID: 21948373 DOI: 10.1007/978-1-4614-0106-3_15] [Citation(s) in RCA: 187] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The zebrafish (Danio rerio) has been extensively used in biomedical research as a model to study vertebrate development and hematopoiesis and recently, it has been adopted into varied fields including immunology. After fertilization, larvae survive with only the innate immune responses because adaptive immune system is morphologically and functionally mature only after 4-6 weeks postfertilization. This temporal separation provides a suitable system to study the vertebrate innate immune response in vivo, independently from the adaptive immune response. The transparency of early life stages allows a useful real-time visualization. Adult zebrafish which have complete (innate and adaptative) immune systems offer also advantages over other vertebrate infection models: small size, relatively rapid life cycle, ease of breeding, and a growing list of molecular tools for the study of infectious diseases. In this review, we have tried to give some examples of the potential of zebrafish as a valuable model in innate immunity and inflammation studies.
Collapse
Affiliation(s)
- Beatriz Novoa
- Instituto de Investigaciones Marinas, CSIC, Eduardo Cabello 6, 36208 Vigo, Spain.
| | | |
Collapse
|
10
|
Gama Sosa MA, De Gasperi R, Elder GA. Modeling human neurodegenerative diseases in transgenic systems. Hum Genet 2011; 131:535-63. [PMID: 22167414 DOI: 10.1007/s00439-011-1119-1] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/23/2011] [Indexed: 02/07/2023]
Abstract
Transgenic systems are widely used to study the cellular and molecular basis of human neurodegenerative diseases. A wide variety of model organisms have been utilized, including bacteria (Escherichia coli), plants (Arabidopsis thaliana), nematodes (Caenorhabditis elegans), arthropods (Drosophila melanogaster), fish (zebrafish, Danio rerio), rodents (mouse, Mus musculus and rat, Rattus norvegicus) as well as non-human primates (rhesus monkey, Macaca mulatta). These transgenic systems have enormous value for understanding the pathophysiological basis of these disorders and have, in some cases, been instrumental in the development of therapeutic approaches to treat these conditions. In this review, we discuss the most commonly used model organisms and the methodologies available for the preparation of transgenic organisms. Moreover, we provide selected examples of the use of these technologies for the preparation of transgenic animal models of neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal lobar degeneration (FTLD), amyotrophic lateral sclerosis (ALS), Huntington's disease (HD) and Parkinson's disease (PD) and discuss the application of these technologies to AD as an example of how transgenic modeling has affected the study of human neurodegenerative diseases.
Collapse
Affiliation(s)
- Miguel A Gama Sosa
- Research and Development Service, James J. Peters Department of Veterans Affairs Medical Center, Bronx, NY 10468, USA.
| | | | | |
Collapse
|
11
|
Lu JW, Hsia Y, Tu HC, Hsiao YC, Yang WY, Wang HD, Yuh CH. Liver development and cancer formation in zebrafish. ACTA ACUST UNITED AC 2011; 93:157-72. [DOI: 10.1002/bdrc.20205] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Efimov VA, Aralov AV, Chakhmakhcheva OG. [DNA mimics on the base of pyrrolidine and hydroxyproline]. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2011; 36:725-46. [PMID: 21317938 DOI: 10.1134/s1068162010060014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In order to improve physicochemical and biological properties of natural oligonucleotides in particular increasing their affinity for nucleic acids, the selectivity of action and biological sustainability, several types of DNA mimics were designed. The survey collected data on the synthesis and properties of the DNA mimics - peptide-nucleic acids analogues, which are derivatives of pyrrolidine and hydroxyproline. We examine some physicochemical and biological properties of negatively charged mimics of this type, containing phosphonate residues, and possessing a high affinity for DNA and RNA, selective binding with nucleic acids and stability in various biological systems. Examples of the use of these mimics as tools for molecular biological research, particularly in functional genomics are given. The prospects for their use in diagnostics and medicine are discussed.
Collapse
|
13
|
Approaches for using animal models to identify loci that genetically interact with human disease-causing point mutations. Methods Mol Biol 2010. [PMID: 20676986 DOI: 10.1007/978-1-60761-652-8_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The complexity of human illnesses often extends beyond a single mutation in one gene. Mutations at other loci may act synergistically to affect the penetrance and severity of the associated clinical manifestations. Discovering the additional loci that contribute to an illness is a challenging problem. Animal models for disease, based on engineered point mutations in a homologous gene, have proven invaluable to better understand the mechanism(s) which give(s) rise to the observed physiological effects. Importantly, these animals can also function as the basis for genetic modifier screens to discover other loci which contribute to an illness. This chapter discusses the theory, considerations, and methodology for performing genetic modifier screens in animal models for human disease.
Collapse
|
14
|
Distel M, Wullimann MF, Köster RW. Optimized Gal4 genetics for permanent gene expression mapping in zebrafish. Proc Natl Acad Sci U S A 2009; 106:13365-70. [PMID: 19628697 PMCID: PMC2726396 DOI: 10.1073/pnas.0903060106] [Citation(s) in RCA: 213] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Indexed: 01/08/2023] Open
Abstract
Combinatorial genetics for conditional transgene activation allows studying gene function with temporal and tissue specific control like the Gal4-UAS system, which has enabled sophisticated genetic studies in Drosophila. Recently this system was adapted for zebrafish and promising applications have been introduced. Here, we report a systematic optimization of zebrafish Gal4-UAS genetics by establishing an optimized Gal4-activator (KalTA4). We provide quantitative data for KalTA4-mediated transgene activation in dependence of UAS copy numbers to allow for studying dosage effects of transgene expression. Employing a Tol2 transposon-mediated KalTA4 enhancer trap screen biased for central nervous system expression, we present a collection of self-reporting red fluorescent KalTA4 activator strains. These strains reliably transactivate UAS-dependent transgenes and can be rendered homozygous. Furthermore, we have characterized the transactivation kinetics of tissue-specific KalTA4 activation, which led to the development of a self-maintaining effector strain "Kaloop." This strain relates transient KalTA4 expression during embryogenesis via a KalTA4-mediated autoregulatory mechanism to live adult structures. We demonstrate its use by showing that the secondary octaval nucleus in the adult hindbrain is likely derived from egr2b-expressing cells in rhombomere 5 during stages of early embryogenesis. These data demonstrate prolonged and maintained expression by Kalooping, a technique that can be used for permanent spatiotemporal genetic fate mapping and targeted transgene expression in zebrafish.
Collapse
Affiliation(s)
- Martin Distel
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; and
| | - Mario F. Wullimann
- Ludwig-Maximilians-University Munich, Department of Biology II, Graduate School of Systemic Neurosciences, Grosshadernerstrasse 2, 82152 Planegg-Martinsried, Germany
| | - Reinhard W. Köster
- Helmholtz Zentrum München, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; and
| |
Collapse
|
15
|
Enhanced transcription of complement and coagulation genes in the absence of adaptive immunity. Mol Immunol 2009; 46:1505-16. [PMID: 19200601 DOI: 10.1016/j.molimm.2008.12.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 01/30/2023]
Abstract
A recessive nonsense mutation in the zebrafish recombination activating gene 1 (rag1) gene results in defective V(D)J recombination; however, animals homozygous for this mutation (rag1(-/-)) are reportedly viable and fertile in standard, nonsterile aquarium conditions but display increased mortality after intraperitoneal injection with mycobacteria. Based on their survival in nonsterile environments, we hypothesized that the rag1(-/-) zebrafish may possess an "enhanced" innate immune response to compensate for the lack of an adaptive immune system. To test this hypothesis, microarray analyses were used to compare the expression profiles of the intestines and hematopoietic kidneys of rag1 deficient zebrafish to the expression profiles of control (heterozygous) siblings. The expression levels of 12 genes were significantly altered in the rag1(-/-) kidney including the up regulation of a putative interferon stimulated gene, and the down regulation of genes encoding fatty acid binding protein 10, keratin 5 and multiple heat shock proteins. The expression levels of 87 genes were shown to be significantly altered in the rag1(-/-) intestine; the majority of these differences reflect increased expression of innate immune genes, including those of the coagulation and complement pathways. Subsequent analyses of orthologous coagulation and complement genes in Rag1(-/-) mice indicate increased transcription of the complement C4 gene in the Rag1(-/-) intestine.
Collapse
|
16
|
Morris JA. Zebrafish: a model system to examine the neurodevelopmental basis of schizophrenia. PROGRESS IN BRAIN RESEARCH 2009; 179:97-106. [DOI: 10.1016/s0079-6123(09)17911-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
17
|
Yoder JA, Orcutt TM, Traver D, Litman GW. Structural characteristics of zebrafish orthologs of adaptor molecules that associate with transmembrane immune receptors. Gene 2007; 401:154-64. [PMID: 17719728 PMCID: PMC2049010 DOI: 10.1016/j.gene.2007.07.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 07/10/2007] [Accepted: 07/12/2007] [Indexed: 01/16/2023]
Abstract
Transmembrane bound receptors comprised of extracellular immunoglobulin (Ig) or lectin domains play integral roles in a large number of immune functions including inhibitory and activating responses. The function of many of the activating receptors requires a physical interaction with an adaptor protein possessing a cytoplasmic regulatory motif. The partnering of an activating receptor with an adaptor protein relies on complementary charged residues in the two transmembrane domains. The mammalian natural killer (NK) and Fc receptors (FcR) represent two of many receptor families, which possess activating receptors that partner with adaptor proteins for signaling. Zebrafish represent a powerful experimental model for understanding developmental regulation at early stages of embryogenesis and for efficiently generating transgenic animals. In an effort to understand developmental aspects of immune receptor function, we have accessed the partially annotated zebrafish genome to identify six different adaptor molecules: Dap10, Dap12, Cd3zeta, Cd3zeta-like, FcRgamma and FcRgamma-like that are homologous to those effecting immune function in mammals. Their genomic organizations have been characterized, cDNA transcripts have been recovered, phylogenetic relationships have been defined and their cell lineage-specific expression patterns have been established.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/chemistry
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Amino Acid Sequence
- Animals
- CD3 Complex/genetics
- CD3 Complex/metabolism
- Cell Lineage
- Cell Membrane/immunology
- Cell Membrane/metabolism
- Cloning, Molecular
- DNA, Complementary
- Embryo, Nonmammalian
- Gene Expression Regulation, Developmental
- Genome
- Killer Cells, Natural/immunology
- Molecular Sequence Data
- Phylogeny
- Protein Structure, Tertiary
- Receptors, IgG/immunology
- Receptors, Immunologic/chemistry
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, KIR
- Sequence Homology, Amino Acid
- Zebrafish/embryology
- Zebrafish/genetics
- Zebrafish Proteins
Collapse
Affiliation(s)
- Jeffrey A Yoder
- Department of Molecular Biomedical Sciences and Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, 4700 Hillsborough Street, Raleigh, NC 27606, USA.
| | | | | | | |
Collapse
|
18
|
Recent Papers on Zebrafish And Other Aquarium Fish Models. Zebrafish 2007. [DOI: 10.1089/zeb.2006.9991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|