1
|
Saxena S, Foresti O, Liu A, Androulaki S, Pena Rodriguez M, Raote I, Aridor M, Cui B, Malhotra V. Endoplasmic reticulum exit sites are segregated for secretion based on cargo size. Dev Cell 2024; 59:2593-2608.e6. [PMID: 38991587 DOI: 10.1016/j.devcel.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/08/2024] [Accepted: 06/17/2024] [Indexed: 07/13/2024]
Abstract
TANGO1, TANGO1-Short, and cTAGE5 form stable complexes at the endoplasmic reticulum exit sites (ERES) to preferably export bulky cargoes. Their C-terminal proline-rich domain (PRD) binds Sec23A and affects COPII assembly. The PRD in TANGO1-Short was replaced with light-responsive domains to control its binding to Sec23A in U2OS cells (human osteosarcoma). TANGO1-ShortΔPRD was dispersed in the ER membrane but relocated rapidly, reversibly, to pre-existing ERES by binding to Sec23A upon light activation. Prolonged binding between the two, concentrated ERES in the juxtanuclear region, blocked cargo export and relocated ERGIC53 into the ER, minimally impacting the Golgi complex organization. Bulky collagen VII and endogenous collagen I were collected at less than 47% of the stalled ERES, whereas small cargo molecules were retained uniformly at almost all the ERES. We suggest that ERES are segregated to handle cargoes based on their size, permitting cells to traffic them simultaneously for optimal secretion.
Collapse
Affiliation(s)
- Sonashree Saxena
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Aofei Liu
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Stefania Androulaki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Ishier Raote
- Institut Jacques Monod, Université Paris Cité, 75013 Paris, France
| | - Meir Aridor
- Department of Cell Biology, School of Medicine, University of Pittsburgh, 3500 Terrace Street, Pittsburgh, PA 15261, USA
| | - Bianxiao Cui
- Department of Chemistry, Stanford University, Stanford, CA, USA; Wu-Tsai Neuroscience Institute and ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
2
|
Park K, Ju S, Choi H, Gao P, Bang G, Choi JH, Jang J, Morris AJ, Kang BH, Hsu VW, Park SY. PITPβ promotes COPI vesicle fission through lipid transfer and membrane contact formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596058. [PMID: 38853868 PMCID: PMC11160616 DOI: 10.1101/2024.05.27.596058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Intracellular transport among organellar compartments occurs in two general ways, by membrane-bound carriers or membrane contacts. Specific circumstances that involve the coordination of these two modes of transport remain to be defined. Studying Coat Protein I (COPI) transport, we find that phosphatidylcholine with short acyl chains (sPC) is delivered through membrane contact from the endoplasmic reticulum (ER) to sites of COPI vesicle formation at the Golgi to support the fission stage. Phosphatidylinositol transfer protein beta (PITPβ) plays a key role in this process, with the elucidation of this role advancing a new understanding of how PITPβ acts, providing a mechanistic understanding of a specific circumstance when vesicular transport requires membrane contact, and contributing to a basic understanding of how transport carriers in a model intracellular pathway are formed.
Collapse
Affiliation(s)
- Kunyou Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Sungeun Ju
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Hyewon Choi
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Peng Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jung Hoon Choi
- Department of Bio-Chemical Analysis, Korea Basic Science Institute, Cheongju, Republic of Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Andrew J. Morris
- University of Arkansas for Medical Sciences and Central Arkansas Veterans Affairs Healthcare System, Little Rock, AR 72205, USA
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Victor W. Hsu
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Seung-Yeol Park
- Department of Life Sciences, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
3
|
Gallo R, Rai AK, McIntyre ABR, Meyer K, Pelkmans L. DYRK3 enables secretory trafficking by maintaining the liquid-like state of ER exit sites. Dev Cell 2023; 58:1880-1897.e11. [PMID: 37643612 DOI: 10.1016/j.devcel.2023.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 02/16/2023] [Accepted: 08/01/2023] [Indexed: 08/31/2023]
Abstract
The dual-specificity kinase DYRK3 controls the formation and dissolution of multiple biomolecular condensates, regulating processes including stress recovery and mitotic progression. Here, we report that DYRK3 functionally interacts with proteins associated with endoplasmic reticulum (ER) exit sites (ERESs) and that inhibition of DYRK3 perturbs the organization of the ERES-Golgi interface and secretory trafficking. DYRK3-mediated regulation of ERES depends on the N-terminal intrinsically disordered region (IDR) of the peripheral membrane protein SEC16A, which co-phase separates with ERES components to form liquid-like condensates on the surface of the ER. By modulating the liquid-like properties of ERES, we show that their physical state is essential for functional cargo trafficking through the early secretory pathway. Our findings support a mechanism whereby phosphorylation by DYRK3 and its reversal by serine-threonine phosphatases regulate the material properties of ERES to create a favorable physicochemical environment for directional membrane traffic in eukaryotic cells.
Collapse
Affiliation(s)
- Raffaella Gallo
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Arpan Kumar Rai
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| | - Alexa B R McIntyre
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Katrina Meyer
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland
| | - Lucas Pelkmans
- Department of Molecular Life Sciences, University of Zurich, 8046 Zurich, Switzerland.
| |
Collapse
|
4
|
van Leeuwen W, Nguyen DTM, Grond R, Veenendaal T, Rabouille C, Farías GG. Stress-induced phase separation of ERES components into Sec bodies precedes ER exit inhibition in mammalian cells. J Cell Sci 2022; 135:jcs260294. [PMID: 36325988 PMCID: PMC10112967 DOI: 10.1242/jcs.260294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Phase separation of components of ER exit sites (ERES) into membraneless compartments, the Sec bodies, occurs in Drosophila cells upon exposure to specific cellular stressors, namely, salt stress and amino acid starvation, and their formation is linked to the early secretory pathway inhibition. Here, we show Sec bodies also form in secretory mammalian cells upon the same stress. These reversible and membraneless structures are positive for ERES components, including both Sec16A and Sec16B isoforms and COPII subunits. We find that Sec16A, but not Sec16B, is a driver for Sec body formation, and that the coalescence of ERES components into Sec bodies occurs by fusion. Finally, we show that the stress-induced coalescence of ERES components into Sec bodies precedes ER exit inhibition, leading to their progressive depletion from ERES that become non-functional. Stress relief causes an immediate dissolution of Sec bodies and the concomitant restoration of ER exit. We propose that the dynamic conversion between ERES and Sec body assembly, driven by Sec16A, regulates protein exit from the ER during stress and upon stress relief in mammalian cells, thus providing a conserved pro-survival mechanism in response to stress.
Collapse
Affiliation(s)
- Wessel van Leeuwen
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Dan T. M. Nguyen
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| | - Rianne Grond
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
| | - Tineke Veenendaal
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Catherine Rabouille
- Hubrecht Institute of the KNAW & UMC Utrecht, Utrecht 3584 CT, The Netherlands
- Section Cell Biology, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
- Department of Biomedical Sciences in Cells and Systems, UMC Groningen, Groningen 9713 AV, The Netherlands
| | - Ginny G. Farías
- Cell Biology, Neurobiology and Biophysics. Department of Biology, Faculty of Science, Utrecht University, Utrecht 3584 CH, The Netherlands
| |
Collapse
|
5
|
The Small Molecule H89 Inhibits Chlamydia Inclusion Growth and Production of Infectious Progeny. Infect Immun 2021; 89:e0072920. [PMID: 33820812 PMCID: PMC8373235 DOI: 10.1128/iai.00729-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Chlamydia is an obligate intracellular bacterium and the most common reportable cause of human infection in the United States. This pathogen proliferates inside a eukaryotic host cell, where it resides within a membrane-bound compartment called the chlamydial inclusion. It has an unusual developmental cycle, marked by conversion between a replicating form, the reticulate body (RB), and an infectious form, the elementary body (EB). We found that the small molecule H89 slowed inclusion growth and decreased overall RB replication by 2-fold but caused a 25-fold reduction in infectious EBs. This disproportionate effect on EB production was mainly due to a defect in RB-to-EB conversion and not to the induction of chlamydial persistence, which is an altered growth state. Although H89 is a known inhibitor of specific protein kinases and vesicular transport to and from the Golgi apparatus, it did not cause these anti-chlamydial effects by blocking protein kinase A or C or by inhibiting protein or lipid transport. Thus, H89 is a novel anti-chlamydial compound that has a unique combination of effects on an intracellular Chlamydia infection.
Collapse
|
6
|
Weigel AV, Chang CL, Shtengel G, Xu CS, Hoffman DP, Freeman M, Iyer N, Aaron J, Khuon S, Bogovic J, Qiu W, Hess HF, Lippincott-Schwartz J. ER-to-Golgi protein delivery through an interwoven, tubular network extending from ER. Cell 2021; 184:2412-2429.e16. [PMID: 33852913 DOI: 10.1016/j.cell.2021.03.035] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 12/23/2020] [Accepted: 03/16/2021] [Indexed: 12/15/2022]
Abstract
Cellular versatility depends on accurate trafficking of diverse proteins to their organellar destinations. For the secretory pathway (followed by approximately 30% of all proteins), the physical nature of the vessel conducting the first portage (endoplasmic reticulum [ER] to Golgi apparatus) is unclear. We provide a dynamic 3D view of early secretory compartments in mammalian cells with isotropic resolution and precise protein localization using whole-cell, focused ion beam scanning electron microscopy with cryo-structured illumination microscopy and live-cell synchronized cargo release approaches. Rather than vesicles alone, the ER spawns an elaborate, interwoven tubular network of contiguous lipid bilayers (ER exit site) for protein export. This receptacle is capable of extending microns along microtubules while still connected to the ER by a thin neck. COPII localizes to this neck region and dynamically regulates cargo entry from the ER, while COPI acts more distally, escorting the detached, accelerating tubular entity on its way to joining the Golgi apparatus through microtubule-directed movement.
Collapse
Affiliation(s)
- Aubrey V Weigel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Chi-Lun Chang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Gleb Shtengel
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | | - Melanie Freeman
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA; Advanced Bioimaging Center, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Nirmala Iyer
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Jesse Aaron
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Satya Khuon
- Advanced Imaging Center, Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - John Bogovic
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wei Qiu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Harald F Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | | |
Collapse
|
7
|
Bisnett BJ, Condon BM, Lamb CH, Georgiou GR, Boyce M. Export Control: Post-transcriptional Regulation of the COPII Trafficking Pathway. Front Cell Dev Biol 2021; 8:618652. [PMID: 33511128 PMCID: PMC7835409 DOI: 10.3389/fcell.2020.618652] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
The coat protein complex II (COPII) mediates forward trafficking of protein and lipid cargoes from the endoplasmic reticulum. COPII is an ancient and essential pathway in all eukaryotes and COPII dysfunction underlies a range of human diseases. Despite this broad significance, major aspects of COPII trafficking remain incompletely understood. For example, while the biochemical features of COPII vesicle formation are relatively well characterized, much less is known about how the COPII system dynamically adjusts its activity to changing physiologic cues or stresses. Recently, post-transcriptional mechanisms have emerged as a major mode of COPII regulation. Here, we review the current literature on how post-transcriptional events, and especially post-translational modifications, govern the COPII pathway.
Collapse
Affiliation(s)
- Brittany J Bisnett
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Brett M Condon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Caitlin H Lamb
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - George R Georgiou
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| | - Michael Boyce
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
8
|
Subramanian A, Capalbo A, Iyengar NR, Rizzo R, di Campli A, Di Martino R, Lo Monte M, Beccari AR, Yerudkar A, Del Vecchio C, Glielmo L, Turacchio G, Pirozzi M, Kim SG, Henklein P, Cancino J, Parashuraman S, Diviani D, Fanelli F, Sallese M, Luini A. Auto-regulation of Secretory Flux by Sensing and Responding to the Folded Cargo Protein Load in the Endoplasmic Reticulum. Cell 2020; 176:1461-1476.e23. [PMID: 30849374 DOI: 10.1016/j.cell.2019.01.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/30/2018] [Accepted: 01/23/2019] [Indexed: 11/19/2022]
Abstract
Maintaining the optimal performance of cell processes and organelles is the task of auto-regulatory systems. Here we describe an auto-regulatory device that helps to maintain homeostasis of the endoplasmic reticulum (ER) by adjusting the secretory flux to the cargo load. The cargo-recruiting subunit of the coatomer protein II (COPII) coat, Sec24, doubles as a sensor of folded cargo and, upon cargo binding, acts as a guanine nucleotide exchange factor to activate the signaling protein Gα12 at the ER exit sites (ERESs). This step, in turn, activates a complex signaling network that activates and coordinates the ER export machinery and attenuates proteins synthesis, thus preventing large fluctuations of folded and potentially active cargo that could be harmful to the cell or the organism. We call this mechanism AREX (autoregulation of ER export) and expect that its identification will aid our understanding of human physiology and diseases that develop from secretory dysfunction.
Collapse
Affiliation(s)
- Advait Subramanian
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy.
| | - Anita Capalbo
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Namrata Ravi Iyengar
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Riccardo Rizzo
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Antonella di Campli
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy; Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, Center for Research on Ageing and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Rosaria Di Martino
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Matteo Lo Monte
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Andrea R Beccari
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy; Dompé Farmaceutici SpA, Milan, Italy
| | - Amol Yerudkar
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Carmen Del Vecchio
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Luigi Glielmo
- Department of Engineering, Universitá degli Studi del Sannio, Benevento, Italy
| | - Gabriele Turacchio
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Marinella Pirozzi
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy
| | - Sang Geon Kim
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Petra Henklein
- Institut fur Biochemie, Charite Universitätsmedizin, Berlin, Germany
| | - Jorge Cancino
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile
| | | | - Dario Diviani
- Université de Lausanne, Département de Pharmacologie et Toxicologie, Rue du Bugnon 27, 1011 Lausanne, Switzerland
| | - Francesca Fanelli
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Michele Sallese
- Department of Medical, Oral and Biotechnological Sciences and CeSI-MeT, Center for Research on Ageing and Translational Medicine, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry (IBP), Italian National Research Council (CNR), Napoli, Italy.
| |
Collapse
|
9
|
Centonze FG, Farhan H. Crosstalk of endoplasmic reticulum exit sites and cellular signaling. FEBS Lett 2019; 593:2280-2288. [DOI: 10.1002/1873-3468.13569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 07/28/2019] [Accepted: 07/29/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Federica G. Centonze
- Institute of Basic Medical Sciences, Department of Molecular Medicine University of Oslo Norway
| | - Hesso Farhan
- Institute of Basic Medical Sciences, Department of Molecular Medicine University of Oslo Norway
| |
Collapse
|
10
|
Mironov AA, Beznoussenko GV. Models of Intracellular Transport: Pros and Cons. Front Cell Dev Biol 2019; 7:146. [PMID: 31440506 PMCID: PMC6693330 DOI: 10.3389/fcell.2019.00146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
Intracellular transport is one of the most confusing issues in the field of cell biology. Many different models and their combinations have been proposed to explain the experimental data on intracellular transport. Here, we analyse the data related to the mechanisms of endoplasmic reticulum-to-Golgi and intra-Golgi transport from the point of view of the main models of intracellular transport; namely: the vesicular model, the diffusion model, the compartment maturation–progression model, and the kiss-and-run model. This review initially describes our current understanding of Golgi function, while highlighting the recent progress that has been made. It then continues to discuss the outstanding questions and potential avenues for future research with regard to the models of these transport steps. To compare the power of these models, we have applied the method proposed by K. Popper; namely, the formulation of prohibitive observations according to, and the consecutive evaluation of, previous data, on the basis on the new models. The levels to which the different models can explain the experimental observations are different, and to date, the most powerful has been the kiss-and-run model, whereas the least powerful has been the diffusion model.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, The FIRC Institute of Molecular Oncology, Milan, Italy
| | | |
Collapse
|
11
|
Abstract
The Golgi apparatus is a central intracellular membrane-bound organelle with key functions in trafficking, processing, and sorting of newly synthesized membrane and secretory proteins and lipids. To best perform these functions, Golgi membranes form a unique stacked structure. The Golgi structure is dynamic but tightly regulated; it undergoes rapid disassembly and reassembly during the cell cycle of mammalian cells and is disrupted under certain stress and pathological conditions. In the past decade, significant amount of effort has been made to reveal the molecular mechanisms that regulate the Golgi membrane architecture and function. Here we review the major discoveries in the mechanisms of Golgi structure formation, regulation, and alteration in relation to its functions in physiological and pathological conditions to further our understanding of Golgi structure and function in health and diseases.
Collapse
Affiliation(s)
- Jie Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Erpan Ahat
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yanzhuang Wang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Neurology, University of Michigan School of Medicine, Ann Arbor, MI, USA.
| |
Collapse
|
12
|
Abstract
Type I collagen, a major component of bone, skin, and other connective tissues, is synthesized in the endoplasmic reticulum (ER) and passes through the secretory pathway. Rerouting of its procollagen precursor to a degradative pathway is crucial for reducing intracellular buildup in pathologies caused by defects in procollagen folding and trafficking. Here, we identify an autophagy pathway initiated at ER exit sites (ERESs). Procollagen proteins following this pathway accumulate at ERESs modified with ubiquitin, LC3, p62, and other autophagy machinery. Modified ERESs carrying procollagen are then engulfed by lysosomes through a microautophagy-like mechanism, not involving conventional, double-membrane autophagosomes. Procollagen homeostasis thus involves a noncanonical mode of autophagy initiated at ERESs, which might also be important in degradation of other secretory proteins. Type I collagen is the main component of bone matrix and other connective tissues. Rerouting of its procollagen precursor to a degradative pathway is crucial for osteoblast survival in pathologies involving excessive intracellular buildup of procollagen that is improperly folded and/or trafficked. What cellular mechanisms underlie this rerouting remains unclear. To study these mechanisms, we employed live-cell imaging and correlative light and electron microscopy (CLEM) to examine procollagen trafficking both in wild-type mouse osteoblasts and osteoblasts expressing a bone pathology-causing mutant procollagen. We found that although most procollagen molecules successfully trafficked through the secretory pathway in these cells, a subpopulation did not. The latter molecules appeared in numerous dispersed puncta colocalizing with COPII subunits, autophagy markers and ubiquitin machinery, with more puncta seen in mutant procollagen-expressing cells. Blocking endoplasmic reticulum exit site (ERES) formation suppressed the number of these puncta, suggesting they formed after procollagen entry into ERESs. The punctate structures containing procollagen, COPII, and autophagic markers did not move toward the Golgi but instead were relatively immobile. They appeared to be quickly engulfed by nearby lysosomes through a bafilomycin-insensitive pathway. CLEM and fluorescence recovery after photobleaching experiments suggested engulfment occurred through a noncanonical form of autophagy resembling microautophagy of ERESs. Overall, our findings reveal that a subset of procollagen molecules is directed toward lysosomal degradation through an autophagic pathway originating at ERESs, providing a mechanism to remove excess procollagen from cells.
Collapse
|
13
|
Ji C. Dissecting the Role of Disturbed ER-Golgi Trafficking in Antivirals and Alcohol Abuse-Induced Pathogenesis of Liver Disorders. ACTA ACUST UNITED AC 2017; 3. [PMID: 29399658 PMCID: PMC5791917 DOI: 10.21767/2471-853x.100054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Antiviral drugs and alcohol abuse-induced organelle stresses have been linked to many disorders and the underlying molecular mechanisms are under intense investigations. This brief review communicates emerging evidence and research trends on how certain antivirals and alcohol affect ER-Golgi trafficking, which potentially impacts the function and integrity of the Golgi apparatus contributing to endoplasmic reticulum stress and cellular injury.
Collapse
Affiliation(s)
- Cheng Ji
- Department of Medicine, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
14
|
Han H, He Y, Hu J, Lau R, Lee H, Ji C. Disrupted ER-to-Golgi Trafficking Underlies Anti-HIV Drugs and Alcohol-Induced Cellular Stress and Hepatic Injury. Hepatol Commun 2017. [PMID: 28626835 PMCID: PMC5473515 DOI: 10.1002/hep4.1030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Endoplasmic reticulum (ER) stress and unfolded protein response (UPR) are involved in anti‐human immunodeficiency virus (HIV) drugs and alcohol‐induced liver disease in a significant number of patients infected with HIV. However, the precise mechanism by which the drugs and alcohol cause ER stress remains elusive. We found that ritonavir‐boosted lopinavir (RL) activated two canonical UPR branches without activation of the third canonical activating transcription factor 6 (ATF6) branch in either HepG2 cells or primary mouse hepatocytes. In the RL‐treated cells, ATF6 localization in the Golgi apparatus required for its activation was reduced; this was followed by Golgi fragmentation and dislocation/redistribution of Golgi‐resident enzymes. Severities of Golgi fragmentation induced by other anti‐HIV drugs varied and were correlated with the ER stress response. In the liver of mice fed RL, alcohol feeding deteriorated the Golgi fragmentation, which was correlated with ER stress, elevated alanine aminotransferase, and liver steatosis. The Golgi stress response (GSR) markers GCP60 and HSP47 were increased in RL‐treated liver cells, and knockdown of transcription factor for immunoglobulin heavy‐chain enhancer 3 of the GSR by small interfering RNA worsened RL‐induced cell death. Cotreatment of pharmacological agent H89 with RL inhibited the RL‐induced Golgi enzyme dislocation and ER stress. Moreover, the coat protein complex II (COPII) complexes that mediate ER‐to‐Golgi trafficking accumulated in the RL‐treated liver cells; this was not due to interference of RL with the initial assembly of the COPII complexes. RL also inhibited Golgi fragmentation and reassembly induced by short treatment and removal of brefeldin A. Conclusion: Our study indicates that ER‐to‐Golgi trafficking is disrupted by anti‐HIV drugs and/or alcohol, and this contributes to subsequent ER stress and hepatic injury. (Hepatology Communications 2017;1:122‐139)
Collapse
Affiliation(s)
- Hui Han
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Yuxin He
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Jay Hu
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Rhema Lau
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Harrison Lee
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| | - Cheng Ji
- GI/Liver Division, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA
| |
Collapse
|
15
|
Tenorio MJ, Luchsinger C, Mardones GA. Protein kinase A activity is necessary for fission and fusion of Golgi to endoplasmic reticulum retrograde tubules. PLoS One 2015; 10:e0135260. [PMID: 26258546 PMCID: PMC4530959 DOI: 10.1371/journal.pone.0135260] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 07/20/2015] [Indexed: 11/18/2022] Open
Abstract
It is becoming increasingly accepted that together with vesicles, tubules play a major role in the transfer of cargo between different cellular compartments. In contrast to our understanding of the molecular mechanisms of vesicular transport, little is known about tubular transport. How signal transduction molecules regulate these two modes of membrane transport processes is also poorly understood. In this study we investigated whether protein kinase A (PKA) activity regulates the retrograde, tubular transport of Golgi matrix proteins from the Golgi to the endoplasmic reticulum (ER). We found that Golgi-to-ER retrograde transport of the Golgi matrix proteins giantin, GM130, GRASP55, GRASP65, and p115 was impaired in the presence of PKA inhibitors. In addition, we unexpectedly found accumulation of tubules containing both Golgi matrix proteins and resident Golgi transmembrane proteins. These tubules were still attached to the Golgi and were highly dynamic. Our data suggest that both fission and fusion of retrograde tubules are mechanisms regulated by PKA activity.
Collapse
Affiliation(s)
- María J. Tenorio
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Charlotte Luchsinger
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
| | - Gonzalo A. Mardones
- Instituto de Fisiología, Facultad de Medicina, and Centro Interdisciplinario de Estudios del Sistema Nerviso, Universidad Austral de Chile, Valdivia, Chile
- * E-mail:
| |
Collapse
|
16
|
Abstract
Increased amyloid beta (Aβ) production by sequential cleavage of the amyloid precursor protein (APP) by the β- and γ-secretases contributes to the etiological basis of Alzheimer's disease (AD). This process requires APP and the secretases to be in the same subcellular compartments, such as the endosomes. Since all membrane organelles in the endomembrane system are kinetically and functionally linked, any defects in the trafficking and sorting machinery would be expected to change the functional properties of the whole system. The Golgi is a primary organelle for protein trafficking, sorting and modifications, and Golgi defects have been reported in AD. Here we hypothesize that Golgi fragmentation in AD accelerates APP trafficking and Aβ production. Furthermore, Golgi defects may perturb the proper trafficking and processing of many essential neuronal proteins, resulting in compromised neuronal function. Therefore, molecular tools that can restore Golgi structure and function could prove useful as potential drugs for AD treatment.
Collapse
Affiliation(s)
- Gunjan Joshi
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | | |
Collapse
|
17
|
Fossati M, Colombo SF, Borgese N. A positive signal prevents secretory membrane cargo from recycling between the Golgi and the ER. EMBO J 2014; 33:2080-97. [PMID: 25063674 DOI: 10.15252/embj.201488367] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The Golgi complex and ER are dynamically connected by anterograde and retrograde trafficking pathways. To what extent and by what mechanism outward-bound cargo proteins escape retrograde trafficking has been poorly investigated. Here, we analysed the behaviour of several membrane proteins at the ER/Golgi interface in live cells. When Golgi-to-plasma membrane transport was blocked, vesicular stomatitis virus glycoprotein (VSVG), which bears an ER export signal, accumulated in the Golgi, whereas an export signal-deleted version of VSVG attained a steady state determined by the balance of retrograde and anterograde traffic. A similar behaviour was displayed by EGF receptor and by a model tail-anchored protein, whose retrograde traffic was slowed by addition of VSVG's export signal. Retrograde trafficking was energy- and Rab6-dependent, and Rab6 inhibition accelerated signal-deleted VSVG's transport to the cell surface. Our results extend the dynamic bi-directional relationship between the Golgi and ER to include surface-directed proteins, uncover an unanticipated role for export signals at the Golgi complex, and identify recycling as a novel factor that regulates cargo transport out of the early secretory pathway.
Collapse
Affiliation(s)
- Matteo Fossati
- BIOMETRA Department, CNR Institute of Neuroscience, Università degli Studi di Milano, Milano, Italy
| | - Sara F Colombo
- BIOMETRA Department, CNR Institute of Neuroscience, Università degli Studi di Milano, Milano, Italy
| | - Nica Borgese
- BIOMETRA Department, CNR Institute of Neuroscience, Università degli Studi di Milano, Milano, Italy Department of Health Science, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
18
|
Martinez-Pena y Valenzuela I, Pires-Oliveira M, Akaaboune M. PKC and PKA regulate AChR dynamics at the neuromuscular junction of living mice. PLoS One 2013; 8:e81311. [PMID: 24260568 PMCID: PMC3829966 DOI: 10.1371/journal.pone.0081311] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 11/19/2022] Open
Abstract
The steady state of the acetylcholine receptor (AChR) density at the neuromuscular junction (NMJ) is critical for efficient and reliable synaptic transmission. However, little is known about signaling molecules involved in regulating the equilibrium between the removal and insertion of AChRs that establishes a stable postsynaptic receptor density over time. In this work, we tested the effect of activities of two serine/threonine kinases, PKC and PKA, on the removal rate of AChRs from and the re-insertion rate of internalized recycled AChRs into synaptic sites of innervated and denervated NMJs of living mice. Using an in vivo time-lapse imaging approach and various pharmacological agents, we showed that PKC and PKA activities have antagonistic effects on the removal and recycling of AChRs. Inhibition of PKC activity or activation of PKA largely prevents the removal of pre-existing AChRs and promotes the recycling of internalized AChRs into the postsynaptic membrane. In contrast, stimulation of PKC or inactivation of PKA significantly accelerates the removal of postsynaptic AChRs and depresses AChR recycling. These results indicate that a balance between PKA and PKC activities may be critical for the maintenance of the postsynaptic receptor density.
Collapse
Affiliation(s)
| | - Marcelo Pires-Oliveira
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Mohammed Akaaboune
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Neuroscience, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|
19
|
A CREB3-ARF4 signalling pathway mediates the response to Golgi stress and susceptibility to pathogens. Nat Cell Biol 2013; 15:1473-85. [PMID: 24185178 DOI: 10.1038/ncb2865] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Accepted: 09/20/2013] [Indexed: 02/07/2023]
Abstract
Treatment of cells with brefeldin A (BFA) blocks secretory vesicle transport and causes a collapse of the Golgi apparatus. To gain more insight into the cellular mechanisms mediating BFA toxicity, we conducted a genome-wide haploid genetic screen that led to the identification of the small G protein ADP-ribosylation factor 4 (ARF4). ARF4 depletion preserves viability, Golgi integrity and cargo trafficking in the presence of BFA, and these effects depend on the guanine nucleotide exchange factor GBF1 and other ARF isoforms including ARF1 and ARF5. ARF4 knockdown cells show increased resistance to several human pathogens including Chlamydia trachomatis and Shigella flexneri. Furthermore, ARF4 expression is induced when cells are exposed to several Golgi-disturbing agents and requires the CREB3 (also known as Luman or LZIP) transcription factor, whose downregulation mimics ARF4 loss. Thus, we have uncovered a CREB3-ARF4 signalling cascade that may be part of a Golgi stress response set in motion by stimuli compromising Golgi capacity.
Collapse
|
20
|
Krämer A, Mentrup T, Kleizen B, Rivera-Milla E, Reichenbach D, Enzensperger C, Nohl R, Täuscher E, Görls H, Ploubidou A, Englert C, Werz O, Arndt HD, Kaether C. Small molecules intercept Notch signaling and the early secretory pathway. Nat Chem Biol 2013; 9:731-8. [PMID: 24077179 DOI: 10.1038/nchembio.1356] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/04/2013] [Indexed: 12/17/2022]
Abstract
Notch signaling has a pivotal role in numerous cell-fate decisions, and its aberrant activity leads to developmental disorders and cancer. To identify molecules that influence Notch signaling, we screened nearly 17,000 compounds using automated microscopy to monitor the trafficking and processing of a ligand-independent Notch-enhanced GFP (eGFP) reporter. Characterization of hits in vitro by biochemical and cellular assays and in vivo using zebrafish led to five validated compounds, four of which induced accumulation of the reporter at the plasma membrane by inhibiting γ-secretase. One compound, the dihydropyridine FLI-06, disrupted the Golgi apparatus in a manner distinct from that of brefeldin A and golgicide A. FLI-06 inhibited general secretion at a step before exit from the endoplasmic reticulum (ER), which was accompanied by a tubule-to-sheet morphological transition of the ER, rendering FLI-06 the first small molecule acting at such an early stage in secretory traffic. These data highlight the power of phenotypic screening to enable investigations of central cellular signaling pathways.
Collapse
Affiliation(s)
- Andreas Krämer
- Leibniz Institut für Altersforschung-Fritz Lipmann Institut, Jena, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kakoi S, Yorimitsu T, Sato K. COPII machinery cooperates with ER-localized Hsp40 to sequester misfolded membrane proteins into ER-associated compartments. Mol Biol Cell 2013; 24:633-42. [PMID: 23303252 PMCID: PMC3583666 DOI: 10.1091/mbc.e12-08-0639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Proteins that fail to fold in the endoplasmic reticulum (ER) are subjected to ER-associated degradation (ERAD). Certain transmembrane ERAD substrates are segregated into specialized ER subdomains, termed ER-associated compartments (ERACs), before targeting to ubiquitin-proteasome degradation. The traffic-independent function of several proteins involved in COPII-mediated ER-to-Golgi transport have been implicated in the segregation of exogenously expressed human cystic fibrosis transmembrane conductance regulator (CFTR) into ERACs in Saccharomyces cerevisiae. Here we focus on the properties of COPII components in the sequestration of enhanced green fluorescent protein (EGFP)-CFTR into ERACs. It has been demonstrated that the temperature-sensitive growth defects in many COPII mutants can be suppressed by overexpressing other genes involved in COPII vesicle formation. However, we show that these suppression abilities are not always correlated with the ability to rescue the ERAC formation defect, suggesting that COPII-mediated EGFP-CFTR entry into ERACs is independent of its ER-to-Golgi trafficking function. In addition to COPII machinery, we find that ER-associated Hsp40s are also involved in the sequestration process by directly interacting with EGFP-CFTR. COPII components and ER-associated Hsp40, Hlj1p, act in the same pathway to sequester EGFP-CFTR into ERACs. Our findings point to an as-yet-undefined role of COPII proteins in the formation of ERACs.
Collapse
Affiliation(s)
- Shogo Kakoi
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | | | | |
Collapse
|
22
|
Jarvela T, Linstedt AD. Irradiation-induced protein inactivation reveals Golgi enzyme cycling to cell periphery. J Cell Sci 2012; 125:973-80. [PMID: 22421362 DOI: 10.1242/jcs.094441] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acute inhibition is a powerful technique to test proteins for direct roles and order their activities in a pathway, but as a general gene-based strategy, it is mostly unavailable in mammalian systems. As a consequence, the precise roles of proteins in membrane trafficking have been difficult to assess in vivo. Here we used a strategy based on a genetically encoded fluorescent protein that generates highly localized and damaging reactive oxygen species to rapidly inactivate exit from the endoplasmic reticulum (ER) during live-cell imaging and address the long-standing question of whether the integrity of the Golgi complex depends on constant input from the ER. Light-induced blockade of ER exit immediately perturbed Golgi membranes, and surprisingly, revealed that cis-Golgi-resident proteins continuously cycle to peripheral ER-Golgi intermediate compartment (ERGIC) membranes and depend on ER exit for their return to the Golgi. These experiments demonstrate that ER exit and extensive cycling of cis-Golgi components to the cell periphery sustain the mammalian Golgi complex.
Collapse
Affiliation(s)
- Timothy Jarvela
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
23
|
Stenbeck G, Lawrence KM, Albert AP. Hormone-stimulated modulation of endocytic trafficking in osteoclasts. Front Endocrinol (Lausanne) 2012; 3:103. [PMID: 22936925 PMCID: PMC3424527 DOI: 10.3389/fendo.2012.00103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/05/2012] [Indexed: 11/30/2022] Open
Abstract
A precise control of vesicular trafficking is crucial not only for osteoclastic bone resorption, but also for the crosstalk between osteoclasts and osteoblasts, which regulates bone homeostasis. In addition to the release of growth factors and modulators, such as glutamate, flux through the intracellular trafficking routes could also provide the osteoclast with a monitoring function of its resorption activity. To establish the signaling pathways regulating trafficking events in resorbing osteoclasts, we used the bone conserving hormone calcitonin, which has the unique property of inducing osteoclast quiescence. Calcitonin acts through the calcitonin receptor and activates multiple signaling pathways. By monitoring trafficking of a fluorescent low molecular weight probe in mature, bone resorbing osteoclasts we show for the first time that calcitonin blocks endocytosis from the ruffled border by phospholipase C (PLC) activation. Furthermore, we identify a requirement for polyunsaturated fatty acids in endocytic trafficking in osteoclasts. Inhibition of PLC prior to calcitonin treatment restores endocytosis to 75% of untreated rates. This effect is independent of protein kinase C activation and can be mimicked by an increase in intracellular calcium. We thus define an essential role for intracellular calcium levels in the maintenance of endocytosis in osteoclasts.
Collapse
Affiliation(s)
- Gudrun Stenbeck
- Centre for Cell and Chromosome Biology, School of Health Science and Social Care, Brunel UniversityUxbridge, UK
- *Correspondence: Gudrun Stenbeck, Centre for Cell and Chromosome Biology, School of Health Science and Social Care, Heinz Wolff Building, Brunel University, Uxbridge UB8 3PH, UK. e-mail:
| | - Kevin M. Lawrence
- Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of LondonLondon, UK
| | - Anthony P. Albert
- Pharmacology and Cell Physiology, Biomedical Sciences Research Centre, Division of Biomedical Sciences, St George’s, University of LondonLondon, UK
| |
Collapse
|
24
|
Nakagawa H, Umadome H, Miyazaki S, Tanaka K, Nishimura K, Komori M, Matsuo S. ER-resident Gi2 protein controls sar1 translocation onto the ER during budding of transport vesicles. J Cell Biochem 2011; 112:2250-6. [PMID: 21480366 DOI: 10.1002/jcb.23142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In our previous study, fluoride ([AlF(4) ](-) ) disturbed ER-to-Golgi transport through the activation of ER-resident heterotrimeric G protein (ER-G protein). Therefore, ER-G protein may be implicated in ER-to-Golgi transport at the early stage prior to coat protein assembly. Sar1 translocation onto the endoplasmic reticulum (ER) membrane is suppressed by non-selective protein kinase inhibitor H89, suggesting the participation of H89-sensitive kinase in this process. To investigate the involvement of ER-G protein in ER-to-Golgi transport, the effect of G(i) protein activator (mastoparan 7) was examined on Sar1 translocation onto the ER in a cell-free system consisting of microsome membrane and cytosol. Sar1 translocation onto the microsome membrane was induced by addition of GTPγS in the cell-free system. Translocation of Sar1 by GTPγS was suppressed significantly by both H89 and mastoparan 7. Mastoparan 7 suppressed the translocation of Sar1 onto the microsome membrane with dosage dependency, but mastoparan 17, the inactive analog of mastoparan 7, had no effect on Sar1 translocation. The suppressive effect of mastoparan 7 was recovered by treatment with pertussis toxin (IAP). Moreover, G(i2) protein was detected on the microsome membrane by western blotting for heterotrimeric G(i) proteins. These results indicate that ER-G(i2) protein modulated Sar1 translocation onto the ER, suggesting that ER-resident G(i2) protein is an important negative regulator of vesicular transport at the early stage of vesicle formation before coat protein assembly on the ER.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Laboratory of Toxicology, Course of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
25
|
Context-dependent activation kinetics elicited by soluble versus outer membrane vesicle-associated heat-labile enterotoxin. Infect Immun 2011; 79:3760-9. [PMID: 21708992 DOI: 10.1128/iai.05336-11] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is the leading cause of traveler's diarrhea and children's diarrhea worldwide. Among its virulence factors, ETEC produces heat-labile enterotoxin (LT). Most secreted LT is associated with outer membrane vesicles that are rich in lipopolysaccharide. The majority of prior studies have focused on soluble LT purified from ETEC periplasm. We investigated the hypothesis that the extracellular vesicle context of toxin presentation might be important in eliciting immune responses. We compared the polarized epithelial cell responses to apically applied soluble LT and LT-containing vesicles (LT(+) vesicles) as well as controls using a catalytically inactive mutant of LT and vesicles lacking LT. Although vesicle treatments with no or catalytically inactive LT induced a modest amount of interleukin-6 (IL-6), samples containing catalytically active LT elicited higher levels. A combination of soluble LT and LT-deficient vesicles induced significantly higher IL-6 levels than either LT or LT(+) vesicles alone. The responses to LT(+) vesicles were found to be independent of the canonical LT pathway, because the inhibition of cyclic AMP response element (CRE)-binding protein (CREB) phosphorylation did not lead to a decrease in cytokine gene expression levels. Furthermore, soluble LT caused earlier phosphorylation of CREB and activation of CRE compared with LT(+) vesicles. Soluble LT also led to the activation of activator protein 1, whereas LT(+) vesicle IL-6 responses appeared to be mediated by NF-κB. In summary, the results demonstrate that soluble LT and vesicle-bound LT elicit ultimately similar cytokine responses through distinct different activation pathways.
Collapse
|
26
|
Nakagawa H, Miyazaki S, Abe T, Umadome H, Tanaka K, Nishimura K, Komori M, Matsuo S. H89 sensitive kinase regulates the translocation of Sar1 onto the ER membrane through phosphorylation of ER-coupled β-tubulin. Int J Biochem Cell Biol 2010; 43:423-30. [PMID: 21111843 DOI: 10.1016/j.biocel.2010.11.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 11/15/2010] [Accepted: 11/18/2010] [Indexed: 11/16/2022]
Abstract
ER-to-Golgi protein transport is carried out by transport vesicles which are formed at the ER-exit sites with recruitment of cytoplasmic coat proteins. Vesicle formation is initiated by assembly of the small G protein (Sar1) onto the ER membrane. Sar1 assembly onto the ER membrane is suppressed by protein kinase inhibitor H89, suggesting participation of H89-sensitive kinase in this process. The present study identified an effector of H89-sensitive kinase by LC-MS PMF analysis combined with 1D- and 2D-PAGE autoradiography, and examined the changes on the effector and Sar1 translocation induced by H89. H89 significantly suppressed the phosphorylation of 55 kDa protein with dosage dependency, and phosphorylation of 55 kDa, pI 5.5 protein spot in 2-D-autoradiography was drastically diminished by H89. LC-MS PMF analysis showed that the protein spot was β-tubulin. H89 significantly suppressed Sar1 translocation onto the ER. These findings indicate that β-tubulin is one of downstream effectors of H89-sensitive kinase, and that suppression of ER-coupled β-tubulin phosphorylation decreases Sar1 translocation onto the ER, suggesting that phosphorylation of β-tubulin regulates Sar1 translocation.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Laboratory of Toxicology, Course of Veterinary Science, Graduate School of Life and Environmental Biosciences, Osaka Prefecture University, Izumisano, Japan
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Sharpe LJ, Luu W, Brown AJ. Akt phosphorylates Sec24: new clues into the regulation of ER-to-Golgi trafficking. Traffic 2010; 12:19-27. [PMID: 20950345 DOI: 10.1111/j.1600-0854.2010.01133.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Regulation of protein transport within the early secretory pathway is a relatively unexplored area. Here, we propose a new player in the control of protein transport from the endoplasmic reticulum (ER) to the Golgi. Akt is an important signaling kinase whose functioning is perturbed in diseases such as cancer and diabetes. We discovered that Akt phosphorylates Sec24, an essential coat protein II (COPII) component involved in mediating cargo selection for ER-to-Golgi trafficking. We discuss how this finding may provide new insights into the regulation of protein transport.
Collapse
Affiliation(s)
- Laura J Sharpe
- BABS, School of Biotechnology and Biomolecular Sciences, Biosciences Building D26, University of New South Wales, Sydney, NSW 2052, Australia
| | | | | |
Collapse
|
28
|
Quintero CA, Giraudo CG, Villarreal M, Montich G, Maccioni HJF. Identification of a site in Sar1 involved in the interaction with the cytoplasmic tail of glycolipid glycosyltransferases. J Biol Chem 2010; 285:30340-6. [PMID: 20650895 DOI: 10.1074/jbc.m110.128868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Glycolipid glycosyltransferases (GGT) are transported from the endoplasmic reticulum (ER) to the Golgi, their site of residence, via COPII vesicles. An interaction of a (R/K)X(R/K) motif at their cytoplasmic tail (CT) with Sar1 is critical for the selective concentration in the transport vesicles. In this work using computational docking, we identify three putative binding pockets in Sar1 (sites A, B, and C) involved in the interaction with the (R/K)X(R/K) motif. Sar1 mutants with alanine replacement of amino acids in site A were tested in vitro and in cells. In vitro, mutant versions showed a reduced ability to bind immobilized peptides with the CT sequence of GalT2. In cells, Sar1 mutants (Sar1(D198A)) specifically affect the exiting of GGT from the ER, resulting in an ER/Golgi concentration ratio favoring the ER. Neither the typical Golgi localization of GM130 nor the exiting and transport of the G protein of the vesicular stomatitis virus were affected. The protein kinase inhibitor H89 produced accumulation of Sec23, Sar1, and GalT2 at the ER exit sites; Sar1(D189A) also accumulated at these sites, but in this case GalT2 remained disperse along ER membranes. The results indicate that amino acids in site A of Sar1 are involved in the interaction with the CT of GGT for concentration at ER exiting sites.
Collapse
Affiliation(s)
- Cristián A Quintero
- Departamento de Química Biológica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Centro de Investigaciones en Química Biológica de Córdoba, X5000HUA Córdoba, Argentina
| | | | | | | | | |
Collapse
|
29
|
Harikumar KB, Kunnumakkara AB, Ochi N, Tong Z, Deorukhkar A, Sung B, Kelland L, Jamieson S, Sutherland R, Raynham T, Charles M, Bagherzadeh A, Bagherazadeh A, Foxton C, Boakes A, Farooq M, Maru D, Diagaradjane P, Matsuo Y, Sinnett-Smith J, Gelovani J, Krishnan S, Aggarwal BB, Rozengurt E, Ireson CR, Guha S. A novel small-molecule inhibitor of protein kinase D blocks pancreatic cancer growth in vitro and in vivo. Mol Cancer Ther 2010; 9:1136-46. [PMID: 20442301 DOI: 10.1158/1535-7163.mct-09-1145] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein kinase D (PKD) family members are increasingly implicated in multiple normal and abnormal biological functions, including signaling pathways that promote mitogenesis in pancreatic cancer. However, nothing is known about the effects of targeting PKD in pancreatic cancer. Our PKD inhibitor discovery program identified CRT0066101 as a specific inhibitor of all PKD isoforms. The aim of our study was to determine the effects of CRT0066101 in pancreatic cancer. Initially, we showed that autophosphorylated PKD1 and PKD2 (activated PKD1/2) are significantly upregulated in pancreatic cancer and that PKD1/2 are expressed in multiple pancreatic cancer cell lines. Using Panc-1 as a model system, we showed that CRT0066101 reduced bromodeoxyuridine incorporation; increased apoptosis; blocked neurotensin-induced PKD1/2 activation; reduced neurotensin-induced, PKD-mediated Hsp27 phosphorylation; attenuated PKD1-mediated NF-kappaB activation; and abrogated the expression of NF-kappaB-dependent proliferative and prosurvival proteins. We showed that CRT0066101 given orally (80 mg/kg/d) for 24 days significantly abrogated pancreatic cancer growth in Panc-1 subcutaneous xenograft model. Activated PKD1/2 expression in the treated tumor explants was significantly inhibited with peak tumor concentration (12 micromol/L) of CRT0066101 achieved within 2 hours after oral administration. Further, we showed that CRT0066101 given orally (80 mg/kg/d) for 21 days in Panc-1 orthotopic model potently blocked tumor growth in vivo. CRT0066101 significantly reduced Ki-67-positive proliferation index (P < 0.01), increased terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling-positive apoptotic cells (P < 0.05), and abrogated the expression of NF-kappaB-dependent proteins including cyclin D1, survivin, and cIAP-1. Our results show for the first time that a PKD-specific small-molecule inhibitor CRT0066101 blocks pancreatic cancer growth in vivo and show that PKD is a novel therapeutic target in pancreatic cancer.
Collapse
Affiliation(s)
- Kuzhuvelil B Harikumar
- Department of Experimental Therapeutics, The UT MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Carvou N, Holic R, Li M, Futter C, Skippen A, Cockcroft S. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum. J Cell Sci 2010; 123:1262-73. [PMID: 20332109 DOI: 10.1242/jcs.061986] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vesicles formed by the COPI complex function in retrograde transport from the Golgi to the endoplasmic reticulum (ER). Phosphatidylinositol transfer protein beta (PITPbeta), an essential protein that possesses phosphatidylinositol (PtdIns) and phosphatidylcholine (PtdCho) lipid transfer activity is known to localise to the Golgi and ER but its role in these membrane systems is not clear. To examine the function of PITPbeta at the Golgi-ER interface, RNA interference (RNAi) was used to knockdown PITPbeta protein expression in HeLa cells. Depletion of PITPbeta leads to a decrease in PtdIns(4)P levels, compaction of the Golgi complex and protection from brefeldin-A-mediated dispersal to the ER. Using specific transport assays, we show that anterograde traffic is unaffected but that KDEL-receptor-dependent retrograde traffic is inhibited. This phenotype can be rescued by expression of wild-type PITPbeta but not by mutants defective in docking, PtdIns transfer and PtdCho transfer. These data demonstrate that the PtdIns and PtdCho exchange activity of PITPbeta is essential for COPI-mediated retrograde transport from the Golgi to the ER.
Collapse
Affiliation(s)
- Nicolas Carvou
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower St, London WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Yip1A depletion leads to reorganization of the ER into stacked and concentrically whorled membranes as well as a slowing of cargo export. The network dispersal function of Yip1A depends on a conserved residue. Thus, a conserved Yip1A-mediated ER network dispersal mechanism may regulate the protein export function of the organelle. The structure of the endoplasmic reticulum (ER) undergoes highly regulated changes in specialized cell types. One frequently observed type of change is its reorganization into stacked and concentrically whorled membranes, but the underlying mechanisms and functional relevance for cargo export are unknown. Here, we identify Yip1A, a conserved membrane protein that cycles between the ER and early Golgi, as a key mediator of ER organization. Yip1A depletion led to restructuring of the network into multiple, micrometer-sized concentric whorls. Membrane stacking and whorl formation coincided with a marked slowing of coat protein (COP)II-mediated protein export. Furthermore, whorl formation driven by exogenous expression of an ER protein with no role in COPII function also delayed cargo export. Thus, the slowing of protein export induced by Yip1A depletion may be attributed to a proximal role for Yip1A in regulating ER network dispersal. The ER network dispersal function of Yip1A was blocked by alteration of a single conserved amino acid (E95K) in its N-terminal cytoplasmic domain. These results reveal a conserved Yip1A-mediated mechanism for ER membrane organization that may serve to regulate cargo exit from the organelle.
Collapse
Affiliation(s)
- Kaitlyn M Dykstra
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
32
|
Budnik A, Stephens DJ. ER exit sites--localization and control of COPII vesicle formation. FEBS Lett 2009; 583:3796-803. [PMID: 19850039 DOI: 10.1016/j.febslet.2009.10.038] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Revised: 10/13/2009] [Accepted: 10/15/2009] [Indexed: 11/15/2022]
Abstract
The first membrane trafficking step in the biosynthetic secretory pathway, the export of proteins and lipids from the endoplasmic reticulum (ER), is mediated by COPII-coated vesicles. In mammalian cells, COPII vesicle budding occurs at specialized sites on the ER, the so-called transitional ER (tER). Here, we discuss aspects of the formation and maintenance of these sites, the mechanisms by which cargo becomes segregated within them, and the propagation of ER exit sites (ERES) during cell division. All of these features are inherently linked to the formation, maintenance and function of the Golgi apparatus underlining the importance of ERES to Golgi function and more widely in terms of intracellular organization and cellular function.
Collapse
Affiliation(s)
- Annika Budnik
- Cell Biology Laboratories, Department of Biochemistry, University of Bristol, School of Medical Sciences, University Walk, Bristol BS8 1TD, United Kingdom
| | | |
Collapse
|
33
|
The cytoplasmic accumulations of the cataract-associated mutant, Connexin50P88S, are long-lived and form in the endoplasmic reticulum. Exp Eye Res 2008; 88:600-9. [PMID: 19073179 DOI: 10.1016/j.exer.2008.11.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 10/26/2008] [Accepted: 11/19/2008] [Indexed: 11/21/2022]
Abstract
Mutant connexins have been linked to hereditary congenital cataracts. One such mutant causes a proline-to-serine substitution at position 88 in human connexin 50 (CX50P88S). In transfected cells, CX50P88S does not form gap junctions, but localizes in cytoplasmic multilamellar structures. We studied the dynamics of formation and the stability of these structures in HeLa cells stably transfected with CX50P88S containing a tetracysteine motif appended to its C-terminus (HeLa-CX50P88S(Cys)(4) cells). The tetracysteine motif binds the membrane-permeable biarsenical compounds, FlAsH and ReAsH, which become fluorescent upon binding allowing detection of CX50P88S(Cys)(4) by fluorescence microscopy or by transmission electron microscopy after the ReAsH-driven fluorescent photoconversion of diaminobenzidine. CX50P88S structures were long-lived. Pulse labeling of HeLa-CX50P88S(Cys)(4) cells with FlAsH followed by a chase and ReAsH labeling showed a differential distribution of the labels, with older CX50P88S surrounded by newly synthesized protein. Formation of CX50P88S accumulations was not affected by treatments that block ER-to-Golgi transport. Transmission electron microscopy and tomographic reconstruction revealed that CX50P88S accumulations corresponded to closely apposed circular or semicircular membrane stacks that were sometimes continuous with the rough endoplasmic reticulum. These results suggest that CX50P88S accumulations originate from the rough endoplasmic reticulum and that mutant protein is sequentially added resulting in long-lived cytoplasmic particles. The persistence of these particles in the lens may cause light scattering and the pulverulent cataracts observed in affected individuals.
Collapse
|
34
|
Pan H, Yu J, Zhang L, Carpenter A, Zhu H, Li L, Ma D, Yuan J. A novel small molecule regulator of guanine nucleotide exchange activity of the ADP-ribosylation factor and golgi membrane trafficking. J Biol Chem 2008; 283:31087-96. [PMID: 18799457 PMCID: PMC2576541 DOI: 10.1074/jbc.m806592200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Revised: 09/15/2008] [Indexed: 11/06/2022] Open
Abstract
An image-based phenotypic screen was developed to identify small molecule regulators of intracellular traffic. Using this screen we found that AG1478, a previously known inhibitor of epidermal growth factor receptor, had epidermal growth factor receptor-independent activity in inducing the disassembly of the Golgi in human cells. Similar to brefeldin A (BFA), a known disrupter of the Golgi, AG1478 inhibits the activity of small GTPase ADP-ribosylation factor. Unlike BFA, AG1478 exhibits low cytotoxicity and selectively targets the cis-Golgi without affecting endosomal compartment. We show that AG1478 inhibits GBF1, a large nucleotide exchange factor for the ADP-ribosylation factor, in a Sec7 domain-dependent manner and mimics the phenotype of a GBF1 mutant that has an inactive mutation. The treatment with AG1478 leads to the recruitment of GBF1 to the vesicular-tubular clusters adjacent to the endoplasmic reticulum exit sites, a step only transiently observed previously in the presence of BFA. We propose that the treatment with AG1478 delineates a membrane trafficking intermediate step that depends upon the Sec7 domain.
Collapse
Affiliation(s)
- Heling Pan
- State Key Laboratory of Bio-organic & Natural Products Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Siddiqi SA, Mansbach CM. PKC zeta-mediated phosphorylation controls budding of the pre-chylomicron transport vesicle. J Cell Sci 2008; 121:2327-38. [PMID: 18577579 DOI: 10.1242/jcs.022780] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dietary triacylglycerols are absorbed by enterocytes and packaged in the endoplasmic reticulum (ER) in the intestinal specific lipoprotein, the chylomicron, for export into mesenteric lymph. Chylomicrons exit the ER in an ER-to-Golgi transport vesicle, the pre-chylomicron transport vesicle (PCTV), which is the rate-limiting step in the transit of chylomicrons across the cell. Here, we focus on potential mechanisms of control of the PCTV-budding step from the intestinal ER. We incubated intestinal ER with intestinal cytosol and ATP to cause PCTV budding. The budding reaction was inhibited by 60 nM of the PKC inhibitor Gö 6983, suggesting the importance of PKCzeta in the generation of PCTV. Immunodepletion of PKCzeta from the cytosol and the use of washed ER greatly inhibited the generation of PCTVs, but was restored following the addition of recombinant PKCzeta. Intestinal ER incubated with intestinal cytosol and [gamma-(32)P]ATP under conditions supporting the generation of PCTVs showed the phosphorylation of a 9-kDa band following autoradiography. The phosphorylation of this protein correlated with the generation of PCTVs but not the formation of protein vesicles and was inhibited by depletion of PKCzeta. Phosphorylation of the 9-kDa protein was restored following the addition of recombinant PKCzeta. The association of the 9-kDa protein with proteins that are important for PCTV budding was phosphorylation dependent. We conclude that PKCzeta activity is required for PCTV budding from intestinal ER, and is associated with phosphorylation of a 9-kDa protein that might regulate PCTV budding.
Collapse
Affiliation(s)
- Shadab A Siddiqi
- The Division of Gastroenterology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | | |
Collapse
|
36
|
Mouse hepatitis coronavirus RNA replication depends on GBF1-mediated ARF1 activation. PLoS Pathog 2008; 4:e1000088. [PMID: 18551169 PMCID: PMC2398782 DOI: 10.1371/journal.ppat.1000088] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2007] [Accepted: 05/09/2008] [Indexed: 12/18/2022] Open
Abstract
Coronaviruses induce in infected cells the formation of double membrane vesicles, which are the sites of RNA replication. Not much is known about the formation of these vesicles, although recent observations indicate an important role for the endoplasmic reticulum in the formation of the mouse hepatitis coronavirus (MHV) replication complexes (RCs). We now show that MHV replication is sensitive to brefeldin A (BFA). Consistently, expression of a dominant-negative mutant of ARF1, known to mimic the action of the drug, inhibited MHV infection profoundly. Immunofluorescence analysis and quantitative electron microscopy demonstrated that BFA did not block the formation of RCs per se, but rather reduced their number. MHV RNA replication was not sensitive to BFA in MDCK cells, which are known to express the BFA-resistant guanine nucleotide exchange factor GBF1. Accordingly, individual knockdown of the Golgi-resident targets of BFA by transfection of small interfering RNAs (siRNAs) showed that GBF1, but not BIG1 or BIG2, was critically involved in MHV RNA replication. ARF1, the cellular effector of GBF1, also appeared to be involved in MHV replication, as siRNAs targeting this small GTPase inhibited MHV infection significantly. Collectively, our results demonstrate that GBF1-mediated ARF1 activation is required for efficient MHV RNA replication and reveal that the early secretory pathway and MHV replication complex formation are closely connected. Coronaviruses are the causative agents of many respiratory and enteric infections in humans and animals. As with all viruses, virtually all of the steps of their infection cycle depend on host cellular factors. As the first and most crucial step after their entry into cells, coronaviruses assemble their replication complexes (RCs) in association with characteristic, newly induced membranous structures. The cellular pathways hijacked by these plus-strand RNA viruses to create these “factories” have not been elucidated. Here, we study the involvement of the secretory pathway in mouse hepatitis coronavirus (MHV) replication by using the drug brefeldin A (BFA), which is known to interfere with ER–Golgi membrane traffic by inhibiting the activation of ADP-ribosylation factor (ARF) small GTPases. Our observations show that MHV RNA replication is sensitive to BFA. In agreement herewith we demonstrate, by using various techniques, that the BFA-sensitive guanidine nucleotide exchange factor GBF1 and its downstream effector ARF1 are of critical importance for coronavirus replication. From our results we conclude that MHV RNA replication depends on GBF1-mediated ARF1 activation. Our study provides new insights into the close connection between MHV replication and the early secretory pathway.
Collapse
|
37
|
Tanaka AR, Kano F, Ueda K, Murata M. The ABCA1 Q597R mutant undergoes trafficking from the ER upon ER stress. Biochem Biophys Res Commun 2008; 369:1174-8. [PMID: 18343215 DOI: 10.1016/j.bbrc.2008.03.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/05/2008] [Indexed: 10/22/2022]
Abstract
Mutations in ATP binding cassette transporter 1 (ABCA1), a membrane protein associated with cellular cholesterol efflux, cause Tangier disease (TD). Previously, we showed that an ABCA1 Q597R mutant (QR) identified in TD is retained in the endoplasmic reticulum. Here, we report that QR trafficking to the plasma membrane was rapidly induced by thapsigargin or DTT, indicating that ER stress-induced QR trafficking. However, pharmacological rescue of ABCA1 activity was not observed. The trafficking was dependent on COPII components and occurred via the ER-Golgi intermediate compartments. Furthermore, we found that QR was more sensitive to ER stress than ATF6, a transcription factor associated with the ER stress response. These results suggest that thapsigargin can be effective in correcting trafficking defects, and raise the possibility that ER stress-induced trafficking is involved in ER quality control.
Collapse
Affiliation(s)
- Arowu R Tanaka
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | |
Collapse
|
38
|
Wakana Y, Takai S, Nakajima KI, Tani K, Yamamoto A, Watson P, Stephens DJ, Hauri HP, Tagaya M. Bap31 is an itinerant protein that moves between the peripheral endoplasmic reticulum (ER) and a juxtanuclear compartment related to ER-associated Degradation. Mol Biol Cell 2008; 19:1825-36. [PMID: 18287538 DOI: 10.1091/mbc.e07-08-0781] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Certain endoplasmic reticulum (ER)-associated degradation (ERAD) substrates with transmembrane domains are segregated from other ER proteins and sorted into a juxtanuclear subcompartment, known as the ER quality control compartment. Bap31 is an ER protein with three transmembrane domains, and it is assumed to be a cargo receptor for ER export of some transmembrane proteins, especially those prone to ERAD. Here, we show that Bap31 is a component of the ER quality control compartment and that it moves between the peripheral ER and a juxtanuclear ER or ER-related compartment distinct from the conventional ER-Golgi intermediate compartment. The third and second transmembrane domains of Bap31 are principally responsible for the movement to and recycling from the juxtanuclear region, respectively. This cycling was blocked by depolymerization of microtubules and disruption of dynein-dynactin function. Overexpression of Sar1p and Arf1 mutants affected Bap31 cycling, suggesting that this cycling pathway is related to the conventional vesicular transport pathways.
Collapse
Affiliation(s)
- Yuichi Wakana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sharpe LJ, Du X, Brown AJ. Approaches to investigate the role of signaling in ER-to-Golgi transport. Methods Mol Biol 2008; 457:215-225. [PMID: 19066030 DOI: 10.1007/978-1-59745-261-8_16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
There have been many indications that kinases play a role in signaling the transport of proteins through the secretory pathway. Specifically, the serine/threonine kinase Akt affects the transport of cholesterol regulatory components from the endoplasmic reticulum (ER) to the Golgi. However, elucidating the target of Akt in this process has proven to be challenging. Here we describe an approach devised to investigate the Akt target(s) based on examining a potential candidate.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | |
Collapse
|
40
|
Abstract
A full mechanistic understanding of how secretory cargo proteins are exported from the endoplasmic reticulum for passage through the early secretory pathway is essential for us to comprehend how cells are organized, maintain compartment identity, as well as how they selectively secrete proteins and other macromolecules to the extracellular space. This process depends on the function of a multi-subunit complex, the COPII coat. Here we describe progress towards a full mechanistic understanding of COPII coat function, including the latest findings in this area. Much of our understanding of how COPII functions and is regulated comes from studies of yeast genetics, biochemical reconstitution and single cell microscopy. New developments arising from clinical cases and model organism biology and genetics enable us to gain far greater insight in to the role of membrane traffic in the context of a whole organism as well as during embryogenesis and development. A significant outcome of such a full understanding is to reveal how the machinery and processes of membrane trafficking through the early secretory pathway fail in disease states.
Collapse
|
41
|
Wang L, Lucocq JM. p38 MAPK regulates COPII recruitment. Biochem Biophys Res Commun 2007; 363:317-21. [PMID: 17888403 DOI: 10.1016/j.bbrc.2007.08.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2007] [Accepted: 08/24/2007] [Indexed: 11/24/2022]
Abstract
Here, we investigate regulation of coat protein complex II (COPII) recruitment onto ER export sites in permeabilized cells. In cytosols from nocodazole treated HeLa cells we find COPII loading is inhibited. The stress kinase p38 MAPK is activated in these cytosols and COPII loading can be rescued by depletion of p38 MAPK alpha or by the p38 MAPK inhibitor (SB203580) but not by inhibition/depletion of cdc2. These observations indicate regulation of the early secretory pathway by p38 MAPK.
Collapse
Affiliation(s)
- Lijun Wang
- Division of Cell Biology and Immunology, College of Life Sciences, University of Dundee, Dow Street, Dundee, UK
| | | |
Collapse
|
42
|
Langhans M, Hawes C, Hillmer S, Hummel E, Robinson DG. Golgi regeneration after brefeldin A treatment in BY-2 cells entails stack enlargement and cisternal growth followed by division. PLANT PHYSIOLOGY 2007; 145:527-38. [PMID: 17704232 PMCID: PMC2048719 DOI: 10.1104/pp.107.104919] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Accepted: 08/02/2007] [Indexed: 05/05/2023]
Abstract
Brefeldin A (BFA) treatment stops secretion and leads to the resorption of much of the Golgi apparatus into the endoplasmic reticulum. This effect is reversible upon washing out the drug, providing a situation for studying Golgi biogenesis. In this investigation Golgi regeneration in synchronized tobacco BY-2 cells was followed by electron microscopy and by the immunofluorescence detection of ARF1, which localizes to the rims of Golgi cisternae and serves as an indicator of COPI vesiculation. Beginning as clusters of vesicles that are COPI positive, mini-Golgi stacks first become recognizable 60 min after BFA washout. They continue to increase in terms of numbers and length of cisternae for a further 90 min before overshooting the size of control Golgi stacks. As a result, increasing numbers of dividing Golgi stacks were observed 120 min after BFA washout. BFA-regeneration experiments performed on cells treated with BFA (10 microg mL(-1)) for only short periods (30-45 min) showed that the formation of ER-Golgi hybrid structures, once initiated by BFA treatment, is an irreversible process, the further incorporation of Golgi membranes into the ER continuing during a subsequent drug washout. Application of the protein kinase A inhibitor H-89, which effectively blocks the reassembly of the Golgi apparatus in mammalian cells, also prevented stack regeneration in BY-2 cells, but only at very high, almost toxic concentrations (>200 microm). Our data suggest that under normal conditions mitosis-related Golgi stack duplication may likely occur via cisternal growth followed by fission.
Collapse
Affiliation(s)
- Markus Langhans
- Department of Cell Biology, Heidelberg Institute for Plant Sciences, University of Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
43
|
Palacios N, Sánchez-Franco F, Fernández M, Sánchez I, Villuendas G, Cacicedo L. Opposite effects of two PKA inhibitors on cAMP inhibition of IGF-I-induced oligodendrocyte development: a problem of unspecificity? Brain Res 2007; 1178:1-11. [PMID: 17920050 DOI: 10.1016/j.brainres.2007.07.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 06/29/2007] [Accepted: 07/10/2007] [Indexed: 11/24/2022]
Abstract
The stimulatory effect of insulin-like growth factor I (IGF-I) on myelin basic protein (MBP) expression, a parameter for oligodendrocyte development, is mediated by the MAPK and PI3K signaling pathways. We have previously shown that the second messenger cAMP inhibits IGF-I-induced MAPK activation as well as MBP expression. We also showed that the PKA inhibitor Rp-cAMPS reverted the cAMP effect on IGF-I-induced MBP without affecting the cAMP effect on IGF-I-induced MAPK activation. Here we report that, in contrast to Rp-cAMPS, H89 (a PKA inhibitor structurally non-related to Rp-cAMPS) enhances both the inhibitory effect of cAMP on IGF-I-induced MBP expression and the inhibitory effect of cAMP on IGF-I-induced MAPK activation. Likewise, H89 is capable of inhibiting the IGF-I-induced MAPK activation in the absence of PKA stimulation. Thus, we hypothesize that an unspecific action of H89 on a target located upstream MAPK could account for the discrepancies between the effects elicited by Rp-cAMPS and H89.
Collapse
Affiliation(s)
- Nuria Palacios
- Endocrinology Department, Hospital Ramón y Cajal, Carretera de Colmenar, Km 9, 28034 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
44
|
Kirk SJ, Ward TH. COPII under the microscope. Semin Cell Dev Biol 2007; 18:435-47. [PMID: 17693103 DOI: 10.1016/j.semcdb.2007.07.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/05/2007] [Accepted: 07/09/2007] [Indexed: 11/19/2022]
Abstract
Transport through the secretory pathway begins with COPII regulation of ER export. Driven by the Sar1 GTPase cycle, cytosolic COPII proteins exchange on and off the membrane at specific sites on the ER to regulate cargo exit. Here recent developments in COPII research are discussed, particularly the use of live-cell imaging, which has revealed surprising insights into the coat's role. The seemingly static ER exit sites are in fact highly dynamic, and the ability to visualise trafficking processes in intact living cells has highlighted the adaptable nature of COPII in cargo transport and the emerging roles of auxiliary factors.
Collapse
Affiliation(s)
- Semra J Kirk
- Immunology Unit, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
45
|
Dong C, Wu G. Regulation of anterograde transport of alpha2-adrenergic receptors by the N termini at multiple intracellular compartments. J Biol Chem 2006; 281:38543-54. [PMID: 17038316 PMCID: PMC2648813 DOI: 10.1074/jbc.m605734200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The studies on the intrinsic structural determinants for export trafficking of G protein-coupled receptors (GPCRs) have been mainly focused on the C termini of the receptors. In this report we determined the role of the extracellular N termini of alpha(2)-adrenergic receptors (alpha(2)-ARs) in the anterograde transport from the endoplasmic reticulum (ER) through the Golgi to the cell surface. The N-terminal-truncated alpha(2B)-AR mutant is completely unable to target to the cell surface. A single Met-6 residue is essential for the export of alpha(2B)-AR from the ER, likely through modulating correct alpha(2B)-AR folding in the ER. The Tyr-Ser motif, highly conserved in the membrane-proximal N termini of all alpha(2)-AR subtypes, is required for the exit of alpha(2A)-AR and alpha(2B)-AR from the Golgi apparatus, thus representing a novel Tyr-based motif modulating GPCR transport at the Golgi level. These data provide the first evidence indicating an essential role of the N termini of GPCRs in the export from distinct intracellular compartments along the secretory pathway.
Collapse
Affiliation(s)
- Chunmin Dong
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, 1901 Perdido Street, New Orleans, LA 70112, USA
| | | |
Collapse
|
46
|
Abstract
Under experimental conditions, the Golgi apparatus can undergo de novo biogenesis from the endoplasmic reticulum (ER), involving a rapid phase of growth followed by a return to steady state, but the mechanisms that control growth are unknown. Quantification of coat protein complex (COP) II assembly revealed a dramatic up-regulation at exit sites driven by increased levels of Golgi proteins in the ER. Analysis in a permeabilized cell assay indicated that up-regulation of COPII assembly occurred in the absence GTP hydrolysis and any cytosolic factors other than the COPII prebudding complex Sar1p–Sec23p–Sec24p. Remarkably, acting via a direct interaction with Sar1p, increased expression of the Golgi enzyme N-acetylgalactosaminyl transferase-2 induced increased COPII assembly on the ER and an overall increase in the size of the Golgi apparatus. These results suggest that direct interactions between Golgi proteins exiting the ER and COPII components regulate ER exit, providing a variable exit rate mechanism that ensures homeostasis of the Golgi apparatus.
Collapse
Affiliation(s)
- Yusong Guo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
47
|
Bejarano E, Cabrera M, Vega L, Hidalgo J, Velasco A. Golgi structural stability and biogenesis depend on associated PKA activity. J Cell Sci 2006; 119:3764-75. [PMID: 16926194 DOI: 10.1242/jcs.03146] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian Golgi complex consists of stacks of cisternae linked laterally into a continuous perinuclear ribbon structure. Protein kinase A is stably associated with the Golgi complex during interphase. To analyze its role in Golgi structural maintenance cells were depleted of protein kinase A regulatory subunits using small interfering RNAs. Under these conditions, the catalytic subunits redistributed to the cytosol and the entire Golgi complex underwent disassembly into multiple juxtanuclear fragments. A similar effect took place following pharmacological inhibition or redistribution of the complete holoenzyme to the cytosol. Golgi fragments maintained their polarization and competence for anterograde protein trafficking. By electron microscopy, they were identified as whorl-like structures composed of concentrically arrayed cisternae. To test a possible role of protein kinase A in Golgi biogenesis we analyzed its involvement during Golgi reassembly from the endoplasmic reticulum. In cells incubated with protein kinase A inhibitors, Golgi reconstruction was arrested at a late step of the reassembly process. This is consistent with the stage of enzyme recruitment from cytosol to emerging Golgi membranes during the reassembly process. We conclude that protein kinase A activity plays a relevant role in the assembly and maintenance of a continuous Golgi ribbon from separated membrane stacks.
Collapse
Affiliation(s)
- Eloy Bejarano
- Department of Cell Biology, Faculty of Biology, University of Seville, Avd. Reina Mercedes s/n, 41012 Seville, Spain
| | | | | | | | | |
Collapse
|
48
|
Jiang S, Rhee SW, Gleeson PA, Storrie B. Capacity of the Golgi apparatus for cargo transport prior to complete assembly. Mol Biol Cell 2006; 17:4105-17. [PMID: 16837554 PMCID: PMC1556386 DOI: 10.1091/mbc.e05-12-1112] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In yeast, particular emphasis has been given to endoplasmic reticulum (ER)-derived, cisternal maturation models of Golgi assembly while in mammalian cells more emphasis has been given to golgins as a potentially stable assembly framework. In the case of de novo Golgi formation from the ER after brefeldin A/H89 washout in HeLa cells, we found that scattered, golgin-enriched, structures formed early and contained golgins including giantin, ranging across the entire cis to trans spectrum of the Golgi apparatus. These structures were incompetent in VSV-G cargo transport. Second, we compared Golgi competence in cargo transport to the kinetics of addition of various glycosyltransferases and glycosidases into nascent, golgin-enriched structures after drug washout. Enzyme accumulation was sequential with trans and then medial glycosyltransferases/glycosidases found in the scattered, nascent Golgi. Involvement in cargo transport preceded full accumulation of enzymes or GPP130 into nascent Golgi. Third, during mitosis, we found that the formation of a golgin-positive acceptor compartment in early telophase preceded the accumulation of a Golgi glycosyltransferase in nascent Golgi structures. We conclude that during mammalian Golgi assembly components fit into a dynamic, first-formed, multigolgin-enriched framework that is initially cargo transport incompetent. Resumption of cargo transport precedes full Golgi assembly.
Collapse
Affiliation(s)
- Shu Jiang
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Sung W. Rhee
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| | - Paul A. Gleeson
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Brian Storrie
- *Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, AR 72205; and
| |
Collapse
|
49
|
Grozdanov PN, Petkov PM, Karagyozov LK, Dabeva MD. Expression and localization of PCSK9 in rat hepatic cells. Biochem Cell Biol 2006; 84:80-92. [PMID: 16462892 DOI: 10.1139/o05-155] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9), recently cloned in several laboratories, including ours, causes a third form of autosomal dominant hypercholesterolemia. Its mechanism of action remains unclear. We studied the expression and subcellular localization of PCSK9 in fetal and adult rat tissues associated with cholesterol homeostasis using quantitative reverse transcriptase--PCR, Western blot analysis, subcellular fractionation, and confocal immunofluorescent microscopy. PCSK9 mRNA is most abundant in yolk sac and fetal liver, but the highest expression of the protein was found in differentiated hepatoma FAO-1 cell line, which also shows the highest expression of LDLR. In FAO-1 cells PCSK9 expression is downregulated by cholesterol and 25-hydroxycholesterol and upregulated in the absence of sterols following the same pattern of expression as HMG-CoA reductase, synthase, and LDLR. Subcellular fractionation, combined with Western blotting, showed that PCSK9 is localized in the ER and intermediate vesicular compartment of the cell but not in Golgi cisternae. The mature enzyme is secreted from the liver and hepatoma cells. Double labeling with antibodies to PCSK9 and LDLR or clathrin revealed some colocalization of PCSK9 with clathrin-coated vesicles and LDLR. In conclusion, our results show that PCSK9 is processed in the ER, and the mature convertase is secreted in the plasma.
Collapse
Affiliation(s)
- Petar N Grozdanov
- Marion Bessin Liver Research Center, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | |
Collapse
|
50
|
Sallese M, Pulvirenti T, Luini A. The physiology of membrane transport and endomembrane-based signalling. EMBO J 2006; 25:2663-73. [PMID: 16763561 PMCID: PMC1500860 DOI: 10.1038/sj.emboj.7601172] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 05/05/2006] [Indexed: 01/01/2023] Open
Abstract
Some of the important open questions concerning the physiology of the secretory pathway relate to its homeostasis. Secretion involves a number of separate compartments for which their transport activities should be precisely cross-coordinated to avoid gross imbalances in the trafficking system. Moreover, the membrane fluxes across these compartments should be able to adapt to environmental 'requests' and to respond to extracellular signals. How is this regulation effected? Here, we consider evidence that endomembrane-based signalling cascades that are similar in organization to those used at the plasma membrane coordinate membrane traffic. If this is the case, this would also represent a model for a more general inter-organelle signalling network for functionally interconnecting different intracellular activities, a necessity for the maintenance of cellular homeostasis and to express harmonic global cellular responses.
Collapse
Affiliation(s)
- Michele Sallese
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Teodoro Pulvirenti
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | - Alberto Luini
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
- Laboratory of Membrane Traffic, Department of Cell Biology and Oncology, Consorzio Mario, Negri Sud, Santa Maria Imbaro, Chieti 66030, Italy. Tel.: +39 0872 570355; Fax: +39 0872 570412; E-mail:
| |
Collapse
|