1
|
Nashine S, Kenney MC. Effects of Humanin G (HNG) on angiogenesis and neurodegeneration markers in Age-related Macular Degeneration (AMD). Mitochondrion 2024; 74:101818. [PMID: 38029849 DOI: 10.1016/j.mito.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 11/09/2023] [Indexed: 12/01/2023]
Abstract
Advanced stages of Age-related Macular Degeneration (AMD) are characterized by retinal neurodegeneration and aberrant angiogenesis, and mitochondrial dysfunction contributes to the pathogenesis of AMD. In this study, we tested the hypothesis that Humanin G (HNG), a cytoprotective mitochondrial-derived peptide, positively regulates cell proliferation, cell death, and the protein levels of angiogenesis and neurodegeneration markers, in normal (control) and AMD RPE transmitochondrial cybrid cell lines. These normal and AMD RPE transmitochondrial cybrid cell lines had identical nuclei derived from mitochondria-deficient ARPE-19 cell line, but differed in mitochondrial DNA (mtDNA) content that was derived from clinically characterized AMD patients and normal (control) subjects. Cell lysates were extracted from untreated and HNG-treated AMD and normal (control) cybrid cell lines, and the Luminex XMAP multiplex assay was used to examine the protein levels of angiogenesis and neurodegeneration markers. Humanin G reduced Caspase-3/7-mediated apoptosis, improved cell proliferation, and normalized the protein levels of angiogenesis and neurodegeneration markers in AMD RPE cybrid cell lines, thereby suggesting Humanin G's positive regulatory role in AMD.
Collapse
Affiliation(s)
- Sonali Nashine
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA
| | - M Cristina Kenney
- Department of Ophthalmology, Gavin Herbert Eye Institute, University of California Irvine, Irvine, CA 92697, USA; Department of Pathology and Laboratory Medicine, University of California Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Halabi R, Watterston C, Hehr CL, Mori-Kreiner R, Childs SJ, McFarlane S. Semaphorin 3fa Controls Ocular Vascularization From the Embryo Through to the Adult. Invest Ophthalmol Vis Sci 2021; 62:21. [PMID: 33595613 PMCID: PMC7900886 DOI: 10.1167/iovs.62.2.21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Purpose Pathological blood vessel growth in the eye is implicated in several diseases that result in vision loss, including age-related macular degeneration and diabetic retinopathy. The limits of current disease therapies have created the need to identify and characterize new antiangiogenic drugs. Here, we identify the secreted chemorepellent semaphorin-3fa (Sema3fa) as an endogenous anti-angiogenic in the eye. Methods We generated a CRISPR/Cas9 sema3fa zebrafish mutant line, sema3faca304/304. We assessed the retinal and choroidal vasculature in both larval and adult wild-type and sema3fa mutant zebrafish. Results We find sema3fa mRNA is expressed by the ciliary marginal zone, neural retina, and retinal pigment epithelium of zebrafish larvae as choroidal vascularization emerges and the hyaloid/retinal vasculature is remodeled. The hyaloid vessels of sema3fa mutants develop appropriately but fail to remodel during the larval period, with adult mutants exhibiting a denser network of capillaries in the retinal periphery than seen in wild-type. The choroid vasculature is also defective in that it develops precociously, and aberrant, leaky sprouts are present in the normally avascular outer retina of both sema3faca304/304 larvae and adult fish. Conclusions Sema3fa is a key endogenous signal for maintaining an avascular retina and preventing pathologic vascularization. Furthermore, we provide a new experimentally accessible model for studying choroid neovascularization (CNV) resulting from primary changes in the retinal environment that lead to downstream vessel infiltration.
Collapse
Affiliation(s)
- Rami Halabi
- Graduate Program in Neuroscience, University of Calgary, Calgary, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Charlene Watterston
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada
| | - Carrie Lynn Hehr
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Risa Mori-Kreiner
- Graduate Program in Neuroscience, University of Calgary, Calgary, Canada.,Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sarah J Childs
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| | - Sarah McFarlane
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Canada
| |
Collapse
|