1
|
Tamaru Y, Nakanishi S, Tanaka K, Umetsu M, Nakazawa H, Sugiyama A, Ito T, Shimokawa N, Takagi M. Recent research advances on non-linear phenomena in various biosystems. J Biosci Bioeng 2023:S1389-1723(23)00107-X. [PMID: 37246137 DOI: 10.1016/j.jbiosc.2023.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/03/2023] [Accepted: 03/22/2023] [Indexed: 05/30/2023]
Abstract
All biological phenomena can be classified as open, dissipative and non-linear. Moreover, the most typical phenomena are associated with non-linearity, dissipation and openness in biological systems. In this review article, four research topics on non-linear biosystems are described to show the examples from various biological systems. First, membrane dynamics of a lipid bilayer for the cell membrane is described. Since the cell membrane separates the inside of the cell from the outside, self-organizing systems that form spatial patterns on membranes often depend on non-linear dynamics. Second, various data banks based on recent genomics analysis supply the data including vast functional proteins from many organisms and their variable species. Since the proteins existing in nature are only a very small part of the space represented by amino acid sequence, success of mutagenesis-based molecular evolution approach crucially depends on preparing a library with high enrichment of functional proteins. Third, photosynthetic organisms depend on ambient light, the regular and irregular changes of which have a significant impact on photosynthetic processes. The light-driven process proceeds through many redox couples in the cyanobacteria constituting chain of redox reactions. Forth topics focuses on a vertebrate model, the zebrafish, which can help to understand, predict and control the chaos of complex biological systems. In particular, during early developmental stages, developmental differentiation occurs dynamically from a fertilized egg to divided and mature cells. These exciting fields of complexity, chaos, and non-linear science have experienced impressive growth in recent decades. Finally, future directions for non-liner biosystems are presented.
Collapse
Affiliation(s)
- Yutaka Tamaru
- Department of Life Sciences, Graduate School of Bioresources, Mie University, 1577 Kurimamachiya, Tsu, Mie 514-8507, Japan.
| | - Shuji Nakanishi
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Kenya Tanaka
- Research Center for Solar Energy Chemistry, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Aruto Sugiyama
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aramakiazaaoba, Aoba, Sendai, Miyagi 980-8579, Japan
| | - Naofumi Shimokawa
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Masahiro Takagi
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| |
Collapse
|
2
|
Takebayashi SI, Ryba T, Wimbish K, Hayakawa T, Sakaue M, Kuriya K, Takahashi S, Ogata S, Hiratani I, Okumura K, Okano M, Ogata M. The Temporal Order of DNA Replication Shaped by Mammalian DNA Methyltransferases. Cells 2021; 10:cells10020266. [PMID: 33572832 PMCID: PMC7911666 DOI: 10.3390/cells10020266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/15/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022] Open
Abstract
Multiple epigenetic pathways underlie the temporal order of DNA replication (replication timing) in the contexts of development and disease. DNA methylation by DNA methyltransferases (Dnmts) and downstream chromatin reorganization and transcriptional changes are thought to impact DNA replication, yet this remains to be comprehensively tested. Using cell-based and genome-wide approaches to measure replication timing, we identified a number of genomic regions undergoing subtle but reproducible replication timing changes in various Dnmt-mutant mouse embryonic stem (ES) cell lines that included a cell line with a drug-inducible Dnmt3a2 expression system. Replication timing within pericentromeric heterochromatin (PH) was shown to be correlated with redistribution of H3K27me3 induced by DNA hypomethylation: Later replicating PH coincided with H3K27me3-enriched regions. In contrast, this relationship with H3K27me3 was not evident within chromosomal arm regions undergoing either early-to-late (EtoL) or late-to-early (LtoE) switching of replication timing upon loss of the Dnmts. Interestingly, Dnmt-sensitive transcriptional up- and downregulation frequently coincided with earlier and later shifts in replication timing of the chromosomal arm regions, respectively. Our study revealed the previously unrecognized complex and diverse effects of the Dnmts loss on the mammalian DNA replication landscape.
Collapse
Affiliation(s)
- Shin-ichiro Takebayashi
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
- Correspondence:
| | - Tyrone Ryba
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA; (T.R.); (K.W.)
| | - Kelsey Wimbish
- Division of Natural Sciences, New College of Florida, Sarasota, FL 34243, USA; (T.R.); (K.W.)
| | - Takuya Hayakawa
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Morito Sakaue
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan;
| | - Kenji Kuriya
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe, Hyogo 650-0047, Japan; (S.T.); (I.H.)
| | - Shin Ogata
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN BDR, Kobe, Hyogo 650-0047, Japan; (S.T.); (I.H.)
| | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Mie 514-8507, Japan; (T.H.); (K.K.); (S.O.); (K.O.)
| | - Masaki Okano
- Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 860-0811, Japan;
| | - Masato Ogata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Mie 514-8507, Japan;
| |
Collapse
|
3
|
Miura H, Takahashi S, Shibata T, Nagao K, Obuse C, Okumura K, Ogata M, Hiratani I, Takebayashi SI. Mapping replication timing domains genome wide in single mammalian cells with single-cell DNA replication sequencing. Nat Protoc 2020; 15:4058-4100. [PMID: 33230331 DOI: 10.1038/s41596-020-0378-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
Replication timing (RT) domains are stable units of chromosome structure that are regulated in the context of development and disease. Conventional genome-wide RT mapping methods require many S-phase cells for either the effective enrichment of replicating DNA through bromodeoxyuridine (BrdU) immunoprecipitation or the determination of copy-number differences during S-phase, which precludes their application to non-abundant cell types and single cells. Here, we provide a simple, cost-effective, and robust protocol for single-cell DNA replication sequencing (scRepli-seq). The scRepli-seq methodology relies on whole-genome amplification (WGA) of genomic DNA (gDNA) from single S-phase cells and next-generation sequencing (NGS)-based determination of copy-number differences that arise between replicated and unreplicated DNA. Haplotype-resolved scRepli-seq, which distinguishes pairs of homologous chromosomes within a single cell, is feasible by using single-nucleotide polymorphism (SNP)/indel information. We also provide computational pipelines for quality control, normalization, and binarization of the scRepli-seq data. The experimental portion of this protocol (before sequencing) takes 3 d.
Collapse
Affiliation(s)
- Hisashi Miura
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Saori Takahashi
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan
| | - Takahiro Shibata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Japan.,Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Katsuzumi Okumura
- Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan
| | - Masato Ogata
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Ichiro Hiratani
- Laboratory for Developmental Epigenetics, RIKEN Center for Biosystems Dynamics Research (BDR), Kobe, Japan.
| | - Shin-Ichiro Takebayashi
- Department of Biochemistry and Proteomics, Graduate School of Medicine, Mie University, Tsu, Japan. .,Laboratory of Molecular & Cellular Biology, Graduate School of Bioresources, Mie University, Tsu, Japan.
| |
Collapse
|
4
|
Wakida T, Ikura M, Kuriya K, Ito S, Shiroiwa Y, Habu T, Kawamoto T, Okumura K, Ikura T, Furuya K. The CDK-PLK1 axis targets the DNA damage checkpoint sensor protein RAD9 to promote cell proliferation and tolerance to genotoxic stress. eLife 2017; 6:e29953. [PMID: 29254517 PMCID: PMC5736350 DOI: 10.7554/elife.29953] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 12/02/2017] [Indexed: 01/08/2023] Open
Abstract
Genotoxic stress causes proliferating cells to activate the DNA damage checkpoint, to assist DNA damage recovery by slowing cell cycle progression. Thus, to drive proliferation, cells must tolerate DNA damage and suppress the checkpoint response. However, the mechanism underlying this negative regulation of checkpoint activation is still elusive. We show that human Cyclin-Dependent-Kinases (CDKs) target the RAD9 subunit of the 9-1-1 checkpoint clamp on Thr292, to modulate DNA damage checkpoint activation. Thr292 phosphorylation on RAD9 creates a binding site for Polo-Like-Kinase1 (PLK1), which phosphorylates RAD9 on Thr313. These CDK-PLK1-dependent phosphorylations of RAD9 suppress checkpoint activation, therefore maintaining high DNA synthesis rates during DNA replication stress. Our results suggest that CDK locally initiates a PLK1-dependent signaling response that antagonizes the ability of the DNA damage checkpoint to detect DNA damage. These findings provide a mechanism for the suppression of DNA damage checkpoint signaling, to promote cell proliferation under genotoxic stress conditions.
Collapse
Affiliation(s)
- Takeshi Wakida
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Masae Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Kenji Kuriya
- Laboratory of Nutritional Chemistry, Department of Life SciencesGraduate School of Bioresources, Mie UniversityTsuJapan
| | - Shinji Ito
- Medical Research Support CenterGraduate School of Medicine, Kyoto UniversitySakyo-kuJapan
| | - Yoshiharu Shiroiwa
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
| | - Toshiyuki Habu
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Department of Food Science and NutritionMukogawa Women’s UniversityNishinomiyaJapan
| | | | - Katsuzumi Okumura
- Laboratory of Molecular and Cellular Biology, Department of Life SciencesMie UniversityTsuJapan
| | - Tsuyoshi Ikura
- Laboratory of Chromatin Regulatory Network, Department of MutagenesisRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Chromatin Regulatory NetworkGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kanji Furuya
- Department of Radiation SystemsRadiation Biology Center, Kyoto UniversityKyotoJapan
- Laboratory of Genome MaintenanceGraduate School of Biostudies, Kyoto UniversityKyotoJapan
| |
Collapse
|
5
|
Siefert JC, Georgescu C, Wren JD, Koren A, Sansam CL. DNA replication timing during development anticipates transcriptional programs and parallels enhancer activation. Genome Res 2017; 27:1406-1416. [PMID: 28512193 PMCID: PMC5538556 DOI: 10.1101/gr.218602.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 05/08/2017] [Indexed: 11/29/2022]
Abstract
In dividing cells, DNA replication occurs in a precise order, but many questions remain regarding the mechanisms of replication timing establishment and regulation. We now have generated genome-wide, high-resolution replication timing maps throughout zebrafish development. Unexpectedly, in the rapid cell cycles preceding the midblastula transition, a defined timing program was present that predicted the initial wave of zygotic transcription. Replication timing was thereafter progressively and continuously remodeled across the majority of the genome, and epigenetic changes involved in enhancer activation frequently paralleled developmental changes in replication timing. The long arm of Chromosome 4 underwent a dramatic developmentally regulated switch to late replication during gastrulation, reminiscent of mammalian X Chromosome inactivation. This study reveals that replication timing is dynamic and tightly linked to epigenetic and transcriptional changes throughout early zebrafish development. These data provide insight into the regulation and functions of replication timing and will enable further mechanistic studies.
Collapse
Affiliation(s)
- Joseph C Siefert
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Constantin Georgescu
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | - Amnon Koren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Christopher L Sansam
- Cell Cycle and Cancer Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma 73104, USA
- Department of Cell Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| |
Collapse
|
6
|
Kuriya K, Higashiyama E, Avşar-Ban E, Okochi N, Hattori K, Ogata S, Takebayashi SI, Ogata M, Tamaru Y, Okumura K. Direct visualization of replication dynamics in early zebrafish embryos. Biosci Biotechnol Biochem 2016; 80:945-8. [PMID: 26923175 DOI: 10.1080/09168451.2016.1141039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
We analyzed DNA replication in early zebrafish embryos. The replicating DNA of whole embryos was labeled with the thymidine analog 5-ethynyl-2'-deoxyuridine (EdU), and spatial regulation of replication sites was visualized in single embryo-derived cells. The results unveiled uncharacterized replication dynamics during zebrafish early embryogenesis.
Collapse
Affiliation(s)
- Kenji Kuriya
- a Laboratory of Molecular & Cellular Biology, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Eriko Higashiyama
- a Laboratory of Molecular & Cellular Biology, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Eriko Avşar-Ban
- b Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Nanami Okochi
- a Laboratory of Molecular & Cellular Biology, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Kaede Hattori
- a Laboratory of Molecular & Cellular Biology, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Shin Ogata
- a Laboratory of Molecular & Cellular Biology, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Shin-Ichiro Takebayashi
- c Department of Biochemistry and Proteomics , Graduate School of Medicine, Mie University , Tsu , Japan
| | - Masato Ogata
- c Department of Biochemistry and Proteomics , Graduate School of Medicine, Mie University , Tsu , Japan
| | - Yutaka Tamaru
- b Laboratory for the Utilization of Aquatic Bioresources, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| | - Katsuzumi Okumura
- a Laboratory of Molecular & Cellular Biology, Department of Life Sciences , Graduate School of Bioresources, Mie University , Tsu , Japan
| |
Collapse
|