1
|
Guan L, Wen X, Zhang Z, Wang L, Zhang X, Yang M, Wang S, Qin Q. Grouper Rab1 inhibits nodovirus infection by affecting virus entry and host immune response. FISH & SHELLFISH IMMUNOLOGY 2023; 143:109136. [PMID: 37839541 DOI: 10.1016/j.fsi.2023.109136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/17/2023]
Abstract
Rab1, a GTPase, is present in all eukaryotes, and is mainly involved in vesicle trafficking between the endoplasmic reticulum and Golgi, thereby regulating many cellular activities and pathogenic infections. However, little is known of how Rab1 functions in fish during virus infection. Groupers (Epinephelus spp.) are high in economic value and widely cultivated in China and Southeast Asia, although they often suffer from diseases. Red-spotted grouper nervous necrosis virus (RGNNV), a highly pathogenic RNA virus, is a major pathogen in cultured groupers, and causes huge economic losses. A series of host cellular proteins involved in RGNNV infection was identified. However, the impact of Rab1 on RGNNV infection has not yet been reported. In this study, a novel Rab1 homolog (EcRab1) from Epinephelus coioides was cloned, and its roles during virus infection and host immune responses were investigated. EcRab1 encoded a 202 amino acid polypeptide, showing 98% and 78% identity to Epinephelus lanceolatus and Homo sapiens, respectively. After challenge with RGNNV or poly(I:C), the transcription of EcRab1 was altered both in vitro and in vivo, implying that EcRab1 was involved in virus infection. Subcellular localization showed that EcRab1 was displayed as punctate structures in the cytoplasm, which was affected by EcRab1 mutants. The dominant negative (DN) EcRab1, enabling EcRab1 to remain in the GDP-binding state, caused EcRab1 to be diffusely distributed in the cytoplasm. Constitutively active (CA) EcRab1, enabling EcRab1 to remain in the GTP-binding state, induced larger cluster structures of EcRab1. During the late stage of RGNNV infection, some EcRab1 co-localized with RGNNV, and the size of EcRab1 clusters was enlarged. Importantly, overexpression of EcRab1 significantly inhibited RGNNV infection, and knockdown of EcRab1 promoted RGNNV infection. Furthermore, EcRab1 inhibited the entry of RGNNV to host cells. Compared with EcRab1, overexpression of DN EcRab1 or CA EcRab1 also promoted RGNNV infection, suggesting that EcRab1 regulated RGNNV infection, depending on the cycles of GTP- and GDP-binding states. In addition, EcRab1 positively regulated interferon (IFN) immune and inflammatory responses. Taken together, these results suggest that EcRab1 affects RGNNV infection, possibly by regulating host immunity. Our study furthers the understanding of Rab1 function during virus infection, thus helping to design new antiviral strategies.
Collapse
Affiliation(s)
- Lingfeng Guan
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xiaozhi Wen
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Zihan Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Liqun Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Xinyue Zhang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China.
| | - Qiwei Qin
- College of Marine Sciences, South China Agricultural University, Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Nansha-South China Agricultural University Fishery Research Institute, Guangzhou, 511464, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, 519000, China.
| |
Collapse
|
2
|
Buser DP, Spang A. Protein sorting from endosomes to the TGN. Front Cell Dev Biol 2023; 11:1140605. [PMID: 36895788 PMCID: PMC9988951 DOI: 10.3389/fcell.2023.1140605] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/09/2023] [Indexed: 02/23/2023] Open
Abstract
Retrograde transport from endosomes to the trans-Golgi network is essential for recycling of protein and lipid cargoes to counterbalance anterograde membrane traffic. Protein cargo subjected to retrograde traffic include lysosomal acid-hydrolase receptors, SNARE proteins, processing enzymes, nutrient transporters, a variety of other transmembrane proteins, and some extracellular non-host proteins such as viral, plant, and bacterial toxins. Efficient delivery of these protein cargo molecules depends on sorting machineries selectively recognizing and concentrating them for their directed retrograde transport from endosomal compartments. In this review, we outline the different retrograde transport pathways governed by various sorting machineries involved in endosome-to-TGN transport. In addition, we discuss how this transport route can be analyzed experimentally.
Collapse
Affiliation(s)
| | - Anne Spang
- *Correspondence: Dominik P. Buser, ; Anne Spang,
| |
Collapse
|
3
|
Lawson MJ, Drawert B, Petzold L, Yi TM. A positive feedback loop involving the Spa2 SHD domain contributes to focal polarization. PLoS One 2022; 17:e0263347. [PMID: 35134079 PMCID: PMC8824340 DOI: 10.1371/journal.pone.0263347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 01/16/2022] [Indexed: 11/18/2022] Open
Abstract
Focal polarization is necessary for finely arranged cell-cell interactions. The yeast mating projection, with its punctate polarisome, is a good model system for this process. We explored the critical role of the polarisome scaffold protein Spa2 during yeast mating with a hypothesis motivated by mathematical modeling and tested by in vivo experiments. Our simulations predicted that two positive feedback loops generate focal polarization, including a novel feedback pathway involving the N-terminal domain of Spa2. We characterized the latter using loss-of-function and gain-of-function mutants. The N-terminal region contains a Spa2 Homology Domain (SHD) which is conserved from yeast to humans, and when mutated largely reproduced the spa2Δ phenotype. Our work together with published data show that the SHD domain recruits Msb3/4 that stimulates Sec4-mediated transport of Bud6 to the polarisome. There, Bud6 activates Bni1-catalyzed actin cable formation, recruiting more Spa2 and completing the positive feedback loop. We demonstrate that disrupting this loop at any point results in morphological defects. Gain-of-function perturbations partially restored focal polarization in a spa2 loss-of-function mutant without restoring localization of upstream components, thus supporting the pathway order. Thus, we have collected data consistent with a novel positive feedback loop that contributes to focal polarization during pheromone-induced polarization in yeast.
Collapse
Affiliation(s)
- Michael J. Lawson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States of America
| | - Brian Drawert
- Department of Computer Science, University of North Carolina Asheville, Asheville, NC, United States of America
| | - Linda Petzold
- Department of Computer Science, University of California, Santa Barbara, Santa Barbara, CA, United States of America
| | - Tau-Mu Yi
- Molecular, Cellular, and Developmental Biology, 3131 Biological Sciences II, University of California, Santa Barbara, Santa Barbara, CA, United States of America
- * E-mail:
| |
Collapse
|
4
|
Jaimon E, Tripathi A, Khurana A, Ghosh D, Sugatha J, Datta S. Binding with heat shock cognate protein HSC70 fine-tunes the Golgi association of the small GTPase ARL5B. J Biol Chem 2021; 297:101422. [PMID: 34798070 PMCID: PMC8661063 DOI: 10.1016/j.jbc.2021.101422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 12/30/2022] Open
Abstract
ARL5B, an ARF-like small GTPase localized to the trans-Golgi, is known for regulating endosome-Golgi trafficking and promoting the migration and invasion of breast cancer cells. Although a few interacting partners have been identified, the mechanism of the shuttling of ARL5B between the Golgi membrane and the cytosol is still obscure. Here, using GFP-binding protein (GBP) pull-down followed by mass spectrometry, we identified heat shock cognate protein (HSC70) as an additional interacting partner of ARL5B. Our pull-down and isothermal titration calorimetry (ITC)-based studies suggested that HSC70 binds to ARL5B in an ADP-dependent manner. Additionally, we showed that the N-terminal helix and the nucleotide status of ARL5B contribute to its recognition by HSC70. The confocal microscopy and cell fractionation studies in MDA-MB-231 breast cancer cells revealed that the depletion of HSC70 reduces the localization of ARL5B to the Golgi. Using in vitro reconstitution approach, we provide evidence that HSC70 fine-tunes the association of ARL5B with Golgi membrane. Finally, we demonstrated that the interaction between ARL5B and HSC70 is important for the localization of cation independent mannose-6-phosphate receptor (CIMPR) at Golgi. Collectively, we propose a mechanism by which HSC70, a constitutively expressed chaperone, modulates the Golgi association of ARL5B, which in turn has implications for the Golgi-associated functions of this GTPase.
Collapse
Affiliation(s)
- Ebsy Jaimon
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Aashutosh Tripathi
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Arohi Khurana
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Dipanjana Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Jini Sugatha
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India
| | - Sunando Datta
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, India.
| |
Collapse
|
5
|
Neuman SD, Lee AR, Selegue JE, Cavanagh AT, Bashirullah A. A novel function for Rab1 and Rab11 during secretory granule maturation. J Cell Sci 2021; 134:jcs259037. [PMID: 34342349 PMCID: PMC8353522 DOI: 10.1242/jcs.259037] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 06/29/2021] [Indexed: 01/15/2023] Open
Abstract
Regulated exocytosis is an essential process whereby specific cargo proteins are secreted in a stimulus-dependent manner. Cargo-containing secretory granules are synthesized in the trans-Golgi network (TGN); after budding from the TGN, granules undergo modifications, including an increase in size. These changes occur during a poorly understood process called secretory granule maturation. Here, we leverage the Drosophila larval salivary glands as a model to characterize a novel role for Rab GTPases during granule maturation. We find that secretory granules increase in size ∼300-fold between biogenesis and release, and loss of Rab1 or Rab11 reduces granule size. Surprisingly, we find that Rab1 and Rab11 localize to secretory granule membranes. Rab11 associates with granule membranes throughout maturation, and Rab11 recruits Rab1. In turn, Rab1 associates specifically with immature granules and drives granule growth. In addition to roles in granule growth, both Rab1 and Rab11 appear to have additional functions during exocytosis; Rab11 function is necessary for exocytosis, while the presence of Rab1 on immature granules may prevent precocious exocytosis. Overall, these results highlight a new role for Rab GTPases in secretory granule maturation.
Collapse
Affiliation(s)
| | | | | | | | - Arash Bashirullah
- Division of Pharmaceutical Sciences, University of Wisconsin-Madison, Madison, WI 53705-2222, USA
| |
Collapse
|
6
|
Gomez RC, Wawro P, Lis P, Alessi DR, Pfeffer SR. Membrane association but not identity is required for LRRK2 activation and phosphorylation of Rab GTPases. J Cell Biol 2019; 218:4157-4170. [PMID: 31624137 PMCID: PMC6891090 DOI: 10.1083/jcb.201902184] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/29/2019] [Accepted: 09/06/2019] [Indexed: 01/03/2023] Open
Abstract
Parkinson’s disease–associated LRRK2 kinase is activated on the Golgi by Rab29 but phosphorylates Rab10 there and on other compartments. This study shows that phosphorylation is restricted to membrane surfaces but need not take place on the Golgi. LRRK2 kinase mutations cause familial Parkinson’s disease and increased phosphorylation of a subset of Rab GTPases. Rab29 recruits LRRK2 to the trans-Golgi and activates it there, yet some of LRRK2’s major Rab substrates are not on the Golgi. We sought to characterize the cell biology of LRRK2 activation. Unlike other Rab family members, we show that Rab29 binds nucleotide weakly, is poorly prenylated, and is not bound to GDI in the cytosol; nevertheless, Rab29 only activates LRRK2 when it is membrane bound and GTP bound. Mitochondrially anchored, GTP-bound Rab29 is both a LRRK2 substrate and activator, and it drives accumulation of active LRRK2 and phosphorylated Rab10 on mitochondria. Importantly, mitochondrially anchored LRRK2 is much less capable of phosphorylating plasma membrane–anchored Rab10 than soluble LRRK2. These data support a model in which LRRK2 associates with and dissociates from distinct membrane compartments to phosphorylate Rab substrates; if anchored, LRRK2 can modify misdelivered Rab substrates that then become trapped there because GDI cannot retrieve them.
Collapse
Affiliation(s)
- Rachel C Gomez
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Paulina Wawro
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| | - Pawel Lis
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Dario R Alessi
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, UK
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
7
|
Dejgaard SY, Presley JF. Rab18: new insights into the function of an essential protein. Cell Mol Life Sci 2019; 76:1935-1945. [PMID: 30830238 PMCID: PMC11105521 DOI: 10.1007/s00018-019-03050-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/14/2022]
Abstract
Rab18 is one of the small number of conserved Rab proteins which have been traced to the last eukaryotic common ancestor. It is found in organisms ranging from humans to trypanosomes, and localizes to multiple organelles, including most notably endoplasmic reticulum and lipid droplets. In humans, absence of Rab18 leads to a severe illness known as Warburg-Micro syndrome. Despite this evidence that Rab18 is essential, its role in cells remains mysterious. However, recent studies identifying effectors and interactors of Rab18, are now shedding light on its mechanism of action, suggesting functions related to organelle tethering and to autophagy. In this review, we examine the variety of roles proposed for Rab18 with a focus on new evidence giving insights into the molecular mechanisms it utilizes. Based on this summary of our current understanding, we identify priority areas for further research.
Collapse
Affiliation(s)
- Selma Yilmaz Dejgaard
- Department of Medical Biology, Near East University, Nicosia, Cyprus
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada
| | - John F Presley
- Department of Anatomy and Cell Biology, McGill University, 3640 University Street, Montreal, QC, H3A 0C7, Canada.
| |
Collapse
|
8
|
Head TB, Mykles DL, Tomanek L. Proteomic analysis of the crustacean molting gland (Y-organ) over the course of the molt cycle. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2019; 29:193-210. [DOI: 10.1016/j.cbd.2018.11.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 12/21/2022]
|
9
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2018. [PMID: 29239692 DOI: 10.1080/215412481397833] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2023] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
10
|
Banworth MJ, Li G. Consequences of Rab GTPase dysfunction in genetic or acquired human diseases. Small GTPases 2017; 9:158-181. [PMID: 29239692 DOI: 10.1080/21541248.2017.1397833] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Rab GTPases are important regulators of intracellular membrane trafficking in eukaryotes. Both activating and inactivating mutations in Rab genes have been identified and implicated in human diseases ranging from neurological disorders to cancer. In addition, altered Rab expression is often associated with disease prognosis. As such, the study of diseases associated with Rabs or Rab-interacting proteins has shed light on the important role of intracellular membrane trafficking in disease etiology. In this review, we cover recent advances in the field with an emphasis on cellular mechanisms.
Collapse
Affiliation(s)
- Marcellus J Banworth
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| | - Guangpu Li
- a Department of Biochemistry and Molecular Biology , University of Oklahoma Health Sciences Center , Oklahoma City , OK , USA
| |
Collapse
|
11
|
Court H, Ahearn IM, Amoyel M, Bach EA, Philips MR. Regulation of NOTCH signaling by RAB7 and RAB8 requires carboxyl methylation by ICMT. J Cell Biol 2017; 216:4165-4182. [PMID: 29051265 PMCID: PMC5716267 DOI: 10.1083/jcb.201701053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/04/2017] [Accepted: 09/12/2017] [Indexed: 01/15/2023] Open
Abstract
Isoprenylcysteine carboxyl methyltransferase (ICMT) methylesterifies C-terminal prenylcysteine residues of CaaX proteins and some RAB GTPases. Deficiency of either ICMT or NOTCH1 accelerates pancreatic neoplasia in Pdx1-Cre;LSL-KrasG12D mice, suggesting that ICMT is required for NOTCH signaling. We used Drosophila melanogaster wing vein and scutellar bristle development to screen Rab proteins predicted to be substrates for ICMT (ste14 in flies). We identified Rab7 and Rab8 as ICMT substrates that when silenced phenocopy ste14 deficiency. ICMT, RAB7, and RAB8 were all required for efficient NOTCH1 signaling in mammalian cells. Overexpression of RAB8 rescued NOTCH activation after ICMT knockdown both in U2OS cells expressing NOTCH1 and in fly wing vein development. ICMT deficiency induced mislocalization of GFP-RAB7 and GFP-RAB8 from endomembrane to cytosol, enhanced binding to RABGDI, and decreased GTP loading of RAB7 and RAB8. Deficiency of ICMT, RAB7, or RAB8 led to mislocalization and diminished processing of NOTCH1-GFP. Thus, NOTCH signaling requires ICMT in part because it requires methylated RAB7 and RAB8.
Collapse
Affiliation(s)
- Helen Court
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Ian M Ahearn
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Marc Amoyel
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, England, UK
| | - Erika A Bach
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| | - Mark R Philips
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY
| |
Collapse
|
12
|
Cottam NP, Ungar D. Cell-free Fluorescent Intra-Golgi Retrograde Vesicle Trafficking Assay. Bio Protoc 2017; 7:e2616. [PMID: 29201946 DOI: 10.21769/bioprotoc.2616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Intra-Golgi retrograde vesicle transport is used to traffic and sort resident Golgi enzymes to their appropriate cisternal locations. An assay was established to investigate the molecular details of vesicle targeting in a cell-free system. Stable cell lines were generated in which the trans-Golgi enzyme galactosyltransferase (GalT) was tagged with either CFP or YFP. Given that GalT is recycled to the cisterna where it is located at steady state, GalT-containing vesicles target GalT-containing cisternal membranes. Golgi membranes were therefore isolated from GalT-CFP expressing cells, while vesicles were prepared from GalT-YFP expressing ones. Incubating CFP-labelled Golgi with YFP-labelled vesicles in the presence of cytosol and an energy regeneration mixture at 37 °C produced a significant increase in CFP-YFP co-localization upon fluorescent imaging of the mixture compared to incubation on ice. The assay was validated to require energy, proteins and physiologically important trafficking components such as Rab GTPases and the conserved oligomeric Golgi tethering complex. This assay is useful for the investigation of both physiological and pathological changes that affect the Golgi trafficking machinery, in particular, vesicle tethering.
Collapse
Affiliation(s)
| | - Daniel Ungar
- Department of Biology, University of York, York, UK
| |
Collapse
|
13
|
Mulvaney EP, O'Meara F, Khan AR, O'Connell DJ, Kinsella BT. Identification of α-helix 4 (α4) of Rab11a as a novel Rab11-binding domain (RBD): Interaction of Rab11a with the Prostacyclin Receptor. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1819-1832. [PMID: 28739266 DOI: 10.1016/j.bbamcr.2017.07.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 06/28/2017] [Accepted: 07/20/2017] [Indexed: 12/29/2022]
Abstract
The cellular trafficking of numerous G protein-coupled receptors (GPCRs) is known to be regulated by Rab proteins that involves a direct protein:protein interaction between the receptor and the GTPase. In the case of the human prostacyclin receptor (hIP), it undergoes agonist-induced internalization and subsequent Rab11a-dependent recyclization involving an interaction between a Rab11-binding domain (RBD) localized within its carboxyl-tail domain with Rab11a. However, the GPCR-interacting domain on Rab11a itself is unknown. Hence, we sought to identify the region within Rab11a that mediates its interaction with the RBD of the hIP. The α4 helix region of Rab11 was identified as a novel binding domain for the hIP, a site entirely distinct from the Switch I/Switch II -regions that act as specific binding domain for most other Rab and Ras-like GTPase interactants. Specifically, Glu138 within α4 helix of Rab11a appears to contact with key residues (e.g. Lys304) within the RBD of the hIP, where such contacts differ depending on the agonist-activated versus -inactive status of the hIP. Through mutational studies, supported by in silico homology modelling of the inactive and active hIP:Rab11a complexes, a mechanism is proposed to explain both the constitutive and agonist-induced binding of Rab11a to regulate intracellular trafficking of the hIP. Collectively, these studies are not only the first to identify α4 helix of Rab11a as a protein binding domain on the GTPase but also reveal novel mechanistic insights into the intracellular trafficking of the hIP, and potentially of other members of the GPCR superfamily, involving Rab11-dependent mechanisms.
Collapse
Affiliation(s)
- Eamon P Mulvaney
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Fergal O'Meara
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - David J O'Connell
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - B Therese Kinsella
- UCD School of Biomolecular and Biomedical Sciences, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
14
|
A newly identified Rab-GDI paralogue has a role in neural development in amphibia. Gene 2017; 599:78-86. [DOI: 10.1016/j.gene.2016.11.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/21/2016] [Accepted: 11/07/2016] [Indexed: 11/19/2022]
|
15
|
Spatiotemporal imaging of small GTPases activity in live cells. Proc Natl Acad Sci U S A 2016; 113:14348-14353. [PMID: 27911813 DOI: 10.1073/pnas.1613999113] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ras-like small GTPases function as molecular switches and regulate diverse cellular events. To examine the dynamics of signaling requires spatiotemporal visualization of their activity in the cell. Current small GTPase sensors rely on specific effector domains that are available for only a small number of GTPases and compete for endogenous regulator/effector binding. Here, we describe versatile conformational sensors for GTPase activity (COSGAs) based on the conserved GTPase fold. Conformational changes upon GDP/GTP exchange were directly observed in solution, on beads, and in live cells by Förster resonance energy transfer (FRET). The COSGAs allow for monitoring of Rab1 and K-Ras activity in live cells using fluorescence lifetime imaging microscopy. We found that Rab1 is largely active in the cytoplasm and inactive at the Golgi, suggesting that the Golgi serves as the terminal of the Rab1 functional cycle. K-Ras displays polarized activity at the plasma membrane, with less activity at the edge of the cell and membrane ruffles.
Collapse
|
16
|
Zhao L, Ehrt C, Koch O, Wu YW. One-Pot N2C/C2C/N2N Ligation To Trap Weak Protein-Protein Interactions. Angew Chem Int Ed Engl 2016; 55:8129-33. [PMID: 27213482 DOI: 10.1002/anie.201601299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 03/13/2016] [Indexed: 01/19/2023]
Abstract
Weak transient protein-protein interactions (PPIs) play an essential role in cellular dynamics. However, it is challenging to obtain weak protein complexes owing to their short lifetime. Herein we present a general and facile method for trapping weak PPIs in an unbiased manner using proximity-induced ligations. To expand the chemical ligation spectrum, we developed novel N2N (N-terminus to N-terminus) and C2C (C-terminus to C-terminus) ligation approaches. By using N2C (N-terminus to C-terminus), N2N, and C2C ligations in one pot, the interacting proteins were linked. The weak Ypt1:GDI interaction drove C2C ligation with t1/2 of 4.8 min and near quantitative conversion. The Ypt1-GDI conjugate revealed that binding of Ypt1 G-domain causes opening of the lipid-binding site of GDI, which can accommodate one prenyl group, giving insights into Rab membrane recycling. Moreover, we used this strategy to trap the KRas homodimer, which plays an important role in Ras signaling.
Collapse
Affiliation(s)
- Lei Zhao
- Chemical Genomics Center of the Max Planck Society, Otto-Hahn-Strasse 15, 44227, Dortmund, Germany
| | - Christiane Ehrt
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Oliver Koch
- TU Dortmund University, Faculty of Chemistry and Chemical Biology, Otto-Hahn-Strasse 6, 44227, Dortmund, Germany
| | - Yao-Wen Wu
- Chemical Genomics Center of the Max Planck Society, Otto-Hahn-Strasse 15, 44227, Dortmund, Germany.
| |
Collapse
|
17
|
Zhao L, Ehrt C, Koch O, Wu YW. Eintopf-N2C/C2C/N2N-Proteinligationsstrategien zur Analyse schwacher Protein-Protein-Wechselwirkungen. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Lei Zhao
- Chemical Genomics Center der Max-Planck-Gesellschaft; Otto-Hahn-Straße 15 44227 Dortmund Deutschland
| | - Christiane Ehrt
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Oliver Koch
- Technische Universität Dortmund; Fakultät für Chemie und Chemische Biologie; Otto-Hahn-Straße 6 44227 Dortmund Deutschland
| | - Yao-Wen Wu
- Chemical Genomics Center der Max-Planck-Gesellschaft; Otto-Hahn-Straße 15 44227 Dortmund Deutschland
| |
Collapse
|
18
|
Ioannou MS, Girard M, McPherson PS. Rab13 Traffics on Vesicles Independent of Prenylation. J Biol Chem 2016; 291:10726-35. [PMID: 26969162 DOI: 10.1074/jbc.m116.722298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Indexed: 01/06/2023] Open
Abstract
Rab GTPases are critical regulators of membrane trafficking. The canonical view is that Rabs are soluble in their inactive GDP-bound form, and only upon activation and conversion to their GTP-bound state are they anchored to membranes through membrane insertion of a C-terminal prenyl group. Here we demonstrate that C-terminal prenylation is not required for Rab13 to associate with and traffic on vesicles. Instead, inactive Rab13 appears to associate with vesicles via protein-protein interactions. Only following activation does Rab13 associate with the plasma membrane, presumably with insertion of the C-terminal prenyl group into the membrane.
Collapse
Affiliation(s)
- Maria S Ioannou
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Martine Girard
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Peter S McPherson
- From the Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
19
|
Matsuto M, Kano F, Murata M. Reconstitution of the targeting of Rab6A to the Golgi apparatus in semi-intact HeLa cells: A role of BICD2 in stabilizing Rab6A on Golgi membranes and a concerted role of Rab6A/BICD2 interactions in Golgi-to-ER retrograde transport. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2592-609. [PMID: 25962623 DOI: 10.1016/j.bbamcr.2015.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 05/02/2015] [Accepted: 05/05/2015] [Indexed: 12/21/2022]
Abstract
Rab is a small GTP-binding protein family that regulates various pathways of vesicular transport. Although more than 60 Rab proteins are targeted to specific organelles in mammalian cells, the mechanisms underlying the specificity of Rab proteins for the respective organelles remain unknown. In this study, we reconstituted the Golgi targeting of Rab6A in streptolysin O (SLO)-permeabilized HeLa cells in a cytosol-dependent manner and investigated the biochemical requirements of targeting. Golgi-targeting assays identified Bicaudal-D (BICD)2, which is reportedly involved in the dynein-mediated transport of mRNAs during oogenesis and embryogenesis in Drosophila, as a cytosolic factor for the Golgi targeting of Rab6A in SLO-permeabilized HeLa cells. Subsequent immunofluorescence analyses indicated decreased amounts of the GTP-bound active form of Rab6 in BICD2-knockdown cells. In addition, fluorescence recovery after photobleaching (FRAP) analyses revealed that overexpression of the C-terminal region of BICD2 decreased the exchange rate of GFP-Rab6A between the Golgi membrane and the cytosol. Collectively, these results indicated that BICD2 facilitates the binding of Rab6A to the Golgi by stabilizing its GTP-bound form. Moreover, several analyses of vesicular transport demonstrated that Rab6A and BICD2 play crucial roles in Golgi tubule fusion with the endoplasmic reticulum (ER) in brefeldin A (BFA)-treated cells, indicating that BICD2 is involved in coat protein I (COPI)-independent Golgi-to-ER retrograde vesicular transport.
Collapse
Affiliation(s)
- Mariko Matsuto
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan
| | - Fumi Kano
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan; PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho Kawaguchi, Saitama 332-0012, Japan
| | - Masayuki Murata
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Komaba 3-8-1, Meguro-ku, Tokyo 153-8902, Japan.
| |
Collapse
|
20
|
Hoepflinger MC, Geretschlaeger A, Sommer A, Hoeftberger M, Hametner C, Ueda T, Foissner I. Molecular Analysis and Localization of CaARA7 a Conventional RAB5 GTPase from Characean Algae. Traffic 2015; 16:534-54. [PMID: 25639563 PMCID: PMC4898595 DOI: 10.1111/tra.12267] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 01/27/2015] [Accepted: 01/27/2015] [Indexed: 11/28/2022]
Abstract
RAB5 GTPases are important regulators of endosomal membrane traffic. Among them Arabidopsis thaliana ARA7/RABF2b is highly conserved and homologues are present in fungal, animal and plant kingdoms. In land plants ARA7 and its homologues are involved in endocytosis and transport towards the vacuole. Here we report on the isolation of an ARA7 homologue (CaARA7/CaRABF2) in the highly evolved characean green alga Chara australis. It encodes a polypeptide of 202 amino acids with a calculated molecular mass of 22.2 kDa and intrinsic GTPase activity. Immunolabelling of internodal cells with a specific antibody reveals CaARA7 epitopes at multivesicular endosomes (MVEs) and at MVE-containing wortmannin (WM) compartments. When transiently expressed in epidermal cells of Nicotiana benthamiana leaves, fluorescently tagged CaARA7 localizes to small organelles (putative MVEs) and WM compartments, and partially colocalizes with AtARA7 and CaARA6, a plant specific RABF1 GTPase. Mutations in membrane anchoring and GTP binding sites alter localization of CaARA7 and affect GTPase activity, respectively. This first detailed study of a conventional RAB5 GTPase in green algae demonstrates that CaARA7 is similar to RAB5 GTPases from land plants and other organisms and shows conserved structure and localization.
Collapse
Affiliation(s)
- Marion C. Hoepflinger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Anja Geretschlaeger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Aniela Sommer
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Margit Hoeftberger
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Christina Hametner
- Department of Organismic Biology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| | - Takashi Ueda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Ilse Foissner
- Department of Cell Biology/Plant Physiology, University of Salzburg, Hellbrunnerstrasse 34, 5020 Salzburg, Austria
| |
Collapse
|
21
|
Abstract
Rab proteins represent the largest branch of the Ras-like small GTPase superfamily and there are 66 Rab genes in the human genome. They alternate between GTP- and GDP-bound states, which are facilitated by guanine nucleotide exchange factors (GEFs) and GTPase-activating proteins (GAPs), and function as molecular switches in regulation of intracellular membrane trafficking in all eukaryotic cells. Each Rab targets to an organelle and specify a transport step along exocytic, endocytic, and recycling pathways as well as the crosstalk between these pathways. Through interactions with multiple effectors temporally, a Rab can control membrane budding and formation of transport vesicles, vesicle movement along cytoskeleton, and membrane fusion at the target compartment. The large number of Rab proteins reflects the complexity of the intracellular transport system, which is essential for the localization and function of membrane and secretory proteins such as hormones, growth factors, and their membrane receptors. As such, Rab proteins have emerged as important regulators for signal transduction, cell growth, and differentiation. Altered Rab expression and/or activity have been implicated in diseases ranging from neurological disorders, diabetes to cancer.
Collapse
Affiliation(s)
- Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, 975 NE 10 Street, BRC 417, Oklahoma City, OK, 73104, USA,
| | | |
Collapse
|
22
|
Heo JB, Lee YM, Yun HR, Im CH, Lee YS, Yi YB, Kwon C, Lim J, Bahk JD. Rice serine/threonine kinase 1 is required for the stimulation of OsNug2 GTPase activity. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1601-1608. [PMID: 25151129 DOI: 10.1016/j.jplph.2014.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 07/07/2014] [Accepted: 07/31/2014] [Indexed: 06/03/2023]
Abstract
Several GTPases are required for ribosome biogenesis and assembly. We recently identified rice (Oryza sativa) nuclear/nucleolar GTPase 2 (OsNug2), a YlqF/YawG family GTPase, as having a role in pre-60S ribosomal subunit maturation. To investigate the potential factors involved in regulating OsNug2 function, yeast two-hybrid screens were performed using OsNug2 as bait. Rice serine/threonine kinase 1 (OsSTK1) was identified as a candidate interacting protein. OsSTK1 appeared to interact with OsNug2 both in vitro and in vivo. OsSTK1 was found to have no effect on the GTP-binding activity of OsNug2; however, the presence of recombinant OsSTK1 in OsNug2 assay reaction mixtures increased OsNug2 GTPase activity. A kinase assay showed that OsSTK1 had weak autophosphorylation activity and strongly phosphorylated serine 209 of OsNug2. Using yeast complementation testing, we identified a GAL::OsNug2(S209N) mutation-harboring yeast strain that exhibited a growth-defective phenotype on galactose medium at 39°C, which was divergent from that of a yeast strain harboring GAL::OsNug2. The intrinsic GTPase activity of OsNug2(S209N), which was found to be similar to that of OsNug2, was not fully enhanced upon weak binding of OsSTK1. Our findings indicate that OsSTK1 functions as a positive regulator of OsNug2 by enhancing OsNug2 GTPase activity. In addition, phosphorylation of OsNug2 serine 209 is essential for its complete function in biological functional pathway.
Collapse
Affiliation(s)
- Jae Bok Heo
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea.
| | - Yun Mi Lee
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Hee Rang Yun
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Chak Han Im
- Eco-friendliness Research Department, Gyeongsangnam-do Agricultural Research and Extension Services, Jinju 660-360, South Korea
| | - Yong-Suk Lee
- Department of Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Young Byong Yi
- Department of Molecular Biotechnology, Dong-A University, Busan 604-714, South Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Yongin 448-701, South Korea
| | - Jun Lim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 143-701, South Korea
| | - Jeong Dong Bahk
- Department of Biochemistry, Gyeongsang National University, Jinju 660-701, South Korea
| |
Collapse
|
23
|
Rab proteins: the key regulators of intracellular vesicle transport. Exp Cell Res 2014; 328:1-19. [PMID: 25088255 DOI: 10.1016/j.yexcr.2014.07.027] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/06/2014] [Accepted: 07/23/2014] [Indexed: 01/01/2023]
Abstract
Vesicular/membrane trafficking essentially regulates the compartmentalization and abundance of proteins within the cells and contributes in many signalling pathways. This membrane transport in eukaryotic cells is a complex process regulated by a large and diverse array of proteins. A large group of monomeric small GTPases; the Rabs are essential components of this membrane trafficking route. Most of the Rabs are ubiquitously expressed proteins and have been implicated in vesicle formation, vesicle motility/delivery along cytoskeleton elements and docking/fusion at target membranes through the recruitment of effectors. Functional impairments of Rabs affecting transport pathways manifest different diseases. Rab functions are accompanied by cyclical activation and inactivation of GTP-bound and GDP-bound forms between the cytosol and membranes which is regulated by upstream regulators. Rab proteins are characterized by their distinct sub-cellular localization and regulate a wide variety of endocytic, transcytic and exocytic transport pathways. Mutations of Rabs affect cell growth, motility and other biological processes.
Collapse
|
24
|
Ong ST, Freeley M, Skubis-Zegadło J, Fazil MHUT, Kelleher D, Fresser F, Baier G, Verma NK, Long A. Phosphorylation of Rab5a protein by protein kinase Cϵ is crucial for T-cell migration. J Biol Chem 2014; 289:19420-34. [PMID: 24872409 DOI: 10.1074/jbc.m113.545863] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Rab GTPases control membrane traffic and receptor-mediated endocytosis. Within this context, Rab5a plays an important role in the spatial regulation of intracellular transport and signal transduction processes. Here, we report a previously uncharacterized role for Rab5a in the regulation of T-cell motility. We show that Rab5a physically associates with protein kinase Cϵ (PKCϵ) in migrating T-cells. After stimulation of T-cells through the integrin LFA-1 or the chemokine receptor CXCR4, Rab5a is phosphorylated on an N-terminal Thr-7 site by PKCϵ. Both Rab5a and PKCϵ dynamically interact at the centrosomal region of migrating cells, and PKCϵ-mediated phosphorylation on Thr-7 regulates Rab5a trafficking to the cell leading edge. Furthermore, we demonstrate that Rab5a Thr-7 phosphorylation is functionally necessary for Rac1 activation, actin rearrangement, and T-cell motility. We present a novel mechanism by which a PKCϵ-Rab5a-Rac1 axis regulates cytoskeleton remodeling and T-cell migration, both of which are central for the adaptive immune response.
Collapse
Affiliation(s)
- Seow Theng Ong
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Michael Freeley
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland
| | - Joanna Skubis-Zegadło
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland, Department of Applied Pharmacy and Bioengineering, Medical University of Warsaw, 02-091 Warsaw, Poland
| | | | - Dermot Kelleher
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553, Faculty of Medicine, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom, and
| | - Friedrich Fresser
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Gottfried Baier
- the Department of Medical Genetics, Molecular and Clinical Pharmacology, Innsbruck Medical University, A-6020 Innsbruck, Austria
| | - Navin Kumar Verma
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637553,
| | - Aideen Long
- From the From the Department of Clinical Medicine, Institute of Molecular Medicine, Trinity College Dublin, Dublin 8, Ireland,
| |
Collapse
|
25
|
Liu ZL, Luo C, Dong L, Van Toan C, Wei PX, He XH. Molecular characterization and expression analysis of a GTP-binding protein (MiRab5) in Mangifera indica. Gene 2014; 540:86-91. [PMID: 24560931 DOI: 10.1016/j.gene.2014.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/14/2014] [Accepted: 02/17/2014] [Indexed: 11/17/2022]
Abstract
The Rab family, the largest branch of Ras small GTPases, plays a crucial role in the vesicular transport in plants. The members of Rab family act as molecular switches that regulate the fusion of vesicles with target membranes through conformational changes. However, little is known about the Rab5 gene involved in fruit ripening and stress response. In this study, the MiRab5 gene was isolated from stress-induced Mangifera indica. The full-length cDNA sequence was 984bp and contained an open reading frame of 600bp, which encoded a 200 amino acid protein with a molecular weight of 21.83kDa and a theoretical isoelectric point of 6.99. The deduced amino acid sequence exhibited high homology with tomato (91% similarity) and contains all five characteristic Rab motifs. Real-time quantitative RT-PCR analysis demonstrated that MiRab5 was ubiquitously expressed in various mango tree tissues at different levels. The expression of MiRab5 was up-regulated during later stages of fruit ripening. Moreover, MiRab5 was generally up-regulated in response to various abiotic stresses (cold, salinity, and PEG treatments). Recombinant MiRab5 protein was successfully expressed and purified. SDS-PAGE and western blot analysis indicated that the expressed protein was recognized by the anti-6-His antibody. These results provide insights into the role of the MiRab5 gene family in fruit ripening and stress responses in the mango plant.
Collapse
Affiliation(s)
- Zhao-liang Liu
- College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Cong Luo
- College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Long Dong
- College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Can Van Toan
- College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Peng-xiao Wei
- College of Agriculture, Guangxi University, Nanning 530004, PR China
| | - Xin-hua He
- College of Agriculture, Guangxi University, Nanning 530004, PR China; Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning 530007, PR China.
| |
Collapse
|
26
|
Abstract
The Ras superfamily G-proteins are monomeric proteins of approximately 21kDa that act as a molecular switch to regulate a variety of cellular processes. The structure of the Ras superfamily G-proteins, their regulators as well as posttranslational modification of these proteins leading to their membrane association have been elucidated. The Ras superfamily G-proteins interact at their effector domains with their downstream effectors via protein-protein interactions. Mutational activation or overexpression of the Ras superfamily G-proteins has been observed in a number of human cancer cases. Over the years, a variety of approaches to inhibit the Ras superfamily G-proteins have been developed. These different approaches are discussed in this volume.
Collapse
Affiliation(s)
- Ashley L Tetlow
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Fuyuhiko Tamanoi
- Department of Microbiology, Immunology and Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
27
|
Abstract
Rab GTPases are master regulators of membrane traffic. By binding to distinct sets of effector proteins, Rabs catalyse the formation of function-specifying membrane microdomains. They are delivered to membranes by a protein named GDI (guanine-nucleotide-dissociation inhibitor) and are stabilized there after nucleotide exchange by effector binding. In the present mini-review, I discuss what we know about how Rab GTPases are delivered to the correct membrane-bound compartments and how Rab GTPase cascades order Rabs within the secretory and endocytic pathways. Finally, I describe how Rab cascades may establish the distinct compartments of the Golgi complex to permit ordered processing, sorting and secretion of secretory cargoes.
Collapse
|
28
|
Abstract
Despite over two decades of research, the mechanism of Rab targeting to specific intracellular membranes is still not completely understood. Present evidence suggests that the original hypothesis that the message for targeting resides solely in the hypervariable C-terminus is incorrect, and a second mechanism involving a GDF [GDI (guanine-nucleotide-dissociation inhibitor) displacement factor] to disrupt stable Rab–GDI complexes has only been shown to apply in one case, despite the need for targeting over 60 human Rab proteins. Evidence for the involvement of Rab–effector interactions has only been presented for a few cases or in a very specific context. There is mounting evidence that GEFs (guanine-nucleotide-exchange factors) are essential for membrane targeting, although contributions from additional factors are likely to be of importance, at least in specific cases.
Collapse
|
29
|
Soper JH, Kehm V, Burd CG, Bankaitis VA, Lee VMY. Aggregation of α-synuclein in S. cerevisiae is associated with defects in endosomal trafficking and phospholipid biosynthesis. J Mol Neurosci 2011; 43:391-405. [PMID: 20890676 PMCID: PMC3147281 DOI: 10.1007/s12031-010-9455-5] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023]
Abstract
Parkinson's disease is the most common neurodegenerative movement disorder. α-Synuclein is a small synaptic protein that has been linked to familial Parkinson's disease (PD) and is also the primary component of Lewy bodies, the hallmark neuropathology found in the brain of sporadic and familial PD patients. The function of α-synuclein is currently unknown, although it has been implicated in the regulation of synaptic vesicle localization or fusion. Recently, overexpression of α-synuclein was shown to cause cytoplasmic vesicle accumulation in a yeast model of α-synuclein toxicity, but the exact role α-synuclein played in mediating this vesicle aggregation is unclear. Here, we show that α-synuclein induces aggregation of many yeast Rab GTPase proteins, that α-synuclein aggregation is enhanced in yeast mutants that produce high levels of acidic phospholipids, and that α-synuclein colocalizes with yeast membranes that are enriched for phosphatidic acid. Significantly, we demonstrate that α-synuclein expression induces vulnerability to perturbations of Ypt6 and other proteins involved in retrograde endosome-Golgi transport, linking a specific trafficking defect to α-synuclein phospholipid binding. These data suggest new pathogenic mechanisms for α-synuclein neurotoxicity.
Collapse
Affiliation(s)
- James H. Soper
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Victoria Kehm
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher G. Burd
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Vytas A. Bankaitis
- Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina School of Medicine, Chapel Hill, NC 27599-7090, USA
| | - Virginia M.-Y. Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Maloney 3, HUP, 3600, Spruce Street, Philadelphia, PA 19104-4283, USA
| |
Collapse
|
30
|
Vartak N, Bastiaens P. Spatial cycles in G-protein crowd control. EMBO J 2010; 29:2689-99. [PMID: 20717139 PMCID: PMC2924655 DOI: 10.1038/emboj.2010.184] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 07/12/2010] [Indexed: 12/19/2022] Open
Abstract
The nature of living systems and their apparent resilience to the second law of thermodynamics has been the subject of extensive investigation and imaginative speculation. The segregation and compartmentalization of proteins is one manifestation of this departure from equilibrium conditions; the effect of which is now beginning to be elucidated. This should not come as a surprise, as even a cursory inspection of cellular processes reveals the large amount of energetic cost borne to maintain cell-scale patterns, separations and gradients of molecules. The G-proteins, kinases, calcium-responsive proteins have all been shown to contain reaction cycles that are inherently coupled to their signalling activities. G-proteins represent an important and diverse toolset used by cells to generate cellular asymmetries. Many small G-proteins in particular, are dynamically acylated to modify their membrane affinities, or localized in an activity-dependent manner, thus manipulating the mobility modes of these proteins beyond pure diffusion and leading to finely tuned steady state partitioning into cellular membranes. The rates of exchange of small G-proteins over various compartments, as well as their steady state distributions enrich and diversify the landscape of possibilities that GTPase-dependent signalling networks can display over cellular dimensions. The chemical manipulation of spatial cycles represents a new approach for the modulation of cellular signalling with potential therapeutic benefits.
Collapse
Affiliation(s)
- Nachiket Vartak
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
| | - Philippe Bastiaens
- Department of Systemic Cell Biology, Max Planck Institute for Molecular Physiology, Dortmund, Germany
- Department of Chemistry, University of Dortmund, Dortmund, Germany
| |
Collapse
|
31
|
Poteryaev D, Datta S, Ackema K, Zerial M, Spang A. Identification of the switch in early-to-late endosome transition. Cell 2010; 141:497-508. [PMID: 20434987 DOI: 10.1016/j.cell.2010.03.011] [Citation(s) in RCA: 542] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 11/26/2009] [Accepted: 02/25/2010] [Indexed: 11/16/2022]
Abstract
Sequential transport from early to late endosomes requires the coordinated activities of the small GTPases Rab5 and Rab7. The transition between early and late endosomes could be mediated either through transport carriers or by Rab conversion, a process in which the loss of Rab5 from an endosome occurs concomitantly to the acquisition of Rab7. We demonstrate that Rab conversion is the mechanism by which proteins pass from early to late endosomes in Caenorhabditis elegans coelomocytes. Moreover, we identified SAND-1/Mon1 as the critical switch for Rab conversion in metazoa. SAND-1 serves a dual role in this process. First, it interrupts the positive feedback loop of RAB-5 activation by displacing RABX-5 from endosomal membranes; second, it times the recruitment of RAB-7, probably through interaction with the HOPS complex to the same membranes. SAND-1/Mon1 thus acts as a switch by controlling the localization of RAB-5 and RAB-7 GEFs.
Collapse
Affiliation(s)
- Dmitry Poteryaev
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel 4056, Switzerland
| | | | | | | | | |
Collapse
|
32
|
Li X, Sapp E, Chase K, Comer-Tierney LA, Masso N, Alexander J, Reeves P, Kegel KB, Valencia A, Esteves M, Aronin N, DiFiglia M. Disruption of Rab11 activity in a knock-in mouse model of Huntington's disease. Neurobiol Dis 2009; 36:374-83. [PMID: 19699304 PMCID: PMC2798579 DOI: 10.1016/j.nbd.2009.08.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2009] [Revised: 07/30/2009] [Accepted: 08/10/2009] [Indexed: 12/22/2022] Open
Abstract
The Huntington's disease (HD) mutation causes polyglutamine expansion in huntingtin (Htt) and neurodegeneration. Htt interacts with a complex containing Rab11GDP and is involved in activation of Rab11, which functions in endosomal recycling and neurite growth and long-term potentiation. Like other Rab proteins, Rab11GDP undergoes nucleotide exchange to Rab11GTP for its activation. Here we show that striatal membranes of HD(140Q/140Q) knock-in mice are impaired in supporting conversion of Rab11GDP to Rab11GTP. Dominant negative Rab11 expressed in the striatum and cortex of normal mice caused neuropathology and motor dysfunction, suggesting that a deficiency in Rab11 activity is pathogenic in vivo. Primary cortical neurons from HD(140Q/140Q) mice were delayed in recycling transferrin receptors back to the plasma membrane. Partial rescue from glutamate-induced cell death occurred in HD neurons expressing dominant active Rab11. We propose a novel mechanism of HD pathogenesis arising from diminished Rab11 activity at recycling endosomes.
Collapse
Affiliation(s)
- Xueyi Li
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Ellen Sapp
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Kathryn Chase
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester MA 01655
| | - Laryssa A. Comer-Tierney
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Nicholas Masso
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Jonathan Alexander
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Patrick Reeves
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Kimberly B. Kegel
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Antonio Valencia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Miguel Esteves
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| | - Neil Aronin
- Department of Medicine and Cell Biology, University of Massachusetts Medical School, Worcester MA 01655
| | - Marian DiFiglia
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown MA 02129
| |
Collapse
|
33
|
Machner MP, Isberg RR. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 2007; 318:974-7. [PMID: 17947549 DOI: 10.1126/science.1149121] [Citation(s) in RCA: 223] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rab guanosine triphosphatases (GTPases) regulate vesicle trafficking in eukaryotic cells by reversibly associating with lipid membranes. Inactive Rab GTPases are maintained in the cytosol by binding to GDP-dissociation inhibitor (GDI). It is believed that specialized proteins are required to displace GDI from Rab GTPases before Rab activation by guanosine diphosphate-guanosine 5'-triphosphate (GDP-GTP) exchange factors (GEFs). Here, we found that SidM from Legionella pneumophila could act as both GEF and GDI-displacement factor (GDF) for Rab1. Rab1 released from GDI was inserted into liposomal membranes and was used as a substrate for SidM-mediated nucleotide exchange. During host cell infection, recruitment of Rab1 to Legionella-containing vacuoles depended on the GDF activity of SidM. Thus, GDF and GEF activity can be promoted by a single protein, and GDF activity can coordinate Rab1 recruitment from the GDI-bound pool.
Collapse
Affiliation(s)
- Matthias P Machner
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | | |
Collapse
|
34
|
Protein Prenylation: An (Almost) Comprehensive Overview on Discovery History, Enzymology, and Significance in Physiology and Disease. MONATSHEFTE FUR CHEMIE 2006. [DOI: 10.1007/s00706-006-0534-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
35
|
Reddy JV, Burguete AS, Sridevi K, Ganley IG, Nottingham RM, Pfeffer SR. A functional role for the GCC185 golgin in mannose 6-phosphate receptor recycling. Mol Biol Cell 2006; 17:4353-63. [PMID: 16885419 PMCID: PMC1635343 DOI: 10.1091/mbc.e06-02-0153] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mannose 6-phosphate receptors (MPRs) deliver newly synthesized lysosomal enzymes to endosomes and then recycle to the Golgi. MPR recycling requires Rab9 GTPase; Rab9 recruits the cytosolic adaptor TIP47 and enhances its ability to bind to MPR cytoplasmic domains during transport vesicle formation. Rab9-bearing vesicles then fuse with the trans-Golgi network (TGN) in living cells, but nothing is known about how these vesicles identify and dock with their target. We show here that GCC185, a member of the Golgin family of putative tethering proteins, is a Rab9 effector that is required for MPR recycling from endosomes to the TGN in living cells, and in vitro. GCC185 does not rely on Rab9 for its TGN localization; depletion of GCC185 slightly alters the Golgi ribbon but does not interfere with Golgi function. Loss of GCC185 triggers enhanced degradation of mannose 6-phosphate receptors and enhanced secretion of hexosaminidase. These data assign a specific pathway to an interesting, TGN-localized protein and suggest that GCC185 may participate in the docking of late endosome-derived, Rab9-bearing transport vesicles at the TGN.
Collapse
Affiliation(s)
- Jonathan V. Reddy
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| | | | - Khambhampaty Sridevi
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| | - Ian G. Ganley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| | - Ryan M. Nottingham
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| | - Suzanne R. Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307
| |
Collapse
|
36
|
Abstract
Rab GTPase regulated hubs provide a framework for an integrated coding system, the membrome network, that controls the dynamics of the specialized exocytic and endocytic membrane architectures found in eukaryotic cells. Herein, we report that Rab recycling in the early exocytic pathways involves the heat-shock protein (Hsp)90 chaperone system. We find that Hsp90 forms a complex with guanine nucleotide dissociation inhibitor (GDI) to direct recycling of the client substrate Rab1 required for endoplasmic reticulum (ER)-to-Golgi transport. ER-to-Golgi traffic is inhibited by the Hsp90-specific inhibitors geldanamycin (GA), 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), and radicicol. Hsp90 activity is required to form a functional GDI complex to retrieve Rab1 from the membrane. Moreover, we find that Hsp90 is essential for Rab1-dependent Golgi assembly. The observation that the highly divergent Rab GTPases Rab1 involved in ER-to-Golgi transport and Rab3A involved in synaptic vesicle fusion require Hsp90 for retrieval from membranes lead us to now propose that the Hsp90 chaperone system may function as a general regulator for Rab GTPase recycling in exocytic and endocytic trafficking pathways involved in cell signaling and proliferation.
Collapse
Affiliation(s)
| | - William E. Balch
- Departments of *Cell Biology and
- Molecular Biology and
- The Institute for Childhood and Neglected Disease, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
37
|
Abstract
The human genome encodes almost 70 Rab GTPases. These proteins are C-terminally geranylgeranylated and are localized to the surfaces of distinct membrane-bound compartments in eukaryotic cells. This mini review presents a working model for how Rabs achieve and maintain their steady-state localizations. Data from a number of laboratories suggest that Rabs participate in the generation of macromolecular assemblies that generate functional microdomains within a given membrane compartment. Our data suggest that these complex interactions are important for the cellular localization of Rab proteins at steady state.
Collapse
Affiliation(s)
- S Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA.
| |
Collapse
|
38
|
Heo JB, Rho HS, Kim SW, Hwang SM, Kwon HJ, Nahm MY, Bang WY, Bahk JD. OsGAP1 functions as a positive regulator of OsRab11-mediated TGN to PM or vacuole trafficking. PLANT & CELL PHYSIOLOGY 2005; 46:2005-18. [PMID: 16230331 DOI: 10.1093/pcp/pci215] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The Ypt/Rab family of small G-proteins is important in regulating vesicular transport. Rabs hydrolyze GTP very slowly on their own and require GTPase-activating proteins (GAPs). Here we report the identification and characterization of OsGAP1, a Rab-specific rice GAP. OsGAP1 strongly stimulated OsRab8a and OsRab11, which are homologs of the mammalian Rab8 and Rab11 proteins that are essential for Golgi to plasma membrane (PM) and trans-Golgi network (TGN) to PM trafficking, respectively. Substitution of two invariant arginines within the catalytic domain of Oryza sativa GTPase-activating protein 1 (OsGAP1) with alanines significantly inhibited its GAP activity. In vivo targeting experiments revealed that OsGAP1 localizes to the TGN or pre-vacuolar compartment (PVC). A yeast expression system demonstrated that wild-type OsGAP1 facilitates O. sativa dissociation inhibitor 3 (OsGDI3)-catalyzed OsRab11 recycling at an early stage, but the OsGAP1(R385A) and (R450A) mutants do not. Thus, GTP hydrolysis is essential for Rab recycling. Moreover, expression of the OsGAP1 mutants in Arabidopsis protoplasts inhibited the trafficking of some cargo proteins, including the PM-localizing H+-ATPase-green fluorescent protein (GFP) and Ca2+-ATPase8-GFP and the central vacuole-localizing Arabidopsis aleurain-like protein (AALP)-GFP. The OsGAP1 mutants caused these proteins to accumulate at the Golgi apparatus. Surprisingly, OsRab11 overproduction relieved the inhibitory effect of the OsGAP1 mutants on vesicular trafficking. OsRab8a had no such effect. Thus, the OsGAP1 mutants may inhibit TGN to PM or central vacuole trafficking because they induce the sequestration of endogenous Rab11. We propose that OsGAP1 facilitates vesicular trafficking from the TGN to the PM or central vacuole by both stimulating the GTPase activity of OsRab11 and increasing the recycling of inactive OsRab11.
Collapse
Affiliation(s)
- Jae Bok Heo
- Division of Applied Life Sciences, Graduate School of Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Narita K, Choudhury A, Dobrenis K, Sharma DK, Holicky EL, Marks DL, Walkley SU, Pagano RE. Protein transduction of Rab9 in Niemann-Pick C cells reduces cholesterol storage. FASEB J 2005; 19:1558-60. [PMID: 15972801 DOI: 10.1096/fj.04-2714fje] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Niemann-Pick disease type C (NPC) is a genetic disorder in which patient cells exhibit lysosomal accumulation of cholesterol and sphingolipids (SLs) caused by defects in either NPC1 or NPC2 proteins. We previously demonstrated that NPC1 human skin fibroblasts overexpressing endosomal Rab proteins (Rab7 or Rab9) showed a correction in the storage disease phenotype. In the current study, we used protein transduction to further investigate Rab9-mediated reduction of stored lipids in NPC cells. Recombinant human Rab9 fused with the herpes simplex virus VP22 protein fragment was overexpressed, purified, and added to culture medium to induce protein transduction. When VP22-Rab9 was transduced into NPC1 fibroblasts, nearly all cells showed significant reduction in cellular free cholesterol levels, with no cytotoxicity up to 5 microM. A fraction of the VP22-Rab9 that was transduced into the cells was shown to bind to rab GDP dissociation inhibitor, suggesting that this pool of VP22-Rab9 had become prenylated. The reduction in cellular free cholesterol was associated with correction of abnormal intracellular trafficking of BODIPY-lactosylceramide and an increase of sterols in the culture media. The clearance of lysosomal free cholesterol was also associated with a decrease in LDL-receptor levels. In addition, we demonstrated reduction of intracellular cholesterol by VP22-Rab9 transduction in NPC2 fibroblasts and in cultured mouse NPC1 neurons. These observations provide important new information about the correction of membrane traffic in NPC cells by Rab9 overexpression and may lead to new therapeutic approaches for treatment of this disease.
Collapse
Affiliation(s)
- Keishi Narita
- Department of Biochemistry and Molecular Biology Mayo Clinic and Foundation Rochester, Minnesota 55905, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Beard M, Satoh A, Shorter J, Warren G. A cryptic Rab1-binding site in the p115 tethering protein. J Biol Chem 2005; 280:25840-8. [PMID: 15878873 DOI: 10.1074/jbc.m503925200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Small GTPases and coiled-coil proteins of the golgin family help to tether COPI vesicles to Golgi membranes. At the cis-side of the Golgi, the Rab1 GTPase binds directly to each of three coiled-coil proteins: p115, GM130, and as now shown, Giantin. Rab1 binds to a coiled-coil region within the tail domain of p115 and this binding is inhibited by the C-terminal, acidic domain of p115. Furthermore, GM130 and Giantin bind to the acidic domain of p115 and stimulate p115 binding to Rab1, suggesting that p115 binding to Rab1 is regulated. Regulation of this interaction by proteins such as GM130 and Giantin may control the membrane recruitment of p115 by Rab1.
Collapse
Affiliation(s)
- Matthew Beard
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
41
|
Ganley IG, Carroll K, Bittova L, Pfeffer S. Rab9 GTPase regulates late endosome size and requires effector interaction for its stability. Mol Biol Cell 2004; 15:5420-30. [PMID: 15456905 PMCID: PMC532021 DOI: 10.1091/mbc.e04-08-0747] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Rab9 GTPase resides in a late endosome microdomain together with mannose 6-phosphate receptors (MPRs) and the tail-interacting protein of 47 kDa (TIP47). To explore the importance of Rab9 for microdomain establishment, we depleted the protein from cultured cells. Rab9 depletion decreased late endosome size and reduced the numbers of multilamellar and dense-tubule-containing late endosomes/lysosomes, but not multivesicular endosomes. The remaining late endosomes and lysosomes were more tightly clustered near the nucleus, implicating Rab9 in endosome localization. Cells displayed increased surface MPRs and lysosome-associated membrane protein 1. In addition, cells showed increased MPR synthesis in conjunction with MPR missorting to the lysosome. Surprisingly, Rab9 stability on late endosomes required interaction with TIP47. Rabs are thought of as independent, prenylated entities that reside either on membranes or in cytosol, bound to GDP dissociation inhibitor. These data show that Rab9 stability is strongly influenced by a specific effector interaction. Moreover, Rab9 and the proteins with which it interacts seem critical for the maintenance of specific late endocytic compartments and endosome/lysosome localization.
Collapse
Affiliation(s)
- Ian G Ganley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307, USA
| | | | | | | |
Collapse
|
42
|
Lee GJ, Sohn EJ, Lee MH, Hwang I. The Arabidopsis rab5 homologs rha1 and ara7 localize to the prevacuolar compartment. PLANT & CELL PHYSIOLOGY 2004; 45:1211-20. [PMID: 15509844 DOI: 10.1093/pcp/pch142] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Rha1, an Arabidopsis Rab5 homolog, plays a critical role in vacuolar trafficking in plant cells. In this study, we investigated the localization of Rha1 and Ara7, two Arabidopsis proteins that have highly similar amino acid sequence homology to Rab5 in animal cells. Both Ara7 and Rha1 gave a punctate staining pattern and colocalized when transiently expressed as GFP- (green fluorescent protein) or small epitope-tagged forms in Arabidopsis protoplasts. In protoplasts, transiently expressed Rha1 and Ara7 colocalized with AtPEP12p and VSR(At-1), two proteins that are known to be present at the prevacuolar compartment (PVC). Furthermore, endogenous Rha1 also gave a punctate staining pattern and colocalized with AtPEP12p to the PVC. Mutations in the first and second GTP-binding motifs alter the localizations of GFP: Rha1[S24N] in the cytosol and Rha1[Q69L] in the tonoplast of the central vacuole. Also, mutations in the effector domain and the prenylation site inhibit membrane association of Rha1. Based on these results, we propose that Rha1 and Ara7 localize to the PVC and that GTP-binding motifs as well as the effector domain are important for localization of Rha1 to the PVC.
Collapse
Affiliation(s)
- Gil-Je Lee
- Center for Plant Intracellular Trafficking and Division of Molecular and Life Sciences, Pohang University of Science and Technology, Pohang, 790-784 Korea
| | | | | | | |
Collapse
|
43
|
Ding J, Soule G, Overmeyer JH, Maltese WA. Tyrosine phosphorylation of the Rab24 GTPase in cultured mammalian cells. Biochem Biophys Res Commun 2004; 312:670-5. [PMID: 14680817 DOI: 10.1016/j.bbrc.2003.10.171] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Indexed: 01/05/2023]
Abstract
Several members of the large family of Rab GTPases have been shown to function in vesicular trafficking in mammalian cells. However, the exact role of Rab24 remains poorly defined. Rab24 differs from other Rab proteins in that it has a low intrinsic GTPase activity and is not efficiently prenylated. Here we report an additional unique property of Rab24; i.e., the protein can undergo tyrosine phosphorylation when overexpressed in cultured cells. Immunoblot analyses with specific anti-phosphotyrosine monoclonal antibodies revealed the presence of phosphotyrosine (pTyr) on myc-Rab24 in whole cell lysates and immunoprecipitated samples. No pTyr was detected on other overexpressed myc-tagged GTPases (H-Ras, Rab1b, Rab6, Rab11 or Rab13). Comparisons of myc-Rab24 in the soluble and particulate fractions from HEK293 and HEp-2 cells indicated that the cytosolic pool of Rab24 was more heavily phosphorylated than the membrane pool. Treatment of transfected cells with the broad-spectrum tyrosine kinase inhibitor, genistein, as well as the specific Src-family kinase inhibitor, PP2, eliminated the pTyr signal from Rab24. In contrast the receptor tyrosine kinase inhibitor, tyrphostin A25, had no effect. Tyrosine phosphorylation of Rab24 was reduced by alanine substitution of two unique tyrosines, one found in a strong consensus phosphorylation motif (Y [Formula: see text] ) in the hypervariable domain (Y172) and the other falling within the GXXXGK(S/T) motif known as the P-loop (Y17). The latter region is known to influence GTP hydrolysis in Rab proteins, so the phosphorylation of Y17 could contribute to the low intrinsic GTPase activity of Rab24. This is the first report of tyrosine phosphorylation in any member of the Ras superfamily and it raises the possibility that this type of modification could influence Rab24 targeting and interactions with effector protein complexes.
Collapse
Affiliation(s)
- Jane Ding
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, Ohio 43614, USA
| | | | | | | |
Collapse
|
44
|
Bartz R, Benzing C, Ullrich O. Reconstitution of vesicular transport to Rab11-positive recycling endosomes in vitro. Biochem Biophys Res Commun 2003; 312:663-9. [PMID: 14680816 DOI: 10.1016/j.bbrc.2003.10.172] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Indexed: 11/21/2022]
Abstract
Rab GTPases are key regulators of vesicular protein transport in both the endocytic and exocytic pathways. In endocytosis and recycling, Rab11 plays a role in receptor recycling to plasma membrane via the pericentriolar recycling compartment. However, little is known about the molecular requirements and partners that promote transport through Rab11-positive recycling endosomes. Here, we report a novel approach to reconstitute transport to immunoabsorbed recycling endosomes in vitro. We show that transport is temperature-, energy-, and time-dependent and requires the presence of Rab proteins, as it is inhibited by the Rab-interacting protein Rab GDP-dissociation inhibitor that removes Rab proteins from the membrane. Cytochalasin D, a drug that blocks actin polymerization, inhibits the in vitro assay, suggesting that transport to recycling endosomes depends on an intact actin cytoskeleton. Using an affinity chromatography approach we show the identification of Rab11-interacting proteins including actin that stimulate transport to recycling endosomes in vitro.
Collapse
Affiliation(s)
- René Bartz
- Institut für Biochemie, Universität Mainz, Becherweg 30, D-55128 Mainz, Germany
| | | | | |
Collapse
|
45
|
Vergne I, Fratti RA, Hill PJ, Chua J, Belisle J, Deretic V. Mycobacterium tuberculosis phagosome maturation arrest: mycobacterial phosphatidylinositol analog phosphatidylinositol mannoside stimulates early endosomal fusion. Mol Biol Cell 2003; 15:751-60. [PMID: 14617817 PMCID: PMC329390 DOI: 10.1091/mbc.e03-05-0307] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Mycobacterium tuberculosis is a facultative intracellular pathogen that parasitizes macrophages by modulating properties of the Mycobacterium-containing phagosome. Mycobacterial phagosomes do not fuse with late endosomal/lysosomal organelles but retain access to early endosomal contents by an unknown mechanism. We have previously reported that mycobacterial phosphatidylinositol analog lipoarabinomannan (LAM) blocks a trans-Golgi network-to-phagosome phosphatidylinositol 3-kinase-dependent pathway. In this work, we extend our investigations of the effects of mycobacterial phosphoinositides on host membrane trafficking. We present data demonstrating that phosphatidylinositol mannoside (PIM) specifically stimulated homotypic fusion of early endosomes in an ATP-, cytosol-, and N-ethylmaleimide sensitive factor-dependent manner. The fusion showed absolute requirement for small Rab GTPases, and the stimulatory effect of PIM increased upon partial depletion of membrane Rabs with RabGDI. We found that stimulation of early endosomal fusion by PIM was higher when phosphatidylinositol 3-kinase was inhibited by wortmannin. PIM also stimulated in vitro fusion between model phagosomes and early endosomes. Finally, PIM displayed in vivo effects in macrophages by increasing accumulation of plasma membrane-endosomal syntaxin 4 and transferrin receptor on PIM-coated latex bead phagosomes. In addition, inhibition of phagosomal acidification was detected with PIM-coated beads. The effects of PIM, along with the previously reported action of LAM, suggest that M. tuberculosis has evolved a two-prong strategy to modify its intracellular niche: its products block acquisition of late endosomal/lysosomal constituents, while facilitating fusion with early endosomal compartments.
Collapse
Affiliation(s)
- Isabelle Vergne
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, 87131, USA
| | | | | | | | | | | |
Collapse
|
46
|
Alory C, Balch WE. Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol Biol Cell 2003; 14:3857-67. [PMID: 12972569 PMCID: PMC196578 DOI: 10.1091/e03-04-0227] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP-Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab-binding properties, GDI cannot assist in Rab prenylation and REP cannot retrieve Rab proteins from the membranes. We have now isolated REP mutant proteins that are able to partially function as both REP and GDI. These results provide molecular insight into the functional and evolutionary organization of the REP/GDI superfamily.
Collapse
Affiliation(s)
- Christelle Alory
- Departments of Cell and Molecular Biology and The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92130, USA.
| | | |
Collapse
|
47
|
Alory C, Balch WE. Molecular evolution of the Rab-escort-protein/guanine-nucleotide-dissociation-inhibitor superfamily. Mol Biol Cell 2003. [PMID: 12972569 DOI: 10.1091/mbc.e03-04-0227] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Prenylation of Rab GTPases regulating vesicle traffic by Rab geranylgeranyltransferase (RabGGTase) requires a complex formed by the association of newly synthesized Rab proteins with Rab-escort-protein (REP), the choroideremia-gene-product that is mutated in disease, leading to loss of vision. After delivery to the membrane by the REP-Rab complex, subsequent recycling to the cytosol requires the REP-related guanine-nucleotide-dissociation-inhibitor (GDI). Although REP and GDI share common Rab-binding properties, GDI cannot assist in Rab prenylation and REP cannot retrieve Rab proteins from the membranes. We have now isolated REP mutant proteins that are able to partially function as both REP and GDI. These results provide molecular insight into the functional and evolutionary organization of the REP/GDI superfamily.
Collapse
Affiliation(s)
- Christelle Alory
- Departments of Cell and Molecular Biology and The Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California 92130, USA.
| | | |
Collapse
|
48
|
Calero M, Chen CZ, Zhu W, Winand N, Havas KA, Gilbert PM, Burd CG, Collins RN. Dual prenylation is required for Rab protein localization and function. Mol Biol Cell 2003; 14:1852-67. [PMID: 12802060 PMCID: PMC165082 DOI: 10.1091/mbc.e02-11-0707] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2002] [Revised: 01/01/2003] [Accepted: 01/13/2003] [Indexed: 12/14/2022] Open
Abstract
The majority of Rab proteins are posttranslationally modified with two geranylgeranyl lipid moieties that enable their stable association with membranes. In this study, we present evidence to demonstrate that there is a specific lipid requirement for Rab protein localization and function. Substitution of different prenyl anchors on Rab GTPases does not lead to correct function. In the case of YPT1 and SEC4, two essential Rab genes in Saccharomyces cerevisiae, alternative lipid tails cannot support life when present as the sole source of YPT1 and SEC4. Furthermore, our data suggest that double geranyl-geranyl groups are required for Rab proteins to correctly localize to their characteristic organelle membrane. We have identified a factor, Yip1p that specifically binds the di-geranylgeranylated Rab and does not interact with mono-prenylated Rab proteins. This is the first demonstration that the double prenylation modification of Rab proteins is an important feature in the function of this small GTPase family and adds specific prenylation to the already known determinants of Rab localization.
Collapse
Affiliation(s)
- Monica Calero
- Department of Molecular Medicine, Cornell University, Ithaca, New York 14853-6401, USA
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Maltese WA, Soule G, Gunning W, Calomeni E, Alexander B. Mutant Rab24 GTPase is targeted to nuclear inclusions. BMC Cell Biol 2002; 3:25. [PMID: 12323076 PMCID: PMC130051 DOI: 10.1186/1471-2121-3-25] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2002] [Accepted: 09/25/2002] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Members of the Rab GTPase family regulate intracellular protein trafficking, but the specific function of Rab24 remains unknown. Several attributes distinguish this protein from other members of the Rab family, including a low intrinsic GTPase activity. RESULTS The functions of other Rab proteins have been defined through the use of dominant-negative mutants with amino acid substitutions in the conserved N(T)KxD nucleotide binding motif. Surprisingly, when such Rab24 constructs were expressed in cultured cells, they accumulated in nuclear inclusions which disrupted the integrity of the nuclear envelope. The inclusions reacted positively with antibodies against ubiquitin and Hsp70, similar to protein aggregates observed in polyglutamine disorders. They also appeared to sequester importin-beta and GFP-coupled glucocorticoid receptor. Other Rab GTPases with similar mutations in the N(T)KxD motif were never found in inclusions, suggesting that the unusual localization of Rab24 is not related solely to misfolding of its nucleotide-free form. Studies with Rab24/Rab1B chimeras indicated that targeting of the mutant protein to inclusions requires the unique C-terminal domain of Rab24. CONCLUSION These studies demonstrate that mutations in Rab24 can trigger a cytopathic cellular response involving accumulation of nuclear inclusions. If the N(T)KxD mutants of Rab24 function as dominant suppressors, these studies may point to a unique role for Rab24 in degradation of misfolded cellular proteins or trafficking of proteins to the nuclear envelope. However, we cannot yet eliminate the possibility that these phenomena are related to unusual non-physiological protein interactions with the mutant form of Rab24.
Collapse
Affiliation(s)
- William A Maltese
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH 43614, USA
| | - Gwendolyn Soule
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, OH 43614, USA
| | - William Gunning
- Department of Pathology, Medical College of Ohio, Toledo, OH 43614, USA
| | - Edward Calomeni
- Department of Pathology, Medical College of Ohio, Toledo, OH 43614, USA
| | | |
Collapse
|
50
|
Barbero P, Bittova L, Pfeffer SR. Visualization of Rab9-mediated vesicle transport from endosomes to the trans-Golgi in living cells. J Cell Biol 2002; 156:511-8. [PMID: 11827983 PMCID: PMC2173336 DOI: 10.1083/jcb.200109030] [Citation(s) in RCA: 288] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Mannose 6-phosphate receptors (MPRs) are transported from endosomes to the trans-Golgi via a transport process that requires the Rab9 GTPase and the cargo adaptor TIP47. We have generated green fluorescent protein variants of Rab9 and determined their localization in cultured cells. Rab9 is localized primarily in late endosomes and is readily distinguished from the trans-Golgi marker galactosyltransferase. Coexpression of fluorescent Rab9 and Rab7 revealed that these two late endosome Rabs occupy distinct domains within late endosome membranes. Cation-independent mannose 6-phosphate receptors are enriched in the Rab9 domain relative to the Rab7 domain. TIP47 is likely to be present in this domain because it colocalizes with the receptors in fixed cells, and a TIP47 mutant disrupted endosome morphology and sequestered MPRs intracellularly. Rab9 is present on endosomes that display bidirectional microtubule-dependent motility. Rab9-positive transport vesicles fuse with the trans-Golgi network as followed by video microscopy of live cells. These data provide the first indication that Rab9-mediated endosome to trans-Golgi transport can use a vesicle (rather than a tubular) intermediate. Our data suggest that Rab9 remains vesicle associated until docking with the Golgi complex and is rapidly removed concomitant with or just after membrane fusion.
Collapse
Affiliation(s)
- Pierre Barbero
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|