1
|
Scholey JM. Mitotic spindle membranes. Mol Biol Cell 2025; 36:re1. [PMID: 40067152 PMCID: PMC12005112 DOI: 10.1091/mbc.e24-10-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 04/19/2025] Open
Abstract
The mitotic spindle, which uses microtubules (MTs) and MT-based motor proteins to separate sister chromosomes prior to cell division, contains abundant membranes, organelles, and protein assemblies derived from the familiar interphase intracellular membrane network. In this essay, mainly with reference to selected animal and fungal cells, I summarize current ideas about the reciprocal functional relationship between these mitotic spindle-associated membranes and the spindle MT cytoskeleton, in which; 1) spindle membranes control the composition, Ca++ ion concentration and mechanical performance of the spindle MT cytoskeleton; and conversely 2) the spindle MT cytoskeleton contributes to membrane/organelle partitioning and inheritance during cell division and serves as a reservoir of membranes, organelles, and vesicles for delivery to the interphase cytoplasm, plasma membrane, and cleavage furrow.
Collapse
Affiliation(s)
- Jonathan M. Scholey
- Department of Molecular and Cell Biology, University of California at Davis, Davis, CA 95616
| |
Collapse
|
2
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
3
|
Kapoor S, Adhikary K, Kotak S. PP2A-B55 SUR-6 promotes nuclear envelope breakdown in C. elegans embryos. Cell Rep 2023; 42:113495. [PMID: 37995185 DOI: 10.1016/j.celrep.2023.113495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/25/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
Nuclear envelope (NE) disassembly during mitosis is critical to ensure faithful segregation of the genetic material. NE disassembly is a phosphorylation-dependent process wherein mitotic kinases hyper-phosphorylate lamina and nucleoporins to initiate nuclear envelope breakdown (NEBD). In this study, we uncover an unexpected role of the PP2A phosphatase B55SUR-6 in NEBD during the first embryonic division of Caenorhabditis elegans embryo. B55SUR-6 depletion delays NE permeabilization and stabilizes lamina and nucleoporins. As a result, the merging of parental genomes and chromosome segregation is impaired. NEBD defect upon B55SUR-6 depletion is not due to delayed mitotic onset or mislocalization of mitotic kinases. Importantly, we demonstrate that microtubule-dependent mechanical forces synergize with B55SUR-6 for efficient NEBD. Finally, our data suggest that the lamin LMN-1 is likely a bona fide target of PP2A-B55SUR-6. These findings establish a model highlighting biochemical crosstalk between kinases, PP2A-B55SUR-6 phosphatase, and microtubule-generated mechanical forces in timely NE dissolution.
Collapse
Affiliation(s)
- Sukriti Kapoor
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Kuheli Adhikary
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore 560012, India.
| |
Collapse
|
4
|
Jadav N, Velamoor S, Huang D, Cassin L, Hazelton N, Eruera AR, Burga LN, Bostina M. Beyond the surface: Investigation of tumorsphere morphology using volume electron microscopy. J Struct Biol 2023; 215:108035. [PMID: 37805154 DOI: 10.1016/j.jsb.2023.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
The advent of volume electron microscopy (vEM) has provided unprecedented insights into cellular and subcellular organization, revolutionizing our understanding of cancer biology. This study presents a previously unexplored comparative analysis of the ultrastructural disparities between cancer cells cultured as monolayers and tumorspheres. By integrating a robust workflow that incorporates high-pressure freezing followed by freeze substitution (HPF/FS), serial block face scanning electron microscopy (SBF-SEM), manual and deep learning-based segmentation, and statistical analysis, we have successfully generated three-dimensional (3D) reconstructions of monolayer and tumorsphere cells, including their subcellular organelles. Our findings reveal a significant degree of variation in cellular morphology in tumorspheres. We observed the increased prevalence of nuclear envelope invaginations in tumorsphere cells compared to monolayers. Furthermore, we detected a diverse range of mitochondrial morphologies exclusively in tumorsphere cells, as well as intricate cellular interconnectivity within the tumorsphere architecture. These remarkable ultrastructural differences emphasize the use of tumorspheres as a superior model for cancer research due to their relevance to in vivo conditions. Our results strongly advocate for the utilization of tumorsphere cells in cancer research studies, enhancing the precision and relevance of experimental outcomes, and ultimately accelerating therapeutic advancements.
Collapse
Affiliation(s)
- Nickhil Jadav
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Sailakshmi Velamoor
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Daniel Huang
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Léna Cassin
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Niki Hazelton
- Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand
| | - Alice-Roza Eruera
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Laura N Burga
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Mihnea Bostina
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand; Otago Micro and Nano Imaging (OMNI) Electron Microscopy Suite, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
5
|
Silvério-Alves R, Kurochkin I, Rydström A, Vazquez Echegaray C, Haider J, Nicholls M, Rode C, Thelaus L, Lindgren AY, Ferreira AG, Brandão R, Larsson J, de Bruijn MFTR, Martin-Gonzalez J, Pereira CF. GATA2 mitotic bookmarking is required for definitive haematopoiesis. Nat Commun 2023; 14:4645. [PMID: 37580379 PMCID: PMC10425459 DOI: 10.1038/s41467-023-40391-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 07/26/2023] [Indexed: 08/16/2023] Open
Abstract
In mitosis, most transcription factors detach from chromatin, but some are retained and bookmark genomic sites. Mitotic bookmarking has been implicated in lineage inheritance, pluripotency and reprogramming. However, the biological significance of this mechanism in vivo remains unclear. Here, we address mitotic retention of the hemogenic factors GATA2, GFI1B and FOS during haematopoietic specification. We show that GATA2 remains bound to chromatin throughout mitosis, in contrast to GFI1B and FOS, via C-terminal zinc finger-mediated DNA binding. GATA2 bookmarks a subset of its interphase targets that are co-enriched for RUNX1 and other regulators of definitive haematopoiesis. Remarkably, homozygous mice harbouring the cyclin B1 mitosis degradation domain upstream Gata2 partially phenocopy knockout mice. Degradation of GATA2 at mitotic exit abolishes definitive haematopoiesis at aorta-gonad-mesonephros, placenta and foetal liver, but does not impair yolk sac haematopoiesis. Our findings implicate GATA2-mediated mitotic bookmarking as critical for definitive haematopoiesis and highlight a dependency on bookmarkers for lineage commitment.
Collapse
Affiliation(s)
- Rita Silvério-Alves
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
| | - Ilia Kurochkin
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Anna Rydström
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Camila Vazquez Echegaray
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Jakob Haider
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Matthew Nicholls
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Christina Rode
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Louise Thelaus
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Aida Yifter Lindgren
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Alexandra Gabriela Ferreira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal
| | - Rafael Brandão
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Jonas Larsson
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden
| | - Marella F T R de Bruijn
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, OX3 9DS, Oxford, UK
| | - Javier Martin-Gonzalez
- Core Facility for Transgenic Mice, Department of Experimental Medicine, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen, Denmark
| | - Carlos-Filipe Pereira
- Molecular Medicine and Gene Therapy, Lund Stem Cell Center, Lund University, BMC A12, 221 84, Lund, Sweden.
- Wallenberg Centre for Molecular Medicine, Lund University, BMC A12, 221 84, Lund, Sweden.
- CNC - Centre for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês do Pombal, 3004-517, Coimbra, Portugal.
| |
Collapse
|
6
|
Mattola S, Mäntylä E, Aho V, Salminen S, Leclerc S, Oittinen M, Salokas K, Järvensivu J, Hakanen S, Ihalainen TO, Viiri K, Vihinen-Ranta M. G2/M checkpoint regulation and apoptosis facilitate the nuclear egress of parvoviral capsids. Front Cell Dev Biol 2022; 10:1070599. [PMID: 36568985 PMCID: PMC9773396 DOI: 10.3389/fcell.2022.1070599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022] Open
Abstract
The nuclear export factor CRM1-mediated pathway is known to be important for the nuclear egress of progeny parvovirus capsids in the host cells with virus-mediated cell cycle arrest at G2/M. However, it is still unclear whether this is the only pathway by which capsids exit the nucleus. Our studies show that the nuclear egress of DNA-containing full canine parvovirus. capsids was reduced but not fully inhibited when CRM1-mediated nuclear export was prevented by leptomycin B. This suggests that canine parvovirus capsids might use additional routes for nuclear escape. This hypothesis was further supported by our findings that nuclear envelope (NE) permeability was increased at the late stages of infection. Inhibitors of cell cycle regulatory protein cyclin-dependent kinase 1 (Cdk1) and pro-apoptotic caspase 3 prevented the NE leakage. The change in NE permeability could be explained by the regulation of the G2/M checkpoint which is accompanied by early mitotic and apoptotic events. The model of G2/M checkpoint activation was supported by infection-induced nuclear accumulation of cyclin B1 and Cdk1. Both NE permeability and nuclear egress of capsids were reduced by the inhibition of Cdk1. Additional proof of checkpoint function regulation and promotion of apoptotic events was the nucleocytoplasmic redistribution of nuclear transport factors, importins, and Ran, in late infection. Consistent with our findings, post-translational histone acetylation that promotes the regulation of several genes related to cell cycle transition and arrest was detected. In conclusion, the model we propose implies that parvoviral capsid egress partially depends on infection-induced G2/M checkpoint regulation involving early mitotic and apoptotic events.
Collapse
Affiliation(s)
- Salla Mattola
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Elina Mäntylä
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa Aho
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Sami Salminen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Simon Leclerc
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Mikko Oittinen
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Kari Salokas
- Institute of Biotechnology and Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Jani Järvensivu
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Satu Hakanen
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland
| | - Teemu O Ihalainen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Keijo Viiri
- Celiac Disease Research Center, Faculty of Medicine and Health Technology, Tampere University Hospital, Tampere, Finland
| | - Maija Vihinen-Ranta
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Jyvaskyla, Finland,*Correspondence: Maija Vihinen-Ranta,
| |
Collapse
|
7
|
Raices M, D'Angelo MA. Analysis of Nuclear Pore Complex Permeability in Mammalian Cells and Isolated Nuclei Using Fluorescent Dextrans. Methods Mol Biol 2022; 2502:69-80. [PMID: 35412231 PMCID: PMC9278988 DOI: 10.1007/978-1-0716-2337-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In eukaryotic cells the nuclear envelope encloses the genome separating it from the rest of the cell. Nuclear pore complexes are large multi protein channels that perforate the nuclear envelope, connecting the nucleus and the cytoplasm. Besides controlling nucleocytoplasmic molecule exchange, nuclear pore complexes create a permeability barrier that defines the maximum size of molecules that can freely diffuse into the nucleus. Accumulating evidence indicate that the permeability barrier of the nucleus can vary in different cellular conditions, during aging and in disease. Here we provide a simple protocol to analyze changes in nuclear permeability in plasma membrane-permeabilized cells and isolated nuclei using fluorescent dextrans of different sizes and confocal microscopy. The methods described herein represent a valuable resource to researchers studying the function of nuclear pore complexes and the dynamics of nuclear permeability in different cell types and processes.
Collapse
Affiliation(s)
- Marcela Raices
- Cellular and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Maximiliano A D'Angelo
- Cellular and Molecular Biology of Cancer Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
- NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA.
| |
Collapse
|
8
|
Behdarvand-Margha Z, Ahangarpour A, Shahraki M, Komeili G, Khorsandi L. The effects of gallic acid and metformin on male reproductive dysfunction in diabetic mice induced by methylglyoxal: An experimental study. Int J Reprod Biomed 2021; 19:715-724. [PMID: 34568732 PMCID: PMC8458920 DOI: 10.18502/ijrm.v19i8.9619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/11/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Diabetes mellitus is a disease that has reached a dangerous point. Today, nearly 500 million men and women around the world live with diabetes. Gallic acid (Gal) affects diabetes. OBJECTIVE To evaluate the effects of Gal and metformin (met) on the levels of glucose, insulin, testosterone, luteinizing hormone (LH), follicle-stimulating hormone (FSH), sperm count, antioxidant status, and histological changes in the testes of diabetic mice induced by methylglyoxal (MGO). MATERIALS AND METHODS In this experimental study, 50 male adult NMRI mice, weighting 25-30 gr, aged 3-4 months were randomly divided into five equal groups (n = 10/each). (i) Control (vehicle, normal saline), (ii) MGO (600 mg/kg/d) orally for 28 days, (iii) Gal (50 mg/kg/d), (iv) MGO+Gal, and (v) MGO+met (200 mg/kg/d). Gal and met were administered orally for 21 consecutive days after the induction of diabetes. Blood samples were taken at 24 hr after the latest doses of treatment. Histological assessment of the testis was done, and the epididymis sperm count was obtained. Antioxidant indices, glucose, insulin, LH, FSH, and testosterone levels were measured. RESULTS In the MGO group compared to the control group, insulin, glucose (p = 0.001), LH (p = 0.04) and malondialdehyde (p = 0.001) were increased. However, the level of testosterone (p = 0.001), seminiferous tubule diameters, epithelial height, sperm count, superoxide dismutase activity (p = 0.02), and testis volume (p = 0.01) were decreased. The results indicated that Gal and met ameliorated the MGO effects. CONCLUSION These findings suggested that the animals receiving MGO became diabetic. According to the results, Gal and met can effectively prevent MGO-induced diabetes. The effect of Gal was equivalent and sometimes better than metformin.
Collapse
Affiliation(s)
- Zeinab Behdarvand-Margha
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Akram Ahangarpour
- Department of Physiology, Faculty of Medicine, Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammadreza Shahraki
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Gholamreza Komeili
- Department of Physiology, Faculty of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Layasadat Khorsandi
- Department of Anatomical Sciences, Faculty of Medicine, Cellular and Molecular Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
9
|
Mohammadzadeh M, Anbari F, Aghaei S, Yazd EF, Sales ZA, Rajabi M, Khalili MA. Does combination of estradiol and sesame oil improve the oocyte quality, embryo development and expressions of Zp3, E-cad, and Ctnnb1 genes in mice? An experimental study. Int J Reprod Biomed 2021; 19:707-714. [PMID: 34568731 PMCID: PMC8458915 DOI: 10.18502/ijrm.v19i8.9618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 10/20/2020] [Accepted: 12/14/2020] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Aging may reduce oocyte maturation, embryo quality, and fertility potential. OBJECTIVE To compare the effect of estradiol (E2) and sesame oil on oocyte and embryo quality between young and old mice. MATERIALS AND METHODS Sixty old and young female mice were divided in to two groups (30 mice/group, grouped by age). Each group was divided into three subgroups of mice treated with sesame oil, E2 + sesame oil, and normal saline as control group. After ovulation induction, some oocytes were considered for in vitro fertilization and the rest were assessed for morphological status. After obtaining the two-cell embryos, the embryos were collected to determine the expression of zona pellucida (ZP) glycoprotein 3, E-cadherin, and β-catenin genes and some of them followed until the blastocysts stage to evaluate the viability. RESULTS The findings showed that the mean ZP and perivitelline space thickness increased in the old mice that received the E2 + sesame oil treatment. The number of 2-cell embryos, blastocysts, and live cells were significantly higher in the old group treated with sesame oil respectively (p = 0.018, 0.002, and < 0.0001, respectively). The normal ZP shape and refractile body numbers increased in the old mice that were treated with sesame oil, respectively. The E-cadherin gene was downregulated in the treatment groups compared to the controls. CONCLUSION Sesame oil showed a better response in the old mice, because aging is associated with an increased rate of reactive oxygen species, causing deficiencies in both oocyte and embryo qualities.
Collapse
Affiliation(s)
- Masoomeh Mohammadzadeh
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Anbari
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Shiva Aghaei
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Farashahi Yazd
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Zhima Akhavan Sales
- Department of Immunology, Faculty of Medicine, International Campus, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahya Rajabi
- Abortion Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Ali Khalili
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, Faculty of Medical Sciences, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
10
|
New Insights into Cellular Functions of Nuclear Actin. BIOLOGY 2021; 10:biology10040304. [PMID: 33916969 PMCID: PMC8067577 DOI: 10.3390/biology10040304] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
Simple Summary It is well known that actin forms a cytoplasmic network of microfilaments, the part of the cytoskeleton, in the cytoplasm of eukaryotic cells. The presence of nuclear actin was elusive for a very long time. Now, there is a very strong evidence that actin plays many important roles in the nucleus. Here, we discuss the recently discovered functions of the nuclear actin pool. Actin does not have nuclear localization signal (NLS), so its import to the nucleus is facilitated by the NLS-containing proteins. Nuclear actin plays a role in the maintenance of the nuclear structure and the nuclear envelope breakdown. It is also involved in chromatin remodeling, and chromatin and nucleosome movement necessary for DNA recombination, repair, and the initiation of transcription. It also binds RNA polymerases, promoting transcription. Because of the multifaceted role of nuclear actin, the future challenge will be to further define its functions in various cellular processes and diseases. Abstract Actin is one of the most abundant proteins in eukaryotic cells. There are different pools of nuclear actin often undetectable by conventional staining and commercial antibodies used to identify cytoplasmic actin. With the development of more sophisticated imaging and analytical techniques, it became clear that nuclear actin plays a crucial role in shaping the chromatin, genomic, and epigenetic landscape, transcriptional regulation, and DNA repair. This multifaceted role of nuclear actin is not only important for the function of the individual cell but also for the establishment of cell fate, and tissue and organ differentiation during development. Moreover, the changes in the nuclear, chromatin, and genomic architecture are preamble to various diseases. Here, we discuss some of the newly described functions of nuclear actin.
Collapse
|
11
|
Expósito-Serrano M, Sánchez-Molina A, Gallardo P, Salas-Pino S, Daga RR. Selective Nuclear Pore Complex Removal Drives Nuclear Envelope Division in Fission Yeast. Curr Biol 2020; 30:3212-3222.e2. [DOI: 10.1016/j.cub.2020.05.066] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/24/2020] [Accepted: 05/20/2020] [Indexed: 01/09/2023]
|
12
|
Rahman M, Chang IY, Harned A, Maheshwari R, Amoateng K, Narayan K, Cohen-Fix O. C. elegans pronuclei fuse after fertilization through a novel membrane structure. J Cell Biol 2020; 219:e201909137. [PMID: 31834351 PMCID: PMC7041684 DOI: 10.1083/jcb.201909137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/13/2022] Open
Abstract
After fertilization, parental genomes are enclosed in two separate pronuclei. In Caenorhabditis elegans, and possibly other organisms, when the two pronuclei first meet, the parental genomes are separated by four pronuclear membranes. To understand how these membranes are breached to allow merging of parental genomes we used focused ion beam scanning electron microscopy (FIB-SEM) to study the architecture of the pronuclear membranes at nanometer-scale resolution. We find that at metaphase, the interface between the two pronuclei is composed of two membranes perforated by fenestrations ranging from tens of nanometers to several microns in diameter. The parental chromosomes come in contact through one of the large fenestrations. Surrounding this fenestrated, two-membrane region is a novel membrane structure, a three-way sheet junction, where the four membranes of the two pronuclei fuse and become two. In the plk-1 mutant, where parental genomes fail to merge, these junctions are absent, suggesting that three-way sheet junctions are needed for formation of a diploid genome.
Collapse
Affiliation(s)
- Mohammad Rahman
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Irene Y. Chang
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Adam Harned
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Richa Maheshwari
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kwabena Amoateng
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| | - Kedar Narayan
- Center for Molecular Microscopy, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD
- Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, MD
| | - Orna Cohen-Fix
- The Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Disease, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Wesolowska N, Avilov I, Machado P, Geiss C, Kondo H, Mori M, Lenart P. Actin assembly ruptures the nuclear envelope by prying the lamina away from nuclear pores and nuclear membranes in starfish oocytes. eLife 2020; 9:49774. [PMID: 31989921 PMCID: PMC7028370 DOI: 10.7554/elife.49774] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/24/2020] [Indexed: 01/04/2023] Open
Abstract
The nucleus of oocytes (germinal vesicle) is unusually large and its nuclear envelope (NE) is densely packed with nuclear pore complexes (NPCs) that are stockpiled for embryonic development. We showed that breakdown of this specialized NE is mediated by an Arp2/3-nucleated F-actin ‘shell’ in starfish oocytes, in contrast to microtubule-driven tearing in mammalian fibroblasts. Here, we address the mechanism of F-actin-driven NE rupture by correlated live-cell, super-resolution and electron microscopy. We show that actin is nucleated within the lamina, sprouting filopodia-like spikes towards the nuclear membranes. These F-actin spikes protrude pore-free nuclear membranes, whereas the adjoining stretches of membrane accumulate NPCs that are associated with the still-intact lamina. Packed NPCs sort into a distinct membrane network, while breaks appear in ER-like, pore-free regions. We reveal a new function for actin-mediated membrane shaping in nuclear rupture that is likely to have implications in other contexts, such as nuclear rupture observed in cancer cells.
Collapse
Affiliation(s)
- Natalia Wesolowska
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Ivan Avilov
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Pedro Machado
- Electron Microscopy Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Celina Geiss
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Hiroshi Kondo
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Masashi Mori
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Peter Lenart
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany.,Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
14
|
Wild P, Leisinger S, de Oliveira AP, Doehner J, Schraner EM, Fraevel C, Ackermann M, Kaech A. Nuclear envelope impairment is facilitated by the herpes simplex virus 1 Us3 kinase. F1000Res 2019; 8:198. [PMID: 31249678 PMCID: PMC6584977 DOI: 10.12688/f1000research.17802.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background: Capsids of herpes simplex virus 1 (HSV-1) are assembled in the nucleus, translocated either to the perinuclear space by budding at the inner nuclear membrane acquiring tegument and envelope, or released to the cytosol in a "naked" state via impaired nuclear pores that finally results in impairment of the nuclear envelope. The Us3 gene encodes a protein acting as a kinase, which is responsible for phosphorylation of numerous viral and cellular substrates. The Us3 kinase plays a crucial role in nucleus to cytoplasm capsid translocation. We thus investigate the nuclear surface in order to evaluate the significance of Us3 in maintenance of the nuclear envelope during HSV-1 infection. Methods: To address alterations of the nuclear envelope and capsid nucleus to cytoplasm translocation related to the function of the Us3 kinase we investigated cells infected with wild type HSV-1 or the Us3 deletion mutant R7041(∆Us3) by transmission electron microscopy, focused ion-beam electron scanning microscopy, cryo-field emission scanning electron microscopy, confocal super resolution light microscopy, and polyacrylamide gel electrophoresis. Results: Confocal super resolution microscopy and cryo-field emission scanning electron microscopy revealed decrement in pore numbers in infected cells. Number and degree of pore impairment was significantly reduced after infection with R7041(∆Us3) compared to infection with wild type HSV-1. The nuclear surface was significantly enlarged in cells infected with any of the viruses. Morphometric analysis revealed that additional nuclear membranes were produced forming multiple folds and caveolae, in which virions accumulated as documented by three-dimensional reconstruction after ion-beam scanning electron microscopy. Finally, significantly more R7041(∆Us3) capsids were retained in the nucleus than wild-type capsids whereas the number of R7041(∆Us3) capsids in the cytosol was significantly lower. Conclusions: The data indicate that Us3 kinase is involved in facilitation of nuclear pore impairment and, concomitantly, in capsid release through impaired nuclear envelope.
Collapse
Affiliation(s)
- Peter Wild
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | - Sabine Leisinger
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
| | | | - Jana Doehner
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| | - Elisabeth M. Schraner
- Department of Veterinary Anatomy, University of Zuerich, Zürich, CH-8057, Switzerland
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Cornel Fraevel
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Mathias Ackermann
- Instute of Virology, University of Zürich, Zürich, ZH-8057, Switzerland
| | - Andres Kaech
- Center for Microcopy and Image Analysis, Universit of Zürich, Zürich, CH-8057, Switzerland
| |
Collapse
|
15
|
Penfield L, Wysolmerski B, Mauro M, Farhadifar R, Martinez MA, Biggs R, Wu HY, Broberg C, Needleman D, Bahmanyar S. Dynein pulling forces counteract lamin-mediated nuclear stability during nuclear envelope repair. Mol Biol Cell 2018; 29:852-868. [PMID: 29386297 PMCID: PMC5905298 DOI: 10.1091/mbc.e17-06-0374] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Transient nuclear envelope (NE) ruptures in the Caenorhabditis elegans zygote are caused by a weakened nuclear lamina during nuclear positioning. Dynein-pulling forces enhance the severity of ruptures, while lamin restricts nucleocytoplasmic mixing and allows stable NE repair. This work is the first mechanistic analysis of NE rupture and repair in an organism. Recent work done exclusively in tissue culture cells revealed that the nuclear envelope (NE) ruptures and repairs in interphase. The duration of NE ruptures depends on lamins; however, the underlying mechanisms and relevance to in vivo events are not known. Here, we use the Caenorhabditis elegans zygote to analyze lamin’s role in NE rupture and repair in vivo. Transient NE ruptures and subsequent NE collapse are induced by weaknesses in the nuclear lamina caused by expression of an engineered hypomorphic C. elegans lamin allele. Dynein-generated forces that position nuclei enhance the severity of transient NE ruptures and cause NE collapse. Reduction of dynein forces allows the weakened lamin network to restrict nucleo–cytoplasmic mixing and support stable NE recovery. Surprisingly, the high incidence of transient NE ruptures does not contribute to embryonic lethality, which is instead correlated with stochastic chromosome scattering resulting from premature NE collapse, suggesting that C. elegans tolerates transient losses of NE compartmentalization during early embryogenesis. In sum, we demonstrate that lamin counteracts dynein forces to promote stable NE repair and prevent catastrophic NE collapse, and thus provide the first mechanistic analysis of NE rupture and repair in an organismal context.
Collapse
Affiliation(s)
- Lauren Penfield
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Brian Wysolmerski
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Michael Mauro
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Reza Farhadifar
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Michael A Martinez
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Ronald Biggs
- Department of Cellular & Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA 92093
| | - Hai-Yin Wu
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Curtis Broberg
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| | - Daniel Needleman
- Department of Molecular and Cellular Biology, School of Engineering and Applied Sciences, FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138
| | - Shirin Bahmanyar
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT 06520
| |
Collapse
|
16
|
Bischof J, Brand CA, Somogyi K, Májer I, Thome S, Mori M, Schwarz US, Lénárt P. A cdk1 gradient guides surface contraction waves in oocytes. Nat Commun 2017; 8:849. [PMID: 29021609 PMCID: PMC5636809 DOI: 10.1038/s41467-017-00979-6] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 08/09/2017] [Indexed: 11/29/2022] Open
Abstract
Surface contraction waves (SCWs) in oocytes and embryos lead to large-scale shape changes coupled to cell cycle transitions and are spatially coordinated with the cell axis. Here, we show that SCWs in the starfish oocyte are generated by a traveling band of myosin II-driven cortical contractility. At the front of the band, contractility is activated by removal of cdk1 inhibition of the RhoA/RhoA kinase/myosin II signaling module, while at the rear, contractility is switched off by negative feedback originating downstream of RhoA kinase. The SCW's directionality and speed are controlled by a spatiotemporal gradient of cdk1-cyclinB. This gradient is formed by the release of cdk1-cyclinB from the asymmetrically located nucleus, and progressive degradation of cyclinB. By combining quantitative imaging, biochemical and mechanical perturbations with mathematical modeling, we demonstrate that the SCWs result from the spatiotemporal integration of two conserved regulatory modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.Surface contraction waves (SCWs) are prominent shape changes coupled to cell cycle transitions in oocytes. Here the authors show that SCWs are patterned by the spatiotemporal integration of two conserved modules, cdk1-cyclinB for cell cycle regulation and RhoA/Rok/NMYII for actomyosin contractility.
Collapse
Affiliation(s)
- Johanna Bischof
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Christoph A Brand
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Kálmán Somogyi
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Imre Májer
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Sarah Thome
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Masashi Mori
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | - Ulrich S Schwarz
- Institute for Theoretical Physics and BioQuant, Heidelberg University, Philosophenweg 19, 69120, Heidelberg, Germany
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
| |
Collapse
|
17
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/29/2017] [Indexed: 09/29/2023] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus before they are translocated to the perinuclear space by budding, acquiring tegument and envelope, or releasing to the cytoplasm in a "naked" state via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" are essential steps for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of an alternative exit route. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols that lead to improved spatial and temporal resolution. Results: Scanning electron microscopy showed the Golgi complex as a compact entity in a juxtanuclear position covered by a membrane on the cis face. Transmission electron microscopy revealed that Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data strongly suggest that virions are intraluminally transported from the perinuclear space via Golgi complex-endoplasmic reticulum transitions into Golgi cisternae for packaging into transport vacuoles. Furthermore, virions derived by budding at nuclear membranes are infective as has been shown for HSV-1 Us3 deletion mutants, which almost entirely accumulate in the perinuclear space. Therefore, de-envelopment followed by re-envelopment is not essential for production of infective progeny virus.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
18
|
Wild P, Kaech A, Schraner EM, Walser L, Ackermann M. Endoplasmic reticulum-to-Golgi transitions upon herpes virus infection. F1000Res 2017; 6:1804. [PMID: 30135710 PMCID: PMC6080407 DOI: 10.12688/f1000research.12252.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Herpesvirus capsids are assembled in the nucleus, translocated to the perinuclear space by budding, acquiring tegument and envelope, or released to the cytoplasm via impaired nuclear envelope. One model proposes that envelopment, "de-envelopment" and "re-envelopment" is essential for production of infectious virus. Glycoproteins gB/gH were reported to be essential for de-envelopment, by fusion of the "primary" envelope with the outer nuclear membrane. Yet, a high proportion of enveloped virions generated from genomes with deleted gB/gH were found in the cytoplasm and extracellular space, suggesting the existence of alternative exit routes. Methods: We investigated the relatedness between the nuclear envelope and membranes of the endoplasmic reticulum and Golgi complex, in cells infected with either herpes simplex virus 1 (HSV-1) or a Us3 deletion mutant thereof, or with bovine herpesvirus 1 (BoHV-1) by transmission and scanning electron microscopy, employing freezing technique protocols. Results: The Golgi complex is a compact entity in a juxtanuclear position covered by a membrane on the cis face. Golgi membranes merge with membranes of the endoplasmic reticulum forming an entity with the perinuclear space. All compartments contained enveloped virions. After treatment with brefeldin A, HSV-1 virions aggregated in the perinuclear space and endoplasmic reticulum, while infectious progeny virus was still produced. Conclusions: The data suggest that virions derived by budding at nuclear membranes are intraluminally transported from the perinuclear space via Golgi -endoplasmic reticulum transitions into Golgi cisternae for packaging. Virions derived by budding at nuclear membranes are infective like Us3 deletion mutants, which accumulate in the perinuclear space. Therefore, i) de-envelopment followed by re-envelopment is not essential for production of infective progeny virus, ii) the process taking place at the outer nuclear membrane is budding not fusion, and iii) naked capsids gain access to the cytoplasmic matrix via impaired nuclear envelope as reported earlier.
Collapse
Affiliation(s)
- Peter Wild
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Andres Kaech
- Center for Microscopy and Image Analysis, Zürich, Switzerland
| | - Elisabeth M. Schraner
- Institute of Veterinary Anatomy, Zürich, Switzerland
- Institute of Virology, Zürich, Switzerland
| | - Ladina Walser
- Institute of Veterinary Anatomy, Zürich, Switzerland
| | | |
Collapse
|
19
|
Teves SS, An L, Hansen AS, Xie L, Darzacq X, Tjian R. A dynamic mode of mitotic bookmarking by transcription factors. eLife 2016; 5. [PMID: 27855781 PMCID: PMC5156526 DOI: 10.7554/elife.22280] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/16/2016] [Indexed: 12/27/2022] Open
Abstract
During mitosis, transcription is shut off, chromatin condenses, and most transcription factors (TFs) are reported to be excluded from chromosomes. How do daughter cells re-establish the original transcription program? Recent discoveries that a select set of TFs remain bound on mitotic chromosomes suggest a potential mechanism for maintaining transcriptional programs through the cell cycle termed mitotic bookmarking. Here we report instead that many TFs remain associated with chromosomes in mouse embryonic stem cells, and that the exclusion previously described is largely a fixation artifact. In particular, most TFs we tested are significantly enriched on mitotic chromosomes. Studies with Sox2 reveal that this mitotic interaction is more dynamic than in interphase and is facilitated by both DNA binding and nuclear import. Furthermore, this dynamic mode results from lack of transcriptional activation rather than decreased accessibility of underlying DNA sequences in mitosis. The nature of the cross-linking artifact prompts careful re-examination of the role of TFs in mitotic bookmarking. DOI:http://dx.doi.org/10.7554/eLife.22280.001 A kidney cell functions differently from a skin cell despite the fact that all the cells in one organism share the same DNA. This is because not all of the genes encoded within the DNA are active in the cells. Instead, cells can turn on just those genes that are specific to how that cell type works. One way that cells can regulate their genes is by using proteins called transcription factors that can bind to DNA to turn nearby genes on and off. When cells divide to form new cells, the DNA is condensed and gene activity is turned off. However, each dividing cell also has to ‘remember’ the program of genes that specifies its identity. After division, how do the cells know which genes to turn on and which ones to keep off? It was thought that the transcription factors attached to the DNA were all detached from it during cell division. Through studies in mouse embryonic stem cells, Teves et al. now show that this finding is largely an artifact of the methods used to study the process. In fact, many transcription factors still bind to and interact with DNA during cell division. This provides an efficient way for the newly formed cells to quickly reset to the pattern of gene activity appropriate for their cell type. Having found that many key transcription factors are still bound to DNA during cell division, the next challenge is to find out what role this binding plays in allowing cells to ‘remember’ their identity. DOI:http://dx.doi.org/10.7554/eLife.22280.002
Collapse
Affiliation(s)
- Sheila S Teves
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Luye An
- Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Anders S Hansen
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Liangqi Xie
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Xavier Darzacq
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States
| | - Robert Tjian
- Department of Molecular and Cell Biology, University of California, Berkeley, United States.,CIRM Center of Excellence, University of California, Berkeley, Berkeley, United States.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
20
|
Hayashi D, Tanabe K, Katsube H, Inoue YH. B-type nuclear lamin and the nuclear pore complex Nup107-160 influences maintenance of the spindle envelope required for cytokinesis in Drosophila male meiosis. Biol Open 2016; 5:1011-21. [PMID: 27402967 PMCID: PMC5004606 DOI: 10.1242/bio.017566] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In higher eukaryotes, nuclear envelope (NE) disassembly allows chromatin to condense and spindle microtubules to access kinetochores. The nuclear lamina, which strengthens the NE, is composed of a polymer meshwork made of A- and B-type lamins. We found that the B-type lamin (Lam) is not fully disassembled and continues to localize along the spindle envelope structure during Drosophila male meiosis I, while the A-type lamin (LamC) is completely dispersed throughout the cytoplasm. Among the nuclear pore complex proteins, Nup107 co-localized with Lam during this meiotic division. Surprisingly, Lam depletion resulted in a higher frequency of cytokinesis failure in male meiosis. We also observed the similar meiotic phenotype in Nup107-depleted cells. Abnormal localization of Lam was found in the Nup-depleted cells at premeiotic and meiotic stages. The central spindle microtubules became abnormal and recruitment of a contractile ring component to the cleavage sites was disrupted in Lam-depleted cells and Nup107-depleted cells. Therefore, we speculate that both proteins are required for a reinforcement of the spindle envelope, which supports the formation of central spindle microtubules essential for cytokinesis in Drosophila male meiosis.
Collapse
Affiliation(s)
- Daisuke Hayashi
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Karin Tanabe
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Hiroka Katsube
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| | - Yoshihiro H Inoue
- Insect Biomedical Research Center, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-0962, Japan
| |
Collapse
|
21
|
Kyogoku H, Kitajima TS, Miyano T. Nucleolus precursor body (NPB): a distinct structure in mammalian oocytes and zygotes. Nucleus 2015; 5:493-8. [PMID: 25495074 DOI: 10.4161/19491034.2014.990858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Nucleoli in mammalian oocytes and zygotes, sometimes referred to as nucleolus precursor bodies (NPBs), are compact and morphologically different from nucleoli in somatic cells. We applied a unique NPB analyzing method "enucleolation" technique to zygotes to remove the NPBs. It has been reported that oocyte NPBs are essential for embryonic development; in their absence, the oocytes complete maturation and can be fertilized, but no nucleoli are formed in the zygotes and embryos, leading to developmental failure. However, we found that when NPBs were removed from zygotes, the zygotes developed successfully to live-born pups. These results indicated that oocyte NPBs are essential for embryonic development, but zygote NPBs are not. In addition, the enucleolated zygotes formed somatic-type nucleoli during early embryonic development, demonstrating that somatic-type nucleoli do not originate from zygote NPBs. We summarize our recent investigation on NPBs, and provide additional comments and findings.
Collapse
Affiliation(s)
- Hirohisa Kyogoku
- a Laboratory for Chromosome Segregation ; Center for Developmental Biology ; RIKEN , Kobe , Japan
| | | | | |
Collapse
|
22
|
Ma Y, Kanakousaki K, Buttitta L. How the cell cycle impacts chromatin architecture and influences cell fate. Front Genet 2015; 6:19. [PMID: 25691891 PMCID: PMC4315090 DOI: 10.3389/fgene.2015.00019] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 01/14/2015] [Indexed: 01/17/2023] Open
Abstract
Since the earliest observations of cells undergoing mitosis, it has been clear that there is an intimate relationship between the cell cycle and nuclear chromatin architecture. The nuclear envelope and chromatin undergo robust assembly and disassembly during the cell cycle, and transcriptional and post-transcriptional regulation of histone biogenesis and chromatin modification is controlled in a cell cycle-dependent manner. Chromatin binding proteins and chromatin modifications in turn influence the expression of critical cell cycle regulators, the accessibility of origins for DNA replication, DNA repair, and cell fate. In this review we aim to provide an integrated discussion of how the cell cycle machinery impacts nuclear architecture and vice-versa. We highlight recent advances in understanding cell cycle-dependent histone biogenesis and histone modification deposition, how cell cycle regulators control histone modifier activities, the contribution of chromatin modifications to origin firing for DNA replication, and newly identified roles for nucleoporins in regulating cell cycle gene expression, gene expression memory and differentiation. We close with a discussion of how cell cycle status may impact chromatin to influence cell fate decisions, under normal contexts of differentiation as well as in instances of cell fate reprogramming.
Collapse
Affiliation(s)
- Yiqin Ma
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Kiriaki Kanakousaki
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| | - Laura Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan , Ann Arbor, MI, USA
| |
Collapse
|
23
|
Mori M, Somogyi K, Kondo H, Monnier N, Falk H, Machado P, Bathe M, Nédélec F, Lénárt P. An Arp2/3 Nucleated F-Actin Shell Fragments Nuclear Membranes at Nuclear Envelope Breakdown in Starfish Oocytes. Curr Biol 2014; 24:1421-1428. [DOI: 10.1016/j.cub.2014.05.019] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/07/2014] [Accepted: 05/08/2014] [Indexed: 11/26/2022]
|
24
|
Aoki K, Shiwa Y, Takada H, Yoshikawa H, Niki H. Regulation of nuclear envelope dynamics via APC/C is necessary for the progression of semi-open mitosis inSchizosaccharomyces japonicus. Genes Cells 2013; 18:733-52. [DOI: 10.1111/gtc.12072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 05/07/2013] [Indexed: 01/01/2023]
Affiliation(s)
| | - Yuh Shiwa
- Genome Research Center; NODAI Research Institute; Tokyo University of Agriculture; 1-1-1 Sakuragaoka; Setagaya-ku; Tokyo; 156-8502; Japan
| | - Hiraku Takada
- Department of Bioscience; Tokyo University of Agriculture; 1-1-1 Sakuragaoka; Setagaya-ku; Tokyo; 156-8502; Japan
| | | | | |
Collapse
|
25
|
Hayashi H, Kimura K, Kimura A. Localized accumulation of tubulin during semi-open mitosis in the Caenorhabditis elegans embryo. Mol Biol Cell 2012; 23:1688-99. [PMID: 22398724 PMCID: PMC3338436 DOI: 10.1091/mbc.e11-09-0815] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The assembly of microtubules inside the cell is controlled both spatially and temporally. During mitosis, microtubule assembly must be activated locally at the nascent spindle region for mitotic spindle assembly to occur efficiently. In this paper, we report that mitotic spindle components, such as free tubulin subunits, accumulated in the nascent spindle region, independent of spindle formation in the Caenorhabditis elegans embryo. This accumulation coincided with nuclear envelope permeabilization, suggesting that permeabilization might trigger the accumulation. When permeabilization was induced earlier by knockdown of lamin, tubulin also accumulated earlier. The boundaries of the region of accumulation coincided with the remnant nuclear envelope, which remains after nuclear envelope breakdown in cells that undergo semi-open mitosis, such as those of C. elegans. Ran, a small GTPase protein, was required for tubulin accumulation. Fluorescence recovery after photobleaching analysis revealed that the accumulation was accompanied by an increase in the immobile fraction of free tubulin inside the remnant nuclear envelope. We propose that this newly identified mechanism of accumulation of free tubulin-and probably of other molecules-at the nascent spindle region contributes to efficient assembly of the mitotic spindle in the C. elegans embryo.
Collapse
Affiliation(s)
- Hanako Hayashi
- Department of Genetics (Sokendai-Mishima), School of Life Science, Graduate University for Advanced Studies (Sokendai), Yata 1111, Mishima, Shizuoka 411-8540, Japan
| | | | | |
Collapse
|
26
|
Cook JL, Singh A, DeHaro D, Alam J, Re RN. Expression of a naturally occurring angiotensin AT(1) receptor cleavage fragment elicits caspase-activation and apoptosis. Am J Physiol Cell Physiol 2011; 301:C1175-85. [PMID: 21813711 DOI: 10.1152/ajpcell.00040.2011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Several transmembrane receptors are documented to accumulate in nuclei, some as holoreceptors and others as cleaved receptor products. Our prior studies indicate that a population of the 7-transmembrane angiotensin type-1 receptor (AT(1)R) is cleaved in a ligand-augmented manner after which the cytoplasmic, carboxy-terminal cleavage fragment (CF) traffics to the nucleus. In the present report, we determine the precise cleavage site within the AT(1)R by mass spectrometry and Edman sequencing. Cleavage occurs between Leu(305) and Gly(306) at the junction of the seventh transmembrane domain and the intracellular cytoplasmic carboxy-terminal domain. To evaluate the function of the CF distinct from the holoreceptor, we generated a construct encoding the CF as an in-frame yellow fluorescent protein fusion. The CF accumulates in nuclei and induces apoptosis in CHO-K1 cells, rat aortic smooth muscle cells (RASMCs), MCF-7 human breast adenocarcinoma cells, and H9c2 rat cardiomyoblasts. All cell types show nuclear fragmentation and disintegration, as well as evidence for phosphotidylserine displacement in the plasma membrane and activated caspases. RASMCs specifically showed a 5.2-fold increase (P < 0.001) in CF-induced active caspases compared with control and a 7.2-fold increase (P < 0.001) in cleaved caspase-3 (Asp174). Poly(ADP-ribose)polymerase was upregulated 4.8-fold (P < 0.001) in CF expressing cardiomyoblasts and colocalized with terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL). CF expression also induces DNA laddering, the gold-standard for apoptosis in all cell types studied. CF-induced apoptosis, therefore, appears to be a general phenomenon as it is observed in multiple cell types including smooth muscle cells and cardiomyoblasts.
Collapse
Affiliation(s)
- Julia L Cook
- Laboratory of Molecular Genetics, Department of Research, Ochsner Clinic Foundation, New Orleans, LA 70121, USA.
| | | | | | | | | |
Collapse
|
27
|
Aoki K, Hayashi H, Furuya K, Sato M, Takagi T, Osumi M, Kimura A, Niki H. Breakage of the nuclear envelope by an extending mitotic nucleus occurs during anaphase in Schizosaccharomyces japonicus. Genes Cells 2011; 16:911-26. [DOI: 10.1111/j.1365-2443.2011.01540.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
28
|
Oda Y, Fukuda H. Dynamics of Arabidopsis SUN proteins during mitosis and their involvement in nuclear shaping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:629-41. [PMID: 21294795 DOI: 10.1111/j.1365-313x.2011.04523.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The nuclear envelope (NE) is a highly active structure with a specific set of nuclear envelope proteins acting in diverse cellular events. SUN proteins are conserved NE proteins among eukaryotes. Although they form nucleocytoplasmic linkage complexes in metazoan cells, their functions in the plant kingdom are unknown. To understand the function of plant SUN proteins, in this study we first investigated the dynamics of Arabidopsis SUN proteins during mitosis in Arabidopsis roots and cultured cells. For this purpose, we performed dual and triple visualization of these proteins, microtubules, chromosomes, and endoplasmic reticulum (ER) in cultured cells, and observed their dynamics during mitosis using a high-speed spinning disk confocal microscope. The localizations of SUN proteins changed dynamically during mitosis, tightly coupled with NE dynamics. Moreover, NE re-formation marked with SUN proteins is temporally and spatially coordinated with plant-specific microtubule structures such as phragmoplasts. Finally, the analysis with gene knockdowns of AtSUN1 and AtSUN2 indicated that they are necessary for the maintenance and/or formation of polarized nuclear shape in root hairs. These results suggest that Arabidopsis SUN proteins function in the maintenance or formation of nuclear shape as components of the nucleocytoskeletal complex.
Collapse
Affiliation(s)
- Yoshihisa Oda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
29
|
Phosphorylation of Nup98 by multiple kinases is crucial for NPC disassembly during mitotic entry. Cell 2011; 144:539-50. [PMID: 21335236 DOI: 10.1016/j.cell.2011.01.012] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 11/16/2010] [Accepted: 12/16/2010] [Indexed: 12/31/2022]
Abstract
Disassembly of nuclear pore complexes (NPCs) is a decisive event during mitotic entry in cells undergoing open mitosis, yet the molecular mechanisms underlying NPC disassembly are unknown. Using chemical inhibition and depletion experiments we show that NPC disassembly is a phosphorylation-driven process, dependent on CDK1 activity and supported by members of the NIMA-related kinase (Nek) family. We identify phosphorylation of the GLFG-repeat nucleoporin Nup98 as an important step in mitotic NPC disassembly. Mitotic hyperphosphorylation of Nup98 is accomplished by multiple kinases, including CDK1 and Neks. Nuclei carrying a phosphodeficient mutant of Nup98 undergo nuclear envelope breakdown slowly, such that both the dissociation of Nup98 from NPCs and the permeabilization of the nuclear envelope are delayed. Together, our data provide evidence for a phosphorylation-dependent mechanism underlying disintegration of NPCs during prophase. Moreover, we identify mitotic phosphorylation of Nup98 as a rate-limiting step in mitotic NPC disassembly.
Collapse
|
30
|
Fabrini R, Bocedi A, Pallottini V, Canuti L, De Canio M, Urbani A, Marzano V, Cornetta T, Stano P, Giovanetti A, Stella L, Canini A, Federici G, Ricci G. Nuclear shield: a multi-enzyme task-force for nucleus protection. PLoS One 2010; 5:e14125. [PMID: 21170318 PMCID: PMC3000810 DOI: 10.1371/journal.pone.0014125] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 11/01/2010] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND In eukaryotic cells the nuclear envelope isolates and protects DNA from molecules that could damage its structure or interfere with its processing. Moreover, selected protection enzymes and vitamins act as efficient guardians against toxic compounds both in the nucleoplasm and in the cytosol. The observation that a cytosolic detoxifying and antioxidant enzyme i.e. glutathione transferase is accumulated in the perinuclear region of the rat hepatocytes suggests that other unrecognized modalities of nuclear protection may exist. Here we show evidence for the existence of a safeguard enzyme machinery formed by an hyper-crowding of cationic enzymes and proteins encompassing the nuclear membrane and promoted by electrostatic interactions. METHODOLOGY/PRINCIPAL FINDINGS Electron spectroscopic imaging, zeta potential measurements, isoelectrofocusing, comet assay and mass spectrometry have been used to characterize this surprising structure that is present in the cells of all rat tissues examined (liver, kidney, heart, lung and brain), and that behaves as a "nuclear shield". In hepatocytes, this hyper-crowding structure is about 300 nm thick, it is mainly formed by cationic enzymes and the local concentration of key protection enzymes, such as glutathione transferase, catalase and glutathione peroxidase is up to seven times higher than in the cytosol. The catalytic activity of these enzymes, when packed in the shield, is not modified and their relative concentrations vary remarkably in different tissues. Removal of this protective shield renders chromosomes more sensitive to damage by oxidative stress. Specific nuclear proteins anchored to the outer nuclear envelope are likely involved in the shield formation and stabilization. CONCLUSIONS/SIGNIFICANCE The characterization of this previously unrecognized nuclear shield in different tissues opens a new interesting scenario for physiological and protection processes in eukaryotic cells. Selection and accumulation of protection enzymes near sensitive targets represents a new safeguard modality which deeply differs from the adaptive response which is based on expression of specific enzymes.
Collapse
Affiliation(s)
- Raffaele Fabrini
- Department of Chemical Sciences and Technologies, University of Rome Tor
Vergata, Rome, Italy
| | - Alessio Bocedi
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
| | | | - Lorena Canuti
- Department of Biology, University of Rome Tor Vergata, Rome,
Italy
| | - Michele De Canio
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
| | - Andrea Urbani
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
- S. Lucia Research Institute IRCCS, Rome, Italy
| | - Valeria Marzano
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
- S. Lucia Research Institute IRCCS, Rome, Italy
| | | | - Pasquale Stano
- Department of Biology, University of Roma Tre, Rome, Italy
| | - Anna Giovanetti
- Institute of Radiation Protection, ENEA-CR Casaccia, Rome,
Italy
| | - Lorenzo Stella
- Department of Chemical Sciences and Technologies, University of Rome Tor
Vergata, Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome Tor Vergata, Rome,
Italy
| | - Giorgio Federici
- Department of Internal Medicine, University of Rome Tor Vergata, Rome,
Italy
| | - Giorgio Ricci
- Department of Chemical Sciences and Technologies, University of Rome Tor
Vergata, Rome, Italy
| |
Collapse
|
31
|
Abstract
The nuclear envelope (NE) is a highly regulated membrane barrier that separates the nucleus from the cytoplasm in eukaryotic cells. It contains a large number of different proteins that have been implicated in chromatin organization and gene regulation. Although the nuclear membrane enables complex levels of gene expression, it also poses a challenge when it comes to cell division. To allow access of the mitotic spindle to chromatin, the nucleus of metazoans must completely disassemble during mitosis, generating the need to re-establish the nuclear compartment at the end of each cell division. Here, I summarize our current understanding of the dynamic remodeling of the NE during the cell cycle.
Collapse
Affiliation(s)
- Martin W Hetzer
- Salk Institute for Biological Studies, Molecular and Cell Biology Laboratory, La Jolla, California 92037, USA.
| |
Collapse
|
32
|
Arnault E, Doussau M, Pesty A, Lefèvre B, Courtot AM. Review: Lamin A/C, caspase-6, and chromatin configuration during meiosis resumption in the mouse oocyte. Reprod Sci 2010; 17:102-15. [PMID: 20130288 DOI: 10.1177/1933719109354364] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
After in vitro maturation (IVM), isolation of the healthiest oocytes is essential for successful in vitro fertilization. As germinal vesicle (GV) oocytes resume meiosis through healthy or apoptotic pathways without discernable morphological criteria, we checked for an apoptotic element acting at the nucleus level. We hypothesized that caspase-6 with its corresponding substrate, lamin A/C, could be a potential target candidate, because caspase-6 is the only functional caspase for lamin A/C. We used immunohistochemistry methods, Western blots, and a specific caspase-6 inhibitor to determine the presence of lamin A/C and caspase-6 during oogenesis and in isolated oocytes. Our results demonstrated that these proteins were always present and that their distributions were related to oocyte maturity, determined by chromatin configuration and oocyte diameter. Caspase-6 inhibition slowed meiosis resumption suggesting the involvement of caspase-6 in the oocyte apoptotic pathway. Lamin A/C and caspase-6 could be valuable tools in the knowledge of oocyte in vitro destiny.
Collapse
Affiliation(s)
- Emilie Arnault
- UMR INSERM U566, CEA, DSV/IRCM/LGAG, Paris-7 University, Paris-11 University, F-92260, Fontenay-aux-Roses, France
| | | | | | | | | |
Collapse
|
33
|
Gorjánácz M, Mattaj IW. Lipin is required for efficient breakdown of the nuclear envelope in Caenorhabditis elegans. J Cell Sci 2009; 122:1963-9. [PMID: 19494125 DOI: 10.1242/jcs.044750] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The nuclear envelope (NE) is a double lipid bilayer that separates nucleus and cytoplasm. In metazoa, NE breakdown (NEBD) occurs during prophase and NE reformation around segregated chromatids occurs at anaphase-telophase. We identified Caenorhabditis elegans Lipin homologue (called Lpin-1) as an essential factor with roles in endoplasmic reticulum (ER) organization and NEBD. RNAi-mediated downregulation of Lpin-1 had no effect on timely entry into mitosis or on the early steps of NEBD, but Lpin-1 was required for disassembly of the nuclear lamina during late NEBD. This Lpin-1 requirement appears to be separable from the effect of Lpin-1 on the peripheral ER.
Collapse
Affiliation(s)
- Mátyás Gorjánácz
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117, Heidelberg, Germany
| | | |
Collapse
|
34
|
Orchestrating nuclear envelope disassembly and reassembly during mitosis. Nat Rev Mol Cell Biol 2009; 10:178-91. [PMID: 19234477 DOI: 10.1038/nrm2641] [Citation(s) in RCA: 365] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell division in eukaryotes requires extensive architectural changes of the nuclear envelope (NE) to ensure that segregated DNA is finally enclosed in a single cell nucleus in each daughter cell. Higher eukaryotic cells have evolved 'open' mitosis, the most extreme mechanism to solve the problem of nuclear division, in which the NE is initially completely disassembled and then reassembled in coordination with DNA segregation. Recent progress in the field has now started to uncover mechanistic and molecular details that underlie the changes in NE reorganization during open mitosis. These studies reveal a tight interplay between NE components and the mitotic machinery.
Collapse
|
35
|
Galy V, Antonin W, Jaedicke A, Sachse M, Santarella R, Haselmann U, Mattaj I. A role for gp210 in mitotic nuclear-envelope breakdown. J Cell Sci 2008; 121:317-28. [PMID: 18216332 DOI: 10.1242/jcs.022525] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytoplasmic and nuclear compartments of animal cells mix during mitosis on disassembly of the nuclear envelope (NE). NE breakdown (NEBD) involves the dispersion of the nuclear membranes and associated proteins, including nuclear pore complexes (NPCs) and the nuclear lamina. Among the approximately 30 NPC components known, few contain transmembrane domains. gp210 is a single-pass transmembrane glycoprotein of metazoan NPCs. We show that both RNAi-mediated depletion and mutation of Caenorhabditis elegans gp210 affect NEBD in early embryonic cells, preventing lamin depolymerization and leading to the formation of twinned nuclei after mitosis owing to physical interference with normal chromosome alignment and segregation. When added to in vitro assembled nuclei, antibodies specific for the C-terminal cytoplasmic tail of gp210 completely blocked NEBD. This treatment inhibited mitotic hyper-phosphorylation of gp210. Phosphorylation of gp210 is proposed to be mediated by cyclin-B-cdc2 and we show that depletion of cyclin B from C. elegans embryos also leads to a nuclear-twinning phenotype. In summary, we show that gp210 is important for efficient NPC disassembly and NEBD and suggest that phosphorylation of gp210 is an early event in NEBD that is required for lamin disassembly and other aspects of NEBD.
Collapse
Affiliation(s)
- Vincent Galy
- EMBL, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| | | | | | | | | | | | | |
Collapse
|
36
|
Theisen U, Straube A, Steinberg G. Dynamic rearrangement of nucleoporins during fungal "open" mitosis. Mol Biol Cell 2008; 19:1230-40. [PMID: 18172026 DOI: 10.1091/mbc.e07-02-0130] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mitosis in animals starts with the disassembly of the nuclear pore complexes and the breakdown of the nuclear envelope. In contrast to many fungi, the corn smut fungus Ustilago maydis also removes the nuclear envelope. Here, we report on the dynamic behavior of the nucleoporins Nup214, Pom152, Nup133, and Nup107 in this "open" fungal mitosis. In prophase, the nuclear pore complexes disassembled and Nup214 and Pom152 dispersed in the cytoplasm and in the endoplasmic reticulum, respectively. Nup107 and Nup133 initially spread throughout the cytoplasm, but in metaphase and early anaphase occurred on the chromosomes. In anaphase, the Nup107-subcomplex redistributed to the edge of the chromosome masses, where the new envelope was reconstituted. Subsequently, Nup214 and Pom152 are recruited to the nuclear pores and protein import starts. Recruitment of nucleoporins and protein import reached a steady state in G2 phase. Formation of the nuclear envelope and assembly of nuclear pores occurred in the absence of microtubules or F-actin, but not if both were disrupted. Thus, the basic principles of nuclear pore complex dynamics seem to be conserved in organisms displaying open mitosis.
Collapse
Affiliation(s)
- Ulrike Theisen
- Max-Planck-Institut für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | | | | |
Collapse
|
37
|
Vaillant DC, Paulin-Levasseur M. Evaluation of mammalian cell-free systems of nuclear disassembly and assembly. J Histochem Cytochem 2007; 56:157-73. [PMID: 17967934 DOI: 10.1369/jhc.7a7330.2007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mammalian cell-free systems are very useful for the biochemical and structural study of nuclear disassembly and assembly. Through experimental manipulations, the role of specific proteins in these processes can be studied. Recently, we intended to examine the involvement of integral and peripheral inner nuclear membrane proteins in nuclear disassembly and assembly. However, we could not achieve proper disassembly when isolated interphase HeLa nuclei were exposed to mitotic soluble extracts obtained from the same cell line and containing cyclin B1. Homogenates of synchronized mitotic HeLa cells left to reassemble their nuclei generated incomplete nuclear envelopes on chromatin masses. Digitonin-permeabilized mitotic cells also assembled incomplete nuclei, generating a lot of cytoplasmic inclusions of inner nuclear membrane proteins as an intermediate. These results were therefore used as a basis for a critical evaluation of mammalian cell-free systems. We present here evidence that cell synchronization itself can interfere with the progress of nuclear assembly, possibly by causing aberrant nuclear disassembly and/or by inducing the formation of an abnormal number of mitotic spindles.
Collapse
Affiliation(s)
- Dominique C Vaillant
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada K1N 6N5
| | | |
Collapse
|
38
|
Mühlhäusser P, Kutay U. An in vitro nuclear disassembly system reveals a role for the RanGTPase system and microtubule-dependent steps in nuclear envelope breakdown. ACTA ACUST UNITED AC 2007; 178:595-610. [PMID: 17698605 PMCID: PMC2064467 DOI: 10.1083/jcb.200703002] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
During prophase, vertebrate cells disassemble their nuclear envelope (NE) in the process of NE breakdown (NEBD). We have established an in vitro assay that uses mitotic Xenopus laevis egg extracts and semipermeabilized somatic cells bearing a green fluorescent protein–tagged NE marker to study the molecular requirements underlying the dynamic changes of the NE during NEBD by live microscopy. We applied our in vitro system to analyze the role of the Ran guanosine triphosphatase (GTPase) system in NEBD. Our study shows that high levels of RanGTP affect the dynamics of late steps of NEBD in vitro. Also, inhibition of RanGTP production by RanT24N blocks the dynamic rupture of nuclei, suggesting that the local generation of RanGTP around chromatin may serve as a spatial cue in NEBD. Furthermore, the microtubule-depolymerizing drug nocodazole interferes with late steps of nuclear disassembly in vitro. High resolution live cell imaging reveals that microtubules are involved in the completion of NEBD in vivo by facilitating the efficient removal of membranes from chromatin.
Collapse
|
39
|
Onischenko EA, Crafoord E, Hallberg E. Phosphomimetic mutation of the mitotically phosphorylated serine 1880 compromises the interaction of the transmembrane nucleoporin gp210 with the nuclear pore complex. Exp Cell Res 2007; 313:2744-51. [PMID: 17559836 DOI: 10.1016/j.yexcr.2007.05.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/12/2007] [Accepted: 05/14/2007] [Indexed: 12/01/2022]
Abstract
The nuclear pore complexes (NPCs) reversibly disassemble and reassemble during mitosis. Disassembly of the NPC is accompanied by phosphorylation of many nucleoporins although the function of this is not clear. It was previously shown that in the transmembrane nucleoporin gp210 a single serine residue at position 1880 is specifically phosphorylated during mitosis. Using amino acid substitution combined with live cell imaging, time-lapse microscopy and FRAP, we investigated the role of serine 1880 in binding of gp210 to the NPC in vivo. An alanine substitution mutant (S1880A) was significantly more dynamic at the NPC compared to the wild-type protein, suggesting that serine 1880 is important for binding of gp210 to the NPC. Moreover a glutamate substitution (S1880E) closely mimicking phosphorylated serine specifically interfered with incorporation of gp210 into the NPC and compromised its post-mitotic recruitment to the nuclear envelope of daughter nuclei. Our findings are consistent with the idea that mitotic phosphorylation acts to dissociate gp210 from the structural elements of the NPC.
Collapse
|
40
|
Török K. The Regulation of Nuclear Membrane Permeability by Ca2+ Signaling: A Tightly Regulated Pore or a Floodgate? ACTA ACUST UNITED AC 2007; 2007:pe24. [PMID: 17505078 DOI: 10.1126/stke.3862007pe24] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The nuclear pore complex functions both to separate and to connect the nucleus and the cytoplasm. Minute-to-minute changes in gene expression depend on rapid translocation of transcription factors and other regulatory proteins from the cytosol into the nucleus. However, a controversy exists as to whether cell signaling allows large molecules to enter the nucleus through tightly regulated facilitated transport or by the opening of a floodgate. A recent report suggesting that some hormones increase nuclear permeability through changes in intracellular Ca(2+) concentration has reignited this debate. Here, I consider both the basic permeability of the nuclear membrane under resting conditions and the effects of Ca(2+) on the permeability of the nuclear pore. I discuss facilitated transport through the nuclear pore complex, with particular attention to the nuclear transport of Ca(2+)-CaM signaling complexes. Finally, I weigh the arguments in favor of a generic increase in permeability versus stimulation of facilitated transport as possible mechanisms for mediating cell signaling to the nucleus.
Collapse
Affiliation(s)
- Katalin Török
- Department of Basic Medical Sciences, St George's, University of London, London, UK.
| |
Collapse
|
41
|
Portier N, Audhya A, Maddox PS, Green RA, Dammermann A, Desai A, Oegema K. A microtubule-independent role for centrosomes and aurora a in nuclear envelope breakdown. Dev Cell 2007; 12:515-29. [PMID: 17419991 PMCID: PMC2973840 DOI: 10.1016/j.devcel.2007.01.019] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2006] [Revised: 01/08/2007] [Accepted: 01/31/2007] [Indexed: 12/19/2022]
Abstract
Aurora A kinase localizes to centrosomes and is required for centrosome maturation and spindle assembly. Here we describe a microtubule-independent role for Aurora A and centrosomes in nuclear envelope breakdown (NEBD) during the first mitotic division of the C. elegans embryo. Aurora A depletion does not alter the onset or kinetics of chromosome condensation, but dramatically lengthens the interval between the completion of condensation and NEBD. Inhibiting centrosome assembly by other means also lengthens this interval, albeit to a lesser extent than Aurora A depletion. By contrast, centrosomally nucleated microtubules and the nuclear envelope-associated motor dynein are not required for timely NEBD. These results indicate that mitotic centrosomes generate a diffusible factor, which we propose is activated Aurora A, that promotes NEBD. A positive feedback loop, in which an Aurora A-dependent increase in centrosome size promotes Aurora A activation, may temporally couple centrosome maturation to NEBD during mitotic entry.
Collapse
Affiliation(s)
- Nathan Portier
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | | | | | - Rebecca A. Green
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Alexander Dammermann
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Arshad Desai
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| | - Karen Oegema
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093
| |
Collapse
|
42
|
|
43
|
Prodon F, Chenevert J, Sardet C. Establishment of animal–vegetal polarity during maturation in ascidian oocytes. Dev Biol 2006; 290:297-311. [PMID: 16405883 DOI: 10.1016/j.ydbio.2005.11.025] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/21/2005] [Accepted: 11/09/2005] [Indexed: 11/20/2022]
Abstract
Mature ascidian oocytes are arrested in metaphase of meiosis I (Met I) and display a pronounced animal-vegetal polarity: a small meiotic spindle lies beneath the animal pole, and two adjacent cortical and subcortical domains respectively rich in cortical endoplasmic reticulum and postplasmic/PEM RNAs (cER/mRNA domain) and mitochondria (myoplasm domain) line the equatorial and vegetal regions. Symmetry-breaking events triggered by the fertilizing sperm remodel this primary animal-vegetal (a-v) axis to establish the embryonic (D-V, A-P) axes. To understand how this radial a-v polarity of eggs is established, we have analyzed the distribution of mitochondria, mRNAs, microtubules and chromosomes in pre-vitellogenic, vitellogenic and post-vitellogenic Germinal Vesicle (GV) stage oocytes and in spontaneously maturing oocytes of the ascidian Ciona intestinalis. We show that myoplasm and postplasmic/PEM RNAs move into the oocyte periphery at the end of oogenesis and that polarization along the a-v axis occurs after maturation in several steps which take 3-4 h to be completed. First, the Germinal Vesicle breaks down, and a meiotic spindle forms in the center of the oocyte. Second, the meiotic spindle moves in an apparently random direction towards the cortex. Third, when the microtubular spindle and chromosomes arrive and rotate in the cortex (defining the animal pole), the subcortical myoplasm domain and cortical postplasmic/PEM RNAs are excluded from the animal pole region, thus concentrating in the vegetal hemisphere. The actin cytoskeleton is required for migration of the spindle and subsequent polarization, whereas these events occur normally in the absence of microtubules. Our observations set the stage for understanding the mechanisms governing primary axis establishment and meiotic maturation in ascidians.
Collapse
Affiliation(s)
- François Prodon
- BioMarCell, UMR7009, CNRS/UPMC, Station Zoologique, Observatoire Océanologique, Villefranche sur Mer 06230, France.
| | | | | |
Collapse
|
44
|
Rabut G, Lénárt P, Ellenberg J. Dynamics of nuclear pore complex organization through the cell cycle. Curr Opin Cell Biol 2005; 16:314-21. [PMID: 15145357 DOI: 10.1016/j.ceb.2004.04.001] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In eukaryotic cells, all macromolecules that traffic between the nucleus and the cytoplasm cross the double nuclear membrane through nuclear pore complexes (NPCs). NPCs are elaborate gateways that allow efficient, yet selective, translocation of many different macromolecules. Their protein composition has been elucidated, but how exactly these nucleoporins come together to form the pore is largely unknown. Recent data suggest that NPCs are composed of an extremely stable scaffold on which more dynamic, exchangeable parts are assembled. These could be targets for molecular rearrangements that change nuclear pore transport properties and, ultimately, the state of the cell.
Collapse
Affiliation(s)
- Gwénaël Rabut
- Gene Expression and Cell Biology/Biophysics Programmes, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
45
|
Straube A, Weber I, Steinberg G. A novel mechanism of nuclear envelope break-down in a fungus: nuclear migration strips off the envelope. EMBO J 2005; 24:1674-85. [PMID: 15861140 PMCID: PMC1142577 DOI: 10.1038/sj.emboj.7600644] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2004] [Accepted: 03/11/2005] [Indexed: 12/18/2022] Open
Abstract
In animals, the nuclear envelope disassembles in mitosis, while budding and fission yeast form an intranuclear spindle. Ultrastructural data indicate that basidiomycetes, such as the pathogen Ustilago maydis, undergo an 'open mitosis'. Here we describe the mechanism of nuclear envelope break-down in U. maydis. In interphase, the nucleus resides in the mother cell and the spindle pole body is inactive. Prior to mitosis, it becomes activated and nucleates microtubules that reach into the daughter cell. Dynein appears at microtubule tips and exerts force on the spindle pole body, which leads to the formation of a long nuclear extension that reaches into the bud. Chromosomes migrate through this extension and together with the spindle pole bodies leave the old envelope, which remains in the mother cell until late telophase. Inhibition of nuclear migration or deletion of a Tem1p-like GTPase leads to a 'closed' mitosis, indicating that spindle pole bodies have to reach into the bud where MEN signalling participates in envelope removal. Our data indicate that dynein-mediated premitotic nuclear migration is essential for envelope removal in U. maydis.
Collapse
Affiliation(s)
- Anne Straube
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Isabella Weber
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
| | - Gero Steinberg
- Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany
- MPI für terrestrische Mikrobiologie, Karl-von-Frisch-Strasse, 35043 Marburg, Germany. Tel.: +49 6421 178530; Fax: +49 6421 178509; E-mail:
| |
Collapse
|
46
|
Ma Z, Wang X, Hockman S, Snow EC, Hersh LB. Subcellular localization of nardilysin during mouse oocyte maturation. Arch Biochem Biophys 2005; 434:187-94. [PMID: 15629122 DOI: 10.1016/j.abb.2004.10.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2004] [Revised: 10/18/2004] [Indexed: 11/25/2022]
Abstract
We have previously shown that the peptidase, nardilysin, contains a bipartite nuclear localization signal that permits the enzyme to cycle between the nucleus and cytoplasm. In the present study, we report that nardilysin accumulates in the nucleus of an oocyte as a function of its maturation. Nardilysin is predominantly localized in the cytoplasm of an oocyte when initially placed into culture. The enzyme starts to accumulate in the nucleus within 30 min of in vitro culture. After 3 h, nardilysin is found as a spherical structure surrounded by condensed chromosomal DNA. After 18 h of in vitro culture, it co-localizes with beta-tubulin at the spindle apparatus. Cilostamide, a phosphodiesterase 3A inhibitor that inhibits meiosis, blocks accumulation of nuclear nardilysin. This finding demonstrates that the nuclear entry of nardilysin is tightly controlled in the oocyte. Taken together, these experiments strongly suggest a role for nardilysin in meiosis through its dynamic translocation from cytosol to nucleus, and then to the spindle apparatus.
Collapse
Affiliation(s)
- Zhangliang Ma
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky Medical Center, 800 Rose St., Lexington, KY 40536, USA.
| | | | | | | | | |
Collapse
|
47
|
Margalit A, Vlcek S, Gruenbaum Y, Foisner R. Breaking and making of the nuclear envelope. J Cell Biochem 2005; 95:454-65. [PMID: 15832341 DOI: 10.1002/jcb.20433] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
During mitosis, a single nucleus gives rise to two nuclei that are identical to the parent nucleus. Mitosis consists of a continuous sequence of events that must be carried out once and only once. Two such important events are the disassembly of the nuclear envelope (NE) during the first stages of mitosis, and its accurate reassembly during the last stages of mitosis. NE breakdown (NEBD) is initiated when maturation-promoting factor (MPF) enters the nucleus and starts phosphorylating nuclear pore complexes (NPCs) and nuclear lamina proteins, followed by NPC and lamina breakdown. Nuclear reassembly starts when nuclear membranes assemble onto the chromatin. This article focuses on the different models of NEBD and reassembly with emphasis on recent data.
Collapse
Affiliation(s)
- Ayelet Margalit
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | | | |
Collapse
|
48
|
Morris RL, English CN, Lou JE, Dufort FJ, Nordberg J, Terasaki M, Hinkle B. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos. Dev Biol 2004; 274:56-69. [PMID: 15355788 DOI: 10.1016/j.ydbio.2004.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 11/25/2022]
Abstract
KAP is the non-motor subunit of the heteromeric plus-end directed microtubule (MT) motor protein kinesin-II essential for normal cilia formation. Studies in Chlamydomonas have demonstrated that kinesin-II drives the anterograde intraflagellar transport (IFT) of protein complexes along ciliary axonemes. We used a green fluorescent protein (GFP) chimera of KAP, KAP-GFP, to monitor movements of this kinesin-II subunit in cells of sea urchin blastulae where cilia are retracted and rebuilt with each mitosis. As expected if involved in IFT, KAP-GFP localized to apical cytoplasm, basal bodies, and cilia and became concentrated on basal bodies of newly forming cilia. Surprisingly, after ciliary retraction early in mitosis, KAP-GFP moved into nuclei before nuclear envelope breakdown, was again present in nuclei after nuclear envelope reformation, and only decreased in nuclei as ciliogenesis reinitiated. Nuclear transport of KAP-GFP could be due to a putative nuclear localization signal and nuclear export signals identified in the sea urchin KAP primary sequence. Our observation of a protein involved in IFT being imported into the nucleus after ciliary retraction and again after nuclear envelope reformation suggests KAP115 may serve as a signal to the nucleus to reinitiate cilia formation during sea urchin development.
Collapse
Affiliation(s)
- Robert L Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA.
| | | | | | | | | | | | | |
Collapse
|
49
|
Brandizzi F, Irons SL, Evans DE. The plant nuclear envelope: new prospects for a poorly understood structure. THE NEW PHYTOLOGIST 2004; 163:227-246. [PMID: 33873618 DOI: 10.1111/j.1469-8137.2004.01118.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The nuclear envelope (NE) is one of the least characterized cellular structures in plant cells. In particular, knowledge of its dynamic behaviour during the cell cycle and of its protein composition is limited. This review summarizes current views on the plant NE and highlights fundamental differences with other organisms. We also introduce the power of new technology available to investigate the NE and how this has already begun to revolutionize our knowledge of the biology of the plant NE. Contents Summary 227 I. Introduction 227 II. The membranes of the nuclear envelope 228 III. Functions of the nuclear envelope 231 IV. Proteins associated with the nuclear envelope 236 V. New tools for studying the nuclear envelope 239 VI. Conclusions and future prospects 241 Acknowledgements 242 References 242.
Collapse
Affiliation(s)
- Federica Brandizzi
- Biology Department, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5E2
| | - Sarah L Irons
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - David E Evans
- Research School of Biological and Molecular Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| |
Collapse
|
50
|
Abstract
I discuss advances in the cell cycle in the 21 years since cyclin was discovered. The surprising redundancy amongst the classical cyclins (A, B, and E) and cyclin-dependent kinases (Cdk1 and Cdk2) show that the important differences between these proteins are when and where they are expressed rather than the proteins they phosphorylate. Although the broad principles of the cell cycle oscillator are widely accepted, we are surprisingly ignorant of its detailed mechanism. This is especially true of the anaphase promoting complex (APC), the machine that triggers chromosome segregation and the exit of mitosis by targeting securin and mitotic cyclins for destruction. I discuss how a cyclin/Cdk-based engine could have evolved to assume control of the cell cycle from other, older protein kinases.
Collapse
Affiliation(s)
- Andrew W Murray
- Department of Molecular and Cellular Biology, Biological Laboratories, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|