1
|
Liu J, Huang J, Zhao Y, Liu H, Wang D, Yang J, Zhao W, Taylor IA, Peng YL. Structural basis of DNA recognition by PCG2 reveals a novel DNA binding mode for winged helix-turn-helix domains. Nucleic Acids Res 2014; 43:1231-40. [PMID: 25550425 PMCID: PMC4333399 DOI: 10.1093/nar/gku1351] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The MBP1 family proteins are the DNA binding subunits of MBF cell-cycle transcription factor complexes and contain an N terminal winged helix-turn-helix (wHTH) DNA binding domain (DBD). Although the DNA binding mechanism of MBP1 from Saccharomyces cerevisiae has been extensively studied, the structural framework and the DNA binding mode of other MBP1 family proteins remains to be disclosed. Here, we determined the crystal structure of the DBD of PCG2, the Magnaporthe oryzae orthologue of MBP1, bound to MCB-DNA. The structure revealed that the wing, the 20-loop, helix A and helix B in PCG2-DBD are important elements for DNA binding. Unlike previously characterized wHTH proteins, PCG2-DBD utilizes the wing and helix-B to bind the minor groove and the major groove of the MCB-DNA whilst the 20-loop and helix A interact non-specifically with DNA. Notably, two glutamines Q89 and Q82 within the wing were found to recognize the MCB core CGCG sequence through making hydrogen bond interactions. Further in vitro assays confirmed essential roles of Q89 and Q82 in the DNA binding. These data together indicate that the MBP1 homologue PCG2 employs an unusual mode of binding to target DNA and demonstrate the versatility of wHTH domains.
Collapse
Affiliation(s)
- Junfeng Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Jinguang Huang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China College of Agronomy and Plant Protection, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yanxiang Zhao
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Huaian Liu
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China
| | - Dawei Wang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Jun Yang
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Ian A Taylor
- Division of Molecular Structure, MRC-NIMR, London, NW7 1AA, UK
| | - You-Liang Peng
- MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing 100193, China State key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Oliva A, Rosebrock A, Ferrezuelo F, Pyne S, Chen H, Skiena S, Futcher B, Leatherwood J. The cell cycle-regulated genes of Schizosaccharomyces pombe. PLoS Biol 2005; 3:e225. [PMID: 15966770 PMCID: PMC1157095 DOI: 10.1371/journal.pbio.0030225] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2004] [Accepted: 04/21/2005] [Indexed: 12/12/2022] Open
Abstract
Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillations were identified and analyzed. There were two broad waves of cell cycle transcription, one in early/mid G2 phase, and the other near the G2/M transition. The early/mid G2 wave included many genes involved in ribosome biogenesis, possibly explaining the cell cycle oscillation in protein synthesis in S. pombe. The G2/M wave included at least three distinctly regulated clusters of genes: one large cluster including mitosis, mitotic exit, and cell separation functions, one small cluster dedicated to DNA replication, and another small cluster dedicated to cytokinesis and division. S. pombe cell cycle genes have relatively long, complex promoters containing groups of multiple DNA sequence motifs, often of two, three, or more different kinds. Many of the genes, transcription factors, and regulatory mechanisms are conserved between S. pombe and S. cerevisiae. Finally, we found preliminary evidence for a nearly genome-wide oscillation in gene expression: 2,000 or more genes undergo slight oscillations in expression as a function of the cell cycle, although whether this is adaptive, or incidental to other events in the cell, such as chromatin condensation, we do not know. A comprehensive examination of gene expression throughout the cell cycle of fission yeast is compared with recent related studies to highlight robust transcriptional patterns.
Collapse
Affiliation(s)
- Anna Oliva
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Adam Rosebrock
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Francisco Ferrezuelo
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Saumyadipta Pyne
- 2 Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Haiying Chen
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Steve Skiena
- 2 Department of Computer Science, Stony Brook University, Stony Brook, New York, United States of America
| | - Bruce Futcher
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Janet Leatherwood
- 1 Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
3
|
Cunliffe L, White S, McInerny CJ. DSC1-MCB regulation of meiotic transcription in Schizosaccharomyces pombe. Mol Genet Genomics 2003; 271:60-71. [PMID: 14648198 DOI: 10.1007/s00438-003-0956-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Meiosis is initiated from the G1 phase of the mitotic cell cycle, and consists of pre-meiotic S-phase followed by two successive nuclear divisions. Here we show that control of gene expression during pre-meiotic S-phase in the fission yeast Schizosaccharomyces pombe is mediated by a DNA synthesis control-like transcription factor complex (DSC1), which acts upon M lu1 cell cycle box (MCB) promoter motifs. Several genes, including rec8+, rec11+, cdc18+, and cdc22+, which contain MCB motifs in their promoter regions, are found to be co-ordinately regulated during pre-meiotic S-phase. Both synthetic and native MCB motifs are shown to confer meiotic-specific transcription on a heterologous reporter gene. A DSC1-like transcription factor complex that binds to MCB motifs was also identified in meiotic cells. The effect of mutating and over-expressing individual components of DSC1 (cdc10+, res1+, res2+, rep1+ and rep2+) on the transcription of cdc22+, rec8+ and rec11+ during meiosis was examined. We found that cdc10+, res2+, rep1+ and rep2+ are required for correct meiotic transcription, while res1+ is not required for this process. This work demonstrates a role for MCB motifs and a DSC1-like transcription factor complex in controlling transcription during meiosis in fission yeast, and suggests a mechanism for how this specific expression occurs.
Collapse
Affiliation(s)
- L Cunliffe
- Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | |
Collapse
|
4
|
Ayté J, Schweitzer C, Zarzov P, Nurse P, DeCaprio JA. Feedback regulation of the MBF transcription factor by cyclin Cig2. Nat Cell Biol 2001; 3:1043-50. [PMID: 11781565 DOI: 10.1038/ncb1201-1043] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Mlu1-binding factor (MBF) from the fission yeast Schizosaccharomyces pombe contains the proteins Res1p and Res2p and binds to the Mlu1 cell-cycle box (MCB) element in DNA, activating the transcription of genes required for S phase. We report here that the cell-cycle-regulated expression of the cyclin cig2 gene is dependent on MBF. Deletion of MCB elements in the cig2 promoter perturbed the expression not only of cig2 but also of other MBF-dependent genes, indicating that Cig2p could regulate MBF activity. Cig2p can bind to Res2p, promote the phosphorylation of Res1p and inhibit MBF-dependent gene transcription. Cig2p thus forms an autoregulating feedback-inhibition loop with MBF which is important for normal regulation of the cell cycle.
Collapse
Affiliation(s)
- J Ayté
- Dana-Farber Cancer Institute and Harvard Medical School, 44 Binney St, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
5
|
Tanaka K, Okayama H. A pcl-like cyclin activates the Res2p-Cdc10p cell cycle "start" transcriptional factor complex in fission yeast. Mol Biol Cell 2000; 11:2845-62. [PMID: 10982385 PMCID: PMC14960 DOI: 10.1091/mbc.11.9.2845] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2000] [Revised: 06/02/2000] [Accepted: 06/26/2000] [Indexed: 11/11/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, the "start" of the cell cycle is controlled by the two functionally redundant transcriptional regulator complexes, Res1p-Cdc10p and Res2p-Cdc10p, that activate genes essential for the onset and progression of S phase. The activity of the Res2p-Cdc10p complex is regulated at least by the availability of the Rep2 trans-activator subunit in the mitotic cell cycle. We have recently isolated the pas1(+) gene as a multicopy suppressor of the res1 null mutant. This gene encodes a novel cyclin that shares homology with the Pho85 kinase-associated cyclins of the budding yeast Saccharomyces cerevisiae. Genetic analysis reveals that Pas1 cyclin is unrelated to phosphate metabolism and stimulates the G(1)-S transition by specifically activating the Res2p-Cdc10p complex independently of Rep2p. Pas1 cyclin also controls mating pheromone signaling. Cells lacking pas1(+) are highly sensitive to mating pheromone, responding with facilitated G(1) arrest and premature commitment to conjugation. Pas1 cyclin associates in vivo with both Cdc2 and Pef1 kinases, the latter of which is a fission yeast counterpart of the budding yeast Pho85 kinase, but genetic analysis indicates that the Pef1p-associated Pas1p is responsible for the activation of Res2p-Cdc10p during the G(1)-S transition.
Collapse
Affiliation(s)
- K Tanaka
- Department of Biochemistry and Molecular Biology, The University of Tokyo, Graduate School of Medicine, Bunkyo-ku, Tokyo 113-0033, Japan
| | | |
Collapse
|
6
|
Whitehall S, Stacey P, Dawson K, Jones N. Cell cycle-regulated transcription in fission yeast: Cdc10-Res protein interactions during the cell cycle and domains required for regulated transcription. Mol Biol Cell 1999; 10:3705-15. [PMID: 10564266 PMCID: PMC25666 DOI: 10.1091/mbc.10.11.3705] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In Schizosaccharomyces pombe the MBF (DSC1) complex mediates transcriptional activation at Start and is composed of a common subunit called Cdc10 in combination with two alternative DNA-binding partners, Res1 and Res2. It has been suggested that a high-activity MBF complex (at G1/S) is switched to a low-activity complex (in G2) by the incorporation of the negative regulatory subunit Res2. We have analyzed MBF protein-protein interactions and find that both Res proteins are associated with Cdc10 throughout the cell cycle, arguing against this model. Furthermore we demonstrate that Res2 is capable of interacting with a mutant form of Cdc10 that has high transcriptional activity. It has been shown previously that both Res proteins are required for periodic cell cycle-regulated transcription. Therefore a series of Res1-Res2 hybrid molecules was used to determine the domains that are specifically required to regulate periodic transcription. In Res2 the nature of the C-terminal region is critical, and in both Res1 and Res2, a domain overlapping the N-terminal ankyrin repeat and a recently identified activation domain is important for mediating cell cycle-regulated transcription.
Collapse
Affiliation(s)
- S Whitehall
- School of Biochemistry and Genetics, The Medical School, The University of Newcastle, Newcastle-upon-Tyne NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
7
|
Tahara S, Tanaka K, Yuasa Y, Okayama H. Functional domains of rep2, a transcriptional activator subunit for Res2-Cdc10, controlling the cell cycle "start". Mol Biol Cell 1998; 9:1577-88. [PMID: 9614195 PMCID: PMC25387 DOI: 10.1091/mbc.9.6.1577] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In the fission yeast Schizosaccharomyces pombe, passage from G1 to S-phase requires the execution of the transcriptional factor complex that consists of the Cdc10 and Res1/2 molecules. This complex activates the MluI cell cycle box cis-element contained in genes essential for S-phase onset and progression. The rep2(+) gene, isolated as a multicopy suppressor of a temperature-sensitive cdc10 mutant, has been postulated to encode a putative transcriptional activator subunit for the Res2-Cdc10 complex. To identify the rep2(+) function and molecularly define its domain organization, we reconstituted the Res2-Cdc10 complex-dependent transcriptional activation in Saccharomyces cerevisiae. Reconstitution experiments, deletion analyses using one and two hybrid systems, and in vivo Res2 coimmunoprecipitation assays show that the Res2-Cdc10 complex itself can recognize but cannot activate MluI cell cycle box without Rep2, and that consistent with its postulated function, Rep2 contains 45-amino acid Res2 binding and 22-amino acid transcriptional activation domains in the middle and C terminus of the molecule, respectively. The functional essentiality of these domains is also demonstrated by their requirement for rescue of the cold-sensitive rep2 deletion mutant of fission yeast.
Collapse
Affiliation(s)
- S Tahara
- Department of Hygiene and Oncology, Tokyo Medical and Dental University, School of Medicine, Bunkyo-ku, Tokyo 113, Japan
| | | | | | | |
Collapse
|