1
|
Li L, Huang J, Feng L, Xu L, Lin H, Liu K, Li X, Wang R. Altechromone A Ameliorates Inflammatory Bowel Disease by Inhibiting NF-κB and NLRP3 Pathways. Mar Drugs 2024; 22:410. [PMID: 39330291 PMCID: PMC11432983 DOI: 10.3390/md22090410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
Altechromone A, also known as 2,5-dimethyl-7-hydroxychromone, is a hydroxyketone containing one hydroxyl and one ketone group. In this study, we isolated Altechromone A from the marine-derived fungus Penicillium Chrysogenum (XY-14-0-4). Previous reports show that Altechromone A has various activities including tumor suppression, antibacterial, and antiviral activities. However, there is no study about its anti-inflammatory activity in inflammatory bowel disease (IBD). Here, we assess the anti-inflammatory activity, especially in IBD, and its potential mechanism using the zebrafish model. Our results indicated that Altechromone A has anti-inflammatory activity in a CuSO4-, tail-cutting-, and LPS-induced inflammatory model in zebrafish, respectively. In addition, Altechromone A greatly reduced the number of neutrophils, improved intestinal motility and efflux efficiency, alleviated intestinal damage, and reduced reactive oxygen species production in the TNBS-induced IBD zebrafish model. The transcriptomics sequencing and real-time qPCR indicated that Altechromone A inhibited the expression of pro-inflammatory genes including TNF-α, NF-κB, IL-1, IL-1β, IL-6, and NLRP3. Therefore, these data indicate that Altechromone A exhibits therapeutic effects in IBD by inhibiting the inflammatory response.
Collapse
Affiliation(s)
- Lei Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Jing Huang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Lixin Feng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Liyan Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Medical Decision and Economic Group, Department of Pharmacy, Ren Ji Hospital, South Campus, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, China
| | - Kechun Liu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| | - Rongchun Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, China
- Engineering Research Center of Zebrafish Models for Human Diseases and Drug Screening of Shandong Province, Jinan 250103, China
| |
Collapse
|
2
|
Lv H, Jin Z, Wang D, Guo X, Wang H, Yang S. Erk5 functions in modulation of zebrafish intestinal permeability. Cell Tissue Res 2023:10.1007/s00441-023-03786-2. [PMID: 37256363 DOI: 10.1007/s00441-023-03786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 05/08/2023] [Indexed: 06/01/2023]
Abstract
The intestine of zebrafish consists of mucosa, muscularis and serosa. Intestinal epithelial cells (IECs) act as a physical and biochemical barrier to protect against invasion by external commensal bacteria. Cell junction is one of the crucial basis of the barrier function. When cell junctions were disrupted, intestinal permeability would be naturally impeded. Extracellular signal-regulated kinase 5 (ERK5), belonging to the Mitogen-activated protein kinase (MAPK) family, is involved in the normal physiological development of the cardiovascular system and nervous system. But the role of erk5 in intestinal morphogenesis and intestinal function is yet to know. Here, we showed that knockout of the erk5 in zebrafish larvae resulted in intestinal wall hypoplasia, including the thinned intestinal wall, reduced intestinal folds, and disrupted cell junctions. In addition, the intestinal permeability assay demonstrated that knockout of erk5 resulted in increased intestinal permeability. All of these showed that erk5 plays an essential role in the maintenance of intestinal barrier function. Thus, our data indicate that erk5 is a critical effector in intestinal morphogenesis and intestinal function, and dysfunction of erk5 would lead to intestinal diseases.
Collapse
Affiliation(s)
- Haimei Lv
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Ziwei Jin
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Dongxia Wang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoling Guo
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Shulan Yang
- Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Engineering & Technology Research Center for Disease-Model Animals, Laboratory Animal Center, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
3
|
Hutto RA, Rutter KM, Giarmarco MM, Parker ED, Chambers ZS, Brockerhoff SE. Cone photoreceptors transfer damaged mitochondria to Müller glia. Cell Rep 2023; 42:112115. [PMID: 36795565 PMCID: PMC10425575 DOI: 10.1016/j.celrep.2023.112115] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/17/2023] Open
Abstract
Mitochondria are vital organelles that require sophisticated homeostatic mechanisms for maintenance. Intercellular transfer of damaged mitochondria is a recently identified strategy broadly used to improve cellular health and viability. Here, we investigate mitochondrial homeostasis in the vertebrate cone photoreceptor, the specialized neuron that initiates our daytime and color vision. We find a generalizable response to mitochondrial stress that leads to loss of cristae, displacement of damaged mitochondria from their normal cellular location, initiation of degradation, and transfer to Müller glia cells, a key non-neuronal support cell in the retina. Our findings show transmitophagy from cones to Müller glia as a response to mitochondrial damage. Intercellular transfer of damaged mitochondria represents an outsourcing mechanism that photoreceptors use to support their specialized function.
Collapse
Affiliation(s)
- Rachel A Hutto
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | - Kaitlyn M Rutter
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | | | - Edward D Parker
- Ophthalmology Department, The University of Washington, Seattle, WA 98109, USA
| | - Zachary S Chambers
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA
| | - Susan E Brockerhoff
- Biochemistry Department, The University of Washington, Seattle, WA 98195, USA; Ophthalmology Department, The University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
4
|
Bek JW, De Clercq A, De Saffel H, Soenens M, Huysseune A, Witten PE, Coucke PJ, Willaert A. Photoconvertible fluorescent proteins: a versatile tool in zebrafish skeletal imaging. JOURNAL OF FISH BIOLOGY 2021; 98:1007-1017. [PMID: 32242924 DOI: 10.1111/jfb.14335] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/24/2020] [Accepted: 03/26/2020] [Indexed: 06/11/2023]
Abstract
One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.
Collapse
Affiliation(s)
- Jan Willem Bek
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Adelbert De Clercq
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Hanna De Saffel
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Mieke Soenens
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Ann Huysseune
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - P Eckhard Witten
- Evolutionary Developmental Biology, Biology Department, Ghent University, Ghent, Belgium
| | - Paul J Coucke
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| | - Andy Willaert
- Center of Medical Genetics, Department of Biomolecular Medicine, Ghent University-University Hospital, Ghent, Belgium
| |
Collapse
|
5
|
Formella I, Svahn AJ, Radford RAW, Don EK, Cole NJ, Hogan A, Lee A, Chung RS, Morsch M. Real-time visualization of oxidative stress-mediated neurodegeneration of individual spinal motor neurons in vivo. Redox Biol 2018; 19:226-234. [PMID: 30193184 PMCID: PMC6126400 DOI: 10.1016/j.redox.2018.08.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/21/2018] [Accepted: 08/21/2018] [Indexed: 12/13/2022] Open
Abstract
Generation of reactive oxygen species (ROS) has been shown to be important for many physiological processes, ranging from cell differentiation to apoptosis. With the development of the genetically encoded photosensitiser KillerRed (KR) it is now possible to efficiently produce ROS dose-dependently in a specific cell type upon green light illumination. Zebrafish are the ideal vertebrate animal model for these optogenetic methods because of their transparency and efficient transgenesis. Here we describe a zebrafish model that expresses membrane-targeted KR selectively in motor neurons. We show that KR-activated neurons in the spinal cord undergo stress and cell death after induction of ROS. Using single-cell resolution and time-lapse confocal imaging, we selectively induced neurodegeneration in KR-expressing neurons leading to characteristic signs of apoptosis and cell death. We furthermore illustrate a targeted microglia response to the induction site as part of a physiological response within the zebrafish spinal cord. Our data demonstrate the successful implementation of KR mediated ROS toxicity in motor neurons in vivo and has important implications for studying the effects of ROS in a variety of conditions within the central nervous system, including aging and age-related neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis. Motor neurons can be targeted for oxidative stress using optogenetics in zebrafish. KillerRed expressing neurons undergo characteristic sequence of neurodegeneration. Targeted neurons show microglial activation as part of the physiological response. ROS toxicity has important implications for mechanisms driving neurodegeneration.
Collapse
Affiliation(s)
- Isabel Formella
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Adam J Svahn
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rowan A W Radford
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Emily K Don
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Nicholas J Cole
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Alison Hogan
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Albert Lee
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Roger S Chung
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| | - Marco Morsch
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
García-Lecea M, Gasanov E, Jedrychowska J, Kondrychyn I, Teh C, You MS, Korzh V. Development of Circumventricular Organs in the Mirror of Zebrafish Enhancer-Trap Transgenics. Front Neuroanat 2017; 11:114. [PMID: 29375325 PMCID: PMC5770639 DOI: 10.3389/fnana.2017.00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/22/2017] [Indexed: 11/18/2022] Open
Abstract
The circumventricular organs (CVOs) are small structures lining the cavities of brain ventricular system. They are associated with the semitransparent regions of the blood-brain barrier (BBB). Hence it is thought that CVOs mediate biochemical signaling and cell exchange between the brain and systemic blood. Their classification is still controversial and development not fully understood largely due to an absence of tissue-specific molecular markers. In a search for molecular determinants of CVOs we studied the green fluorescent protein (GFP) expression pattern in several zebrafish enhancer trap transgenics including Gateways (ET33-E20) that has been instrumental in defining the development of choroid plexus. In Gateways the GFP is expressed in regions of the developing brain outside the choroid plexus, which remain to be characterized. The neuroanatomical and histological analysis suggested that some previously unassigned domains of GFP expression may correspond to at least six other CVOs–the organum vasculosum laminae terminalis (OVLT), subfornical organ (SFO), paraventricular organ (PVO), pineal (epiphysis), area postrema (AP) and median eminence (ME). Two other CVOs, parapineal and subcommissural organ (SCO) were detected in other enhancer-trap transgenics. Hence enhancer-trap transgenic lines could be instrumental for developmental studies of CVOs in zebrafish and understanding of the molecular mechanism of disease such a hydrocephalus in human. Their future analysis may shed light on general and specific molecular mechanisms that regulate development of CVOs.
Collapse
Affiliation(s)
- Marta García-Lecea
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Basic Biomedical Sciences, Universidad Europea de Madrid, Madrid, Spain
| | - Evgeny Gasanov
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Justyna Jedrychowska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Igor Kondrychyn
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,RIKEN Center for Developmental Biology, Kobe, Japan
| | - Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - May-Su You
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,National Health Research Institutes (NHRI), Zhunan, Taiwan
| | - Vladimir Korzh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore.,International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| |
Collapse
|
7
|
Datta R, Wong A, Camarata T, Tamanna F, Ilahi I, Vasilyev A. Precise Cellular Ablation Approach for Modeling Acute Kidney Injury in Developing Zebrafish. J Vis Exp 2017. [PMID: 28605371 DOI: 10.3791/55606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Acute Kidney Injury (AKI) is a common medical condition with a high mortality rate. With the repair abilities of the kidney, it is possible to restore adequate kidney function after supportive treatment. However, a better understanding of how nephron cell death and repair occur on the cellular level is required to minimize cell death and to enhance the regenerative process. The zebrafish pronephros is a good model system to accomplish this goal because it contains anatomical segments that are similar to the mammalian nephron. Previously, the most common model used to study kidney injury in fish was the pharmacological gentamicin model. However, this model does not allow for precise spatiotemporal control of injury, and hence it is difficult to study cellular and molecular processes involved in kidney repair. To overcome this limitation, this work presents a method through which, in contrast to the gentamicin approach, a specific Green Fuorescent Protein (GFP)-expressing nephron segment can be photoablated using a violet laser light (405 nm). This novel model of AKI provides many advantages that other methods of epithelial injury lack. Its main advantages are the ability to "dial" the level of injury and the precise spatiotemporal control in the robust in vivo animal model. This new method has the potential to significantly advance the level of understanding of kidney injury and repair mechanisms.
Collapse
Affiliation(s)
| | - Ada Wong
- Department of Biomedical Sciences, NYITCOM
| | | | | | | | | |
Collapse
|
8
|
Weber T, Namikawa K, Winter B, Müller-Brown K, Kühn R, Wurst W, Köster RW. Caspase-mediated apoptosis induction in zebrafish cerebellar Purkinje neurons. Development 2016; 143:4279-4287. [PMID: 27729409 DOI: 10.1242/dev.122721] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 09/30/2016] [Indexed: 01/11/2023]
Abstract
The zebrafish is a well-established model organism in which to study in vivo mechanisms of cell communication, differentiation and function. Existing cell ablation methods are either invasive or they rely on the cellular expression of prokaryotic enzymes and the use of antibiotic drugs as cell death-inducing compounds. We have recently established a novel inducible genetic cell ablation system based on tamoxifen-inducible Caspase 8 activity, thereby exploiting mechanisms of cell death intrinsic to most cell types. Here, we prove its suitability in vivo by monitoring the ablation of cerebellar Purkinje cells (PCs) in transgenic zebrafish that co-express the inducible caspase and a fluorescent reporter. Incubation of larvae in tamoxifen for 8 h activated endogenous Caspase 3 and cell death, whereas incubation for 16 h led to the near-complete loss of PCs by apoptosis. We observed synchronous cell death autonomous to the PC population and phagocytosing microglia in the cerebellum, reminiscent of developmental apoptosis in the forebrain. Thus, induction of apoptosis through targeted activation of caspase by tamoxifen (ATTACTM) further expands the repertoire of genetic tools for conditional interrogation of cellular functions.
Collapse
Affiliation(s)
- Thomas Weber
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany.,Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Kazuhiko Namikawa
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Barbara Winter
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Karina Müller-Brown
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| | - Ralf Kühn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Wolfgang Wurst
- Helmholtz Zentrum München, German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, Neuherberg 85764, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE), Standort München, Feodor-Lynen-Str. 17, München 81377, Germany.,Munich Cluster for Systems Neurology (SyNergy), Feodor-Lynen-Str. 17, München 81377, Germany.,Technische Universität München-Weihenstephan, Lehrstuhl für Entwicklungsgenetik, c/o Helmholtz Zentrum München, Ingolstädter Landstr. 1, Neuherberg 85764, Germany
| | - Reinhard W Köster
- TU Braunschweig, Zoological Institute, Cellular and Molecular Neurobiology, Spielmannstr. 7, Braunschweig 38106, Germany
| |
Collapse
|
9
|
Ma X, Teh C, Zhang Q, Borah P, Choong C, Korzh V, Zhao Y. Redox-responsive mesoporous silica nanoparticles: a physiologically sensitive codelivery vehicle for siRNA and doxorubicin. Antioxid Redox Signal 2014; 21:707-22. [PMID: 23931896 DOI: 10.1089/ars.2012.5076] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
AIMS Efficient siRNA/drug codelivery carriers can offer great promises to cancer treatment on account of synergistic effect provided from cancer-associated gene and anticancer drugs. In this work, a redox-responsive drug/siRNA codelivery vehicle based on mesoporous silica nanoparticles was fabricated to simultaneously deliver siRNA and doxorubicin (Dox) in vitro and in vivo. RESULTS The nanoparticle surface was functionalized with the adamantane (AD) units. Formation of stable host-guest complex between disulfide bond linked-AD and ethylenediamine-modified β-cyclodextrin is capable of fully blocking drugs inside the nanopores, while amino groups can complex with siRNA via electrostatic interaction. Relatively high concentration of glutathione in biophysical environment provides natural reducing agent to trigger drug/siRNA release by cleaving pre-introduced disulfide bonds. B-cell lymphoma 2 (Bcl-2) siRNA was codelivered to silence Bcl-2 protein expression in HeLa cells, resulting in enhanced chemotherapy efficacy in vitro. In vivo delivery experiment carried out in transgenic zebrafish larvae indicates that the delivery of Dox inhibits the development of choroid plexus in a dose-dependent manner, leading to successful decrease of green fluorescence protein transcription in choroid plexus. Reduction of liver tumor was also demonstrated after injection of Dox-loaded nanoparticles. INNOVATION We successfully demonstrated that functional nanoparticles could serve as an efficient carrier for the delivery of Bcl-2 siRNA and Dox in HeLa cells and in transgenic zebrafish larvae, leading to enhanced therapeutic efficacy. CONCLUSION Enhanced cytotoxicity caused by simultaneous delivery of Bcl-2 siRNA and Dox was observed in HeLa cells. Drug-loaded nanoparticles were internalized in vivo, inhibiting the development of choroid plexus and the progression of liver tumor.
Collapse
Affiliation(s)
- Xing Ma
- 1 Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University , Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
10
|
Palmyre A, Lee J, Ryklin G, Camarata T, Selig MK, Duchemin AL, Nowak P, Arnaout MA, Drummond IA, Vasilyev A. Collective epithelial migration drives kidney repair after acute injury. PLoS One 2014; 9:e101304. [PMID: 25010471 PMCID: PMC4092191 DOI: 10.1371/journal.pone.0101304] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 06/04/2014] [Indexed: 02/07/2023] Open
Abstract
Acute kidney injury (AKI) is a common and significant medical problem. Despite the kidney’s remarkable regenerative capacity, the mortality rate for the AKI patients is high. Thus, there remains a need to better understand the cellular mechanisms of nephron repair in order to develop new strategies that would enhance the intrinsic ability of kidney tissue to regenerate. Here, using a novel, laser ablation-based, zebrafish model of AKI, we show that collective migration of kidney epithelial cells is a primary early response to acute injury. We also show that cell proliferation is a late response of regenerating kidney epithelia that follows cell migration during kidney repair. We propose a computational model that predicts this temporal relationship and suggests that cell stretch is a mechanical link between migration and proliferation, and present experimental evidence in support of this hypothesis. Overall, this study advances our understanding of kidney repair mechanisms by highlighting a primary role for collective cell migration, laying a foundation for new approaches to treatment of AKI.
Collapse
Affiliation(s)
- Aurélien Palmyre
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeongeun Lee
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - Gennadiy Ryklin
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - Troy Camarata
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Martin K. Selig
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anne-Laure Duchemin
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Paul Nowak
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
| | - M. Amin Arnaout
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Developmental and Regenerative Biology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Iain A. Drummond
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Aleksandr Vasilyev
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Biomedical Sciences, NYIT COM, Old Westbury, New York, United States of America
- * E-mail:
| |
Collapse
|
11
|
Teh C, Korzh V. In vivo optogenetics for light-induced oxidative stress in transgenic zebrafish expressing the KillerRed photosensitizer protein. Methods Mol Biol 2014; 1148:229-238. [PMID: 24718805 DOI: 10.1007/978-1-4939-0470-9_15] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Optogenetic methods are gaining broad recognition. The zebrafish is particularly useful for these applications as a model vertebrate due to a unique combination of translucent embryos/larvae and efficient transgenesis. Here, we describe a zebrafish model of light-induced cardiac deficiency. Upon illumination with intense green light, the membrane-tethered photosensitizer protein KillerRed acts as a photoinducer of reactive oxygen species which in turn cause changes in heart rate and contractility in hearts that express this transgene.
Collapse
Affiliation(s)
- Cathleen Teh
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, 61 Biopolis Drive, Proteos, Singapore, Singapore, 138673
| | | |
Collapse
|
12
|
McMillan SC, Xu ZT, Zhang J, Teh C, Korzh V, Trudeau VL, Akimenko MA. Regeneration of breeding tubercles on zebrafish pectoral fins requires androgens and two waves of revascularization. Development 2013; 140:4323-34. [PMID: 24089472 DOI: 10.1242/dev.095992] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Sexually dimorphic breeding tubercles (BTs) are keratinized epidermal structures that form clusters on the dorsal surface of the anterior rays of zebrafish male pectoral fins. BTs appear during sexual maturation and are maintained through regular shedding and renewal of the keratinized surface. Following pectoral fin amputation, BT clusters regenerate after the initiation of revascularization, but concomitantly with a second wave of angiogenesis. This second wave of regeneration forms a web-like blood vessel network that penetrates the supportive epidermis of BTs. Upon analyzing the effects of sex steroids and their inhibitors, we show that androgens induce and estrogens inhibit BT cluster formation in intact and regenerating pectoral fins. Androgen-induced BT formation in females is accompanied by the formation of a male-like blood vessel network. Treatment of females with both androgens and an angiogenesis inhibitor results in the formation of undersized BT clusters when compared with females treated with androgens alone. Overall, the growth and regeneration of large BTs requires a hormonal stimulus and the presence of an additional blood vessel network that is naturally found in males.
Collapse
Affiliation(s)
- Stephanie C McMillan
- Department of Cellular and Molecular Medicine, University of Ottawa, ON K1N 6N5, Canada
| | | | | | | | | | | | | |
Collapse
|
13
|
Moro E, Vettori A, Porazzi P, Schiavone M, Rampazzo E, Casari A, Ek O, Facchinello N, Astone M, Zancan I, Milanetto M, Tiso N, Argenton F. Generation and application of signaling pathway reporter lines in zebrafish. Mol Genet Genomics 2013; 288:231-42. [PMID: 23674148 PMCID: PMC3664755 DOI: 10.1007/s00438-013-0750-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 05/02/2013] [Indexed: 12/22/2022]
Abstract
In the last years, we have seen the emergence of different tools that have changed the face of biology from a simple modeling level to a more systematic science. The transparent zebrafish embryo is one of the living models in which, after germline transformation with reporter protein-coding genes, specific fluorescent cell populations can be followed at single-cell resolution. The genetically modified embryos, larvae and adults, resulting from the transformation, are individuals in which time lapse analysis, digital imaging quantification, FACS sorting and next-generation sequencing can be performed in specific times and tissues. These multifaceted genetic and cellular approaches have permitted to dissect molecular interactions at the subcellular, intercellular, tissue and whole-animal level, thus allowing integration of cellular and developmental genetics with molecular imaging in the resulting frame of modern biology. In this review, we describe a new step in the zebrafish road to system biology, based on the use of transgenic biosensor animals expressing fluorescent proteins under the control of signaling pathway-responsive cis-elements. In particular, we provide here the rationale and details of this powerful tool, trying to focus on its huge potentialities in basic and applied research, while also discussing limits and potential technological evolutions of this approach.
Collapse
Affiliation(s)
- Enrico Moro
- Department of Biomedical Sciences, University of Padova, via Ugo Bassi 58/b, 35131 Padua, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Kondrychyn I, Teh C, Garcia-Lecea M, Guan Y, Kang A, Korzh V. Zebrafish Enhancer TRAP transgenic line database ZETRAP 2.0. Zebrafish 2012; 8:181-2. [PMID: 22181660 DOI: 10.1089/zeb.2011.0718] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Our first Zebrafish Enhancer TRAP lines database (ZETRAP) generated a few years ago was a web-based system informing the scientific community about the developmental, genetic, and genomic aspects of transgenic zebrafish lines expressing the cytosolic version of EGFP. These transgenic lines were obtained in a primary screen using Tol2 transposon-mediated transgenesis. Following that, several hundreds transgenics were generated by a systematic "rejump" of the transposon from the two distinct genomic sites. This collection was expanded further by generation of transgenics expressing the membrane-tethered version of a novel red protein KillerRed. These KR transgenics are useful not only to complement the cytosolic GFP in compound GFP/KR transgenics for improved bioimaging. They also could be used to affect cells physiology by tissue-specific optogenetic generation of reactive oxygen species. We have compiled the genomic data and expression patterns of these novel ET transgenic lines in an updated online database--the Zebrafish Enhancer TRAP lines database version 2.0 (ZETRAP 2.0). This improved and expanded version contains the sequence of regions flanking the insertion sites, links to genes in zebrafish genome, and confocal images of embryos/larvae of these transgenics.
Collapse
|