1
|
Reith RR, Batt MC, Fuller AM, Meekins JM, Diehl KA, Zhou Y, Bedwell PS, Ward JA, Sanders SK, Petersen JL, Steffen DJ. A recessive CLN3 variant is responsible for delayed-onset retinal degeneration in Hereford cattle. J Vet Diagn Invest 2024; 36:438-446. [PMID: 38516801 PMCID: PMC11110775 DOI: 10.1177/10406387241239918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Thirteen American Hereford cattle were reported blind with presumed onset when ~12-mo-old. All blind cattle shared a common ancestor through both the maternal and paternal pedigrees, suggesting a recessive genetic origin. Given the pedigree relationships and novel phenotype, we characterized the ophthalmo-pathologic changes associated with blindness and identified the responsible gene variant. Ophthalmologic examinations of 5 blind cattle revealed retinal degeneration. Histologically, 2 blind cattle had loss of the retinal photoreceptor layer. Whole-genome sequencing (WGS) of 7 blind cattle and 9 unaffected relatives revealed a 1-bp frameshift deletion in ceroid lipofuscinosis neuronal 3 (CLN3; chr25 g.26043843del) for which the blind cattle were homozygous and their parents heterozygous. The identified variant in exon 16 of 17 is predicted to truncate the encoded protein (p. Pro369Argfs*8) battenin, which is involved in lysosomal function necessary for photoreceptor layer maintenance. Of 462 cattle genotyped, only blind cattle were homozygous for the deletion. A query of WGS data of > 5,800 animals further revealed that the variant was only observed in related Hereford cattle. Mutations in CLN3 are associated with human juvenile neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which results in early-onset retinal degeneration and lesions similar to those observed in our cases. Our data support the frameshift variant of CLN3 as causative of blindness in these Hereford cattle, and provide additional evidence of the role of this gene in retinal lesions, possibly as a model for human non-syndromic JNCL.
Collapse
Affiliation(s)
- Rachel R. Reith
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Mackenzie C. Batt
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Anna M. Fuller
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - Jessica M. Meekins
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Kathryn A. Diehl
- College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - You Zhou
- Center for Biotechnology, University of Nebraska–Lincoln, Lincoln, NE, USA
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| | | | - Jack A. Ward
- American Hereford Association, Breed Improvement, Kansas City, MO, USA
| | - Stacy K. Sanders
- American Hereford Association, Breed Improvement, Kansas City, MO, USA
| | - Jessica L. Petersen
- Department of Animal Science, University of Nebraska–Lincoln, Lincoln, NE, USA
| | - David J. Steffen
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska–Lincoln, Lincoln, NE, USA
| |
Collapse
|
2
|
Klein M, Hermey G. Converging links between adult-onset neurodegenerative Alzheimer's disease and early life neurodegenerative neuronal ceroid lipofuscinosis? Neural Regen Res 2023; 18:1463-1471. [PMID: 36571343 PMCID: PMC10075119 DOI: 10.4103/1673-5374.361544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Evidence from genetics and from analyzing cellular and animal models have converged to suggest links between neurodegenerative disorders of early and late life. Here, we summarize emerging links between the most common late life neurodegenerative disease, Alzheimer's disease, and the most common early life neurodegenerative diseases, neuronal ceroid lipofuscinoses. Genetic studies reported an overlap of clinically diagnosed Alzheimer's disease and mutations in genes known to cause neuronal ceroid lipofuscinoses. Accumulating data strongly suggest dysfunction of intracellular trafficking mechanisms and the autophagy-endolysosome system in both types of neurodegenerative disorders. This suggests shared cytopathological processes underlying these different types of neurodegenerative diseases. A better understanding of the common mechanisms underlying the different diseases is important as this might lead to the identification of novel targets for therapeutic concepts, the transfer of therapeutic strategies from one disease to the other and therapeutic approaches tailored to patients with specific mutations. Here, we review dysfunctions of the endolysosomal autophagy pathway in Alzheimer's disease and neuronal ceroid lipofuscinoses and summarize emerging etiologic and genetic overlaps.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
3
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
4
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
5
|
Mechanisms regulating the sorting of soluble lysosomal proteins. Biosci Rep 2022; 42:231123. [PMID: 35394021 PMCID: PMC9109462 DOI: 10.1042/bsr20211856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 11/17/2022] Open
Abstract
Lysosomes are key regulators of many fundamental cellular processes such as metabolism, autophagy, immune response, cell signalling and plasma membrane repair. These highly dynamic organelles are composed of various membrane and soluble proteins, which are essential for their proper functioning. The soluble proteins include numerous proteases, glycosidases and other hydrolases, along with activators, required for catabolism. The correct sorting of soluble lysosomal proteins is crucial to ensure the proper functioning of lysosomes and is achieved through the coordinated effort of many sorting receptors, resident ER and Golgi proteins, and several cytosolic components. Mutations in a number of proteins involved in sorting soluble proteins to lysosomes result in human disease. These can range from rare diseases such as lysosome storage disorders, to more prevalent ones, such as Alzheimer’s disease, Parkinson’s disease and others, including rare neurodegenerative diseases that affect children. In this review, we discuss the mechanisms that regulate the sorting of soluble proteins to lysosomes and highlight the effects of mutations in this pathway that cause human disease. More precisely, we will review the route taken by soluble lysosomal proteins from their translation into the ER, their maturation along the Golgi apparatus, and sorting at the trans-Golgi network. We will also highlight the effects of mutations in this pathway that cause human disease.
Collapse
|
6
|
Klein M, Kaleem A, Oetjen S, Wünkhaus D, Binkle L, Schilling S, Gjorgjieva M, Scholz R, Gruber-Schoffnegger D, Storch S, Kins S, Drewes G, Hoffmeister-Ullerich S, Kuhl D, Hermey G. Converging roles of PSENEN/PEN2 and CLN3 in the autophagy-lysosome system. Autophagy 2021; 18:2068-2085. [PMID: 34964690 PMCID: PMC9397472 DOI: 10.1080/15548627.2021.2016232] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
PSENEN/PEN2 is the smallest subunit of the γ-secretase complex, an intramembrane protease that cleaves proteins within their transmembrane domains. Mutations in components of the γ-secretase underlie familial Alzheimer disease. In addition to its proteolytic activity, supplementary, γ-secretase independent, functions in the macroautophagy/autophagy-lysosome system have been proposed. Here, we screened for PSENEN-interacting proteins and identified CLN3. Mutations in CLN3 are causative for juvenile neuronal ceroid lipofuscinosis, a rare lysosomal storage disorder considered the most common neurodegenerative disease in children. As mutations in the PSENEN and CLN3 genes cause different neurodegenerative diseases, understanding shared cellular functions of both proteins might be pertinent for understanding general cellular mechanisms underlying neurodegeneration. We hypothesized that CLN3 modulates γ-secretase activity and that PSENEN and CLN3 play associated roles in the autophagy-lysosome system. We applied CRISPR gene-editing and obtained independent isogenic HeLa knockout cell lines for PSENEN and CLN3. Following previous studies, we demonstrate that PSENEN is essential for forming a functional γ-secretase complex and is indispensable for γ-secretase activity. In contrast, CLN3 does not modulate γ-secretase activity to a significant degree. We observed in PSENEN- and CLN3-knockout cells corresponding alterations in the autophagy-lysosome system. These include reduced activity of lysosomal enzymes and lysosome number, an increased number of autophagosomes, increased lysosome-autophagosome fusion, and elevated levels of TFEB (transcription factor EB). Our study strongly suggests converging roles of PSENEN and CLN3 in the autophagy-lysosome system in a γ-secretase activity-independent manner, supporting the idea of common cytopathological processes underlying different neurodegenerative diseases. Abbreviations: Aβ, amyloid-beta; AD, Alzheimer disease; APP, amyloid precursor protein; ATP5MC, ATP synthase membrane subunit c; DQ-BSA, dye-quenched bovine serum albumin; ER, endoplasmic reticulum; GFP, green fluorescent protein; ICC, immunocytochemistry; ICD, intracellular domain; JNCL, juvenile neuronal ceroid lipofuscinosis; KO, knockout; LC3, microtubule associated protein 1 light chain 3; NCL, neuronal ceroid lipofuscinoses; PSEN, presenilin; PSENEN/PEN2: presenilin enhancer, gamma-secretase subunit; TAP, tandem affinity purification; TEV, tobacco etch virus; TF, transferrin; WB, Western blot; WT, wild type.
Collapse
Affiliation(s)
- Marcel Klein
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Oetjen
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Lars Binkle
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra Schilling
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Milena Gjorgjieva
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Scholz
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stephan Storch
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Kins
- Division of Human Biology and Human Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Gerard Drewes
- Cellzome, Functional Genomics Research and Development, Heidelberg, Germany
| | - Sabine Hoffmeister-Ullerich
- Bioanalytics, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Lujan P, Campelo F. Should I stay or should I go? Golgi membrane spatial organization for protein sorting and retention. Arch Biochem Biophys 2021; 707:108921. [PMID: 34038703 DOI: 10.1016/j.abb.2021.108921] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/12/2021] [Accepted: 05/03/2021] [Indexed: 12/23/2022]
Abstract
The Golgi complex is the membrane-bound organelle that lies at the center of the secretory pathway. Its main functions are to maintain cellular lipid homeostasis, to orchestrate protein processing and maturation, and to mediate protein sorting and export. These functions are not independent of one another, and they all require that the membranes of the Golgi complex have a well-defined biochemical composition. Importantly, a finely-regulated spatiotemporal organization of the Golgi membrane components is essential for the correct performance of the organelle. In here, we review our current mechanistic and molecular understanding of how Golgi membranes are spatially organized in the lateral and axial directions to fulfill their functions. In particular, we highlight the current evidence and proposed models of intra-Golgi transport, as well as the known mechanisms for the retention of Golgi residents and for the sorting and export of transmembrane cargo proteins. Despite the controversies, conflicting evidence, clashes between models, and technical limitations, the field has moved forward and we have gained extensive knowledge in this fascinating topic. However, there are still many important questions that remain to be completely answered. We hope that this review will help boost future investigations on these issues.
Collapse
Affiliation(s)
- Pablo Lujan
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| | - Felix Campelo
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860, Barcelona, Spain.
| |
Collapse
|
8
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
9
|
Smirnov VM, Nassisi M, Solis Hernandez C, Méjécase C, El Shamieh S, Condroyer C, Antonio A, Meunier I, Andrieu C, Defoort-Dhellemmes S, Mohand-Said S, Sahel JA, Audo I, Zeitz C. Retinal Phenotype of Patients With Isolated Retinal Degeneration Due to CLN3 Pathogenic Variants in a French Retinitis Pigmentosa Cohort. JAMA Ophthalmol 2021; 139:278-291. [PMID: 33507216 DOI: 10.1001/jamaophthalmol.2020.6089] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Importance Biallelic variants in CLN3 lead to a spectrum of diseases, ranging from severe neurodegeneration with retinal involvement (juvenile neuronal ceroid lipofuscinosis) to retina-restricted conditions. Objective To provide a detailed description of the retinal phenotype of patients with isolated retinal degeneration harboring biallelic CLN3 pathogenic variants and to attempt a phenotype-genotype correlation associated with this gene defect. Design, Setting, and Participants This retrospective cohort study included patients carrying biallelic CLN3 variants extracted from a cohort of patients with inherited retinal disorders (IRDs) investigated at the National Reference Center for Rare Ocular Diseases of the Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts from December 2007 to August 2020. Data were analyzed from October 2019 to August 2020. Main Outcome and Measures Functional (best-corrected visual acuity, visual field, color vision, and full-field electroretinogram), morphological (multimodal retinal imaging), and clinical data from patients were collected and analyzed. Gene defect was identified by either next-generation sequencing or whole-exome sequencing and confirmed by Sanger sequencing, quantitative polymerase chain reaction, and cosegregation analysis. Results Of 1533 included patients, 843 (55.0%) were women and 690 (45.0%) were men. A total of 15 cases from 11 unrelated families harboring biallelic CLN3 variants were identified. All patients presented with nonsyndromic IRD. Two distinct patterns of retinal disease could be identified: a mild rod-cone degeneration of middle-age onset (n = 6; legal blindness threshold reached by 70s) and a severe retinal degeneration with early macular atrophic changes (n = 9; legal blindness threshold reached by 40s). Eleven distinct pathogenic variants were detected, of which 4 were novel. All but 1, p.(Arg405Trp), CLN3 point variants and their genotypic associations were clearly distinct between juvenile neuronal ceroid lipofuscinosis and retina-restricted disease. Mild and severe forms of retina-restricted CLN3-linked IRDs also had different genetic background. Conclusions and Relevance These findings suggest CLN3 should be included in next-generation sequencing panels when investigating patients with nonsyndromic rod-cone dystrophy. These results document phenotype-genotype correlations associated with specific variants in CLN3. However, caution seems warranted regarding the potential neurological outcome if a pathogenic variant in CLN3 is detected in a case of presumed isolated IRD for the onset of neurological symptoms could be delayed.
Collapse
Affiliation(s)
- Vasily M Smirnov
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Université de Lille, Faculté de Médecine, Lille, France.,Exploration de la Vision et Neuro-Ophtalmologie, CHU de Lille, Lille, France
| | - Marco Nassisi
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Cyntia Solis Hernandez
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Cécile Méjécase
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Institute of Ophthalmology, University College London, London, United Kingdom
| | - Said El Shamieh
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Department of Medical Laboratory Technology, Faculty of Health Sciences, Beirut Arab University, Beirut, Lebanon
| | - Christel Condroyer
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Aline Antonio
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| | - Isabelle Meunier
- Institute for Neurosciences Montpellier, INSERM U1051, University of Monpellier, Montpellier, France.,National Center for Rare Genetic Retinal Dystrophies, Hôpital Guy de Chauliac, Montpellier, France
| | - Camille Andrieu
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | | | - Saddek Mohand-Said
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | - José-Alain Sahel
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France.,Fondation Ophtalmologique Adolphe de Rothschild, Paris, France.,Académie des Sciences, Institut de France, Paris, France.,Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Isabelle Audo
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France.,Institute of Ophthalmology, University College London, London, United Kingdom.,Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, INSERM-DHOS CIC 1423, Paris, France
| | - Christina Zeitz
- Sorbonne Université, INSERM, Centre national de la recherche scientifique, Institut de la Vision, Paris, France
| |
Collapse
|
10
|
A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol 2021; 4:161. [PMID: 33547385 PMCID: PMC7864947 DOI: 10.1038/s42003-021-01682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.
Collapse
|
11
|
Huizing M, Gahl WA. Inherited disorders of lysosomal membrane transporters. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2020; 1862:183336. [PMID: 32389669 PMCID: PMC7508925 DOI: 10.1016/j.bbamem.2020.183336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 04/01/2020] [Accepted: 04/28/2020] [Indexed: 02/07/2023]
Abstract
Disorders caused by defects in lysosomal membrane transporters form a distinct subgroup of lysosomal storage disorders (LSDs). To date, defects in only 10 lysosomal membrane transporters have been associated with inherited disorders. The clinical presentations of these diseases resemble the phenotypes of other LSDs; they are heterogeneous and often present in children with neurodegenerative manifestations. However, for pathomechanistic and therapeutic studies, lysosomal membrane transport defects should be distinguished from LSDs caused by defective hydrolytic enzymes. The involved proteins differ in function, localization, and lysosomal targeting, and the diseases themselves differ in their stored material and therapeutic approaches. We provide an overview of the small group of disorders of lysosomal membrane transporters, emphasizing discovery, pathomechanism, clinical features, diagnostic methods and therapeutic aspects. We discuss common aspects of lysosomal membrane transporter defects that can provide the basis for preclinical research into these disorders.
Collapse
Affiliation(s)
- Marjan Huizing
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | - William A Gahl
- Human Biochemical Genetics Section, Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Therapeutic efficacy of antisense oligonucleotides in mouse models of CLN3 Batten disease. Nat Med 2020; 26:1444-1451. [PMID: 32719489 DOI: 10.1038/s41591-020-0986-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
CLN3 Batten disease is an autosomal recessive, neurodegenerative, lysosomal storage disease caused by mutations in CLN3, which encodes a lysosomal membrane protein1-3. There are no disease-modifying treatments for this disease that affects up to 1 in 25,000 births, has an onset of symptoms in early childhood and typically is fatal by 20-30 years of life4-7. Most patients with CLN3 Batten have a deletion encompassing exons 7 and 8 (CLN3∆ex7/8), creating a reading frameshift7,8. Here we demonstrate that mice with this deletion can be effectively treated using an antisense oligonucleotide (ASO) that induces exon skipping to restore the open reading frame. A single treatment of neonatal mice with an exon 5-targeted ASO-induced robust exon skipping for more than a year, improved motor coordination, reduced histopathology in Cln3∆ex7/8 mice and increased survival in a new mouse model of the disease. ASOs also induced exon skipping in cell lines derived from patients with CLN3 Batten disease. Our findings demonstrate the utility of ASO-based reading-frame correction as an approach to treat CLN3 Batten disease and broaden the therapeutic landscape for ASOs in the treatment of other diseases using a similar strategy.
Collapse
|
13
|
kleine Holthaus SM, Aristorena M, Maswood R, Semenyuk O, Hoke J, Hare A, Smith AJ, Mole SE, Ali RR. Gene Therapy Targeting the Inner Retina Rescues the Retinal Phenotype in a Mouse Model of CLN3 Batten Disease. Hum Gene Ther 2020; 31:709-718. [PMID: 32578444 PMCID: PMC7404834 DOI: 10.1089/hum.2020.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), often referred to as Batten disease, are inherited lysosomal storage disorders that represent the most common neurodegeneration during childhood. Symptoms include seizures, vision loss, motor and cognitive decline, and premature death. The development of brain-directed treatments for NCLs has made noteworthy progress in recent years. Clinical trials are currently ongoing or planned for different forms of the disease. Despite these promising advances, it is unlikely that therapeutic interventions targeting the brain will prevent loss of vision in patients as retinal cells remain untreated and will continue to degenerate. Here, we demonstrate that Cln3Δex7/8 mice, a mouse model of CLN3 Batten disease with juvenile onset, suffer from a decline in inner retinal function resulting from the death of rod bipolar cells, interneurons vital for signal transmission from photoreceptors to ganglion cells in the retina. We also show that this ocular phenotype can be treated by adeno-associated virus (AAV)-mediated expression of CLN3 in cells of the inner retina, leading to significant survival of bipolar cells and preserved retinal function. In contrast, the treatment of photoreceptors, which are lost in patients at late disease stages, was not therapeutic in Cln3Δex7/8 mice, underlining the notion that CLN3 disease is primarily a disease of the inner retina with secondary changes in the outer retina. These data indicate that bipolar cells play a central role in this disease and identify this cell type as an important target for ocular AAV-based gene therapies for CLN3 disease.
Collapse
Affiliation(s)
| | - Mikel Aristorena
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Ryea Maswood
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Olha Semenyuk
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Justin Hoke
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Aura Hare
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Alexander J. Smith
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
| | - Sara E. Mole
- MRC Laboratory for Molecular Cell Biology, University College London, London, United Kingdom
- UCL Institute of Child Health, London, United Kingdom
- UCL Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - Robin R. Ali
- Department of Genetics, UCL Institute of Ophthalmology, London, United Kingdom
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust, London, United Kingdom
- Correspondence: Prof. Robin R. Ali, UCL Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, United Kingdom.
| |
Collapse
|
14
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
15
|
Sher M, Farooq M, Abdullah U, Ali Z, Faryal S, Zakaria M, Ullah F, Bukhari H, Møller RS, Tommerup N, Baig SM. A novel in-frame mutation in CLN3 leads to Juvenile neuronal ceroid lipofuscinosis in a large Pakistani family. Int J Neurosci 2019; 129:890-895. [PMID: 30892110 DOI: 10.1080/00207454.2019.1586686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Aim: Neuronal ceroid lipofuscinosis (NCLs) are the most common neurodegenerative disorders, with global incidence of 1 in 100,000 live births. NCLs affect central nervous system, primarily cerebellar and cerebral cortices. Juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease, is the most common form of NCLs. JNCL is primarily caused by pathogenic mutations in CLN3 gene, which encodes a transporter transmembrane protein of uncertain function. The 1.02 kb deletion is the most common mutation in CLN3 that results in frame shift and a premature termination leading to nonfunctional protein. Here, we invetigated a large consanguineous family consisting of four affected individuals with clincal symptoms suggestive of Juvenile neuronal ceroid lipofuscinosis. Materials and methods: We conducted clinial and radilogical investigation of the family and performed NGS based Gene Panel sequencing comprising of five hundred and forty five candidate genes to characterize it at genetic level. Results: We identified a novel homozygous c.181_183delGAC mutation in the CLN3 gene seggregating witht the disorder in the family. The mutation induces in-frame deletion, deleting one amino acid (p.Asp61del) in CLN3 protein. The deleted amino acid aspartic acid plays an important role as general acid in enzymes active centers as well as in maintaining the ionic character of proteins. Conclusion: Our finding adds to genetic variability of Juvenile neuronal ceroid lipofuscinosis associated with CLN3 gene and a predicted CLN3 protein interacting domain site.
Collapse
Affiliation(s)
- Muhammad Sher
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Muhammad Farooq
- b Department of Bioinformatics and Biotechnology , Government College University Faisalabad , Pakistan
| | - Uzma Abdullah
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Zafar Ali
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Sanam Faryal
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Mohammad Zakaria
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan.,c Department of Genetics , Hazara University , Mansehra , Pakistan
| | - Farid Ullah
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| | - Hassan Bukhari
- d Radiology Department , Allied Hospital , Faisalabad , Pakistan
| | - Rikke S Møller
- e Danish Epilepsy Centre, Institute for Regional Health Services , University of Southern Denmark , Odense , Denmark
| | - Niels Tommerup
- f Department of Cellular and Molecular Medicine, Wilhelm Johannsen Centre for Functional Genome Research , University of Copenhagen , Copenhagen , Denmark
| | - Shahid Mahmood Baig
- a Human Molecular Genetics Laboratory , National Institute for Biotechnology and Genetic Engineering (NIBGE)-PIEAS , Faisalabad , Pakistan
| |
Collapse
|
16
|
Bajaj L, Lotfi P, Pal R, di Ronza A, Sharma J, Sardiello M. Lysosome biogenesis in health and disease. J Neurochem 2019; 148:573-589. [PMID: 30092616 PMCID: PMC6368902 DOI: 10.1111/jnc.14564] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/01/2023]
Abstract
This review focuses on the pathways that regulate lysosome biogenesis and that are implicated in numerous degenerative storage diseases, including lysosomal storage disorders and late-onset neurodegenerative diseases. Lysosomal proteins are synthesized in the endoplasmic reticulum and trafficked to the endolysosomal system through the secretory route. Several receptors have been characterized that execute post-Golgi trafficking of lysosomal proteins. Some of them recognize their cargo proteins based on specific amino acid signatures, others based on a particular glycan modification that is exclusively found on lysosomal proteins. Nearly all receptors serving lysosome biogenesis are under the transcriptional control of transcription factor EB (TFEB), a master regulator of the lysosomal system. TFEB coordinates the expression of lysosomal hydrolases, lysosomal membrane proteins, and autophagy proteins in response to pathways sensing lysosomal stress and the nutritional conditions of the cell among other stimuli. TFEB is primed for activation in lysosomal storage disorders but surprisingly its function is impaired in some late-onset neurodegenerative storage diseases like Alzheimer's and Parkinson's, because of specific detrimental interactions that limit TFEB expression or activation. Thus, disrupted TFEB function presumably plays a role in the pathogenesis of these diseases. Multiple studies in animal models of degenerative storage diseases have shown that exogenous expression of TFEB and pharmacological activation of endogenous TFEB attenuate disease phenotypes. These results highlight TFEB-mediated enhancement of lysosomal biogenesis and function as a candidate strategy to counteract the progression of these diseases. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Lakshya Bajaj
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Parisa Lotfi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Rituraj Pal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Alberto di Ronza
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Jaiprakash Sharma
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| | - Marco Sardiello
- Department of Molecular and Human Genetics, Baylor College of Medicine, Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030 USA
| |
Collapse
|
17
|
Ishemgulova A, Hlaváčová J, Majerová K, Butenko A, Lukeš J, Votýpka J, Volf P, Yurchenko V. CRISPR/Cas9 in Leishmania mexicana: A case study of LmxBTN1. PLoS One 2018; 13:e0192723. [PMID: 29438445 PMCID: PMC5811015 DOI: 10.1371/journal.pone.0192723] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/29/2018] [Indexed: 11/19/2022] Open
Abstract
Leishmania parasites cause human cutaneous, mucocutaneous and visceral leishmaniasis. Several studies proposed involvement of certain genes in infectivity of these parasites based on differential mRNA expression data. Due to unusual gene expression mechanism, functions of such genes must be further validated experimentally. Here, we investigated a role of one of the putative virulence factors, LmxM.22.0010-encoded BTN1 (a protein involved in Batten disease in humans), in L. mexicana infectivity. Due to the incredible plasticity of the L. mexicana genome, we failed to obtain a complete knock-out of LmxM.22.0010 using conventional recombination-based approach even after ablating four alleles of this gene. To overcome this, we established a modified CRISPR-Cas9 system with genomic expression of Cas9 nuclease and gRNA. Application of this system allowed us to establish a complete BTN1 KO strain of L. mexicana. The mutant strain did not show any difference in growth kinetics and differentiation in vitro, as well as in the infectivity for insect vectors and mice hosts. Based on the whole-transcriptome profiling, LmxM.22.0010-encoded BTN1 was considered a putative factor of virulence in Leishmania. Our study suggests that ablation of LmxM.22.0010 does not influence L. mexicana infectivity and further illustrates importance of experimental validation of in silico-predicted virulence factors. Here we also describe the whole genome sequencing of the widely used model isolate L. mexicana M379 and report a modified CRISPR/Cas9 system suitable for complete KO of multi-copy genes in organisms with flexible genomes.
Collapse
Affiliation(s)
- Aygul Ishemgulova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Jana Hlaváčová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Karolina Majerová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- University of South Bohemia, Faculty of Sciences, České Budejovice (Budweis), Czech Republic
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
- Institute of Environmental Technologies, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- * E-mail:
| |
Collapse
|
18
|
Burnight ER, Bohrer LR, Giacalone JC, Klaahsen DL, Daggett HT, East JS, Madumba RA, Worthington KS, Mullins RF, Stone EM, Tucker BA, Wiley LA. CRISPR-Cas9-Mediated Correction of the 1.02 kb Common Deletion in CLN3 in Induced Pluripotent Stem Cells from Patients with Batten Disease. CRISPR J 2018; 1:75-87. [PMID: 31021193 DOI: 10.1089/crispr.2017.0015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (Batten disease) is a rare progressive neurodegenerative disorder caused by mutations in CLN3. Patients present with early-onset retinal degeneration, followed by epilepsy, progressive motor deficits, cognitive decline, and premature death. Approximately 85% of individuals with Batten disease harbor at least one allele containing a 1.02 kb genomic deletion spanning exons 7 and 8. This study demonstrates CRISPR-Cas9-based homology-dependent repair of this mutation in induced pluripotent stem cells generated from two independent patients: one homozygous and one compound heterozygous for the 1.02 kb deletion. Our strategy included delivery of a construct that carried >3 kb of DNA: wild-type CLN3 sequence and a LoxP-flanked, puromycin resistance cassette for positive selection. This strategy resulted in correction at the genomic DNA and mRNA levels in the two independent patient lines. These CRISPR-corrected isogenic cell lines will be a valuable tool for disease modeling and autologous retinal cell replacement.
Collapse
Affiliation(s)
- Erin R Burnight
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Laura R Bohrer
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Joseph C Giacalone
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Darcey L Klaahsen
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Heather T Daggett
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Jade S East
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Robert A Madumba
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Kristan S Worthington
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,3 Department of Biomedical Engineering, University of Iowa , Iowa City, Iowa
| | - Robert F Mullins
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Edwin M Stone
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Budd A Tucker
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| | - Luke A Wiley
- 1 Institute for Vision Research, University of Iowa , Iowa City, Iowa.,2 Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa , Iowa City, Iowa
| |
Collapse
|
19
|
Lack of specificity of antibodies raised against CLN3, the lysosomal/endosomal transmembrane protein mutated in juvenile Batten disease. Biosci Rep 2017; 37:BSR20171229. [PMID: 29089465 PMCID: PMC5700270 DOI: 10.1042/bsr20171229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/24/2017] [Accepted: 10/26/2017] [Indexed: 11/17/2022] Open
Abstract
Juvenile CLN3 (Batten) disease, a fatal, childhood neurodegenerative disorder, results from mutations in the CLN3 gene encoding a lysosomal/endosomal transmembrane protein. The exact physiological function of CLN3 is still unknown and it is unclear how CLN3 mutations lead to selective neurodegeneration. To study the tissue expression and subcellular localization of the CLN3 protein, a number of anti-CLN3 antibodies have been generated using either the whole CLN3 protein or short peptides from CLN3 for immunization. The specificity of these antibodies, however, has never been tested properly. Using immunoblot experiments, we show that commercially available or researcher-generated anti-CLN3 antibodies lack specificity: they detect the same protein bands in wild-type (WT) and Cln3−/− mouse brain and kidney extracts prepared with different detergents, in membrane proteins isolated from the cerebellum, cerebral hemisphere and kidney of WT and Cln3−/− mice, in cell extracts of WT and Cln3−/− mouse embryonic fibroblast cultures, and in lysates of BHK cells lacking or overexpressing human CLN3. Protein BLAST searches with sequences from peptides used to generate anti-CLN3 antibodies identified short motifs present in a number of different mouse and human proteins, providing a plausible explanation for the lack of specificity of anti-CLN3 antibodies. Our data provide evidence that immunization against a transmembrane protein with low to medium expression level does not necessarily generate specific antibodies. Because of the possible cross-reactivity to other proteins, the specificity of an antibody should always be checked using tissue samples from an appropriate knock-out animal or using knock-out cells.
Collapse
|
20
|
Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, Pearce DA, Michaelides M, MacLaren RE, Robson AG, Holder GE, Heon E, Raymond FL, Moore AT, Webster AR, Pennesi ME. Detailed Clinical Phenotype and Molecular Genetic Findings in CLN3-Associated Isolated Retinal Degeneration. JAMA Ophthalmol 2017; 135:749-760. [PMID: 28542676 DOI: 10.1001/jamaophthalmol.2017.1401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in genes traditionally associated with syndromic retinal disease are increasingly found to cause nonsyndromic inherited retinal degenerations. Mutations in CLN3 are classically associated with juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration, but have recently also been identified in patients with nonsyndromic inherited retinal degenerations. To our knowledge, detailed clinical characterization of such cases has yet to be reported. Objective To provide detailed clinical, electrophysiologic, structural, and molecular genetic findings in nonsyndromic inherited retinal degenerations associated with CLN3 mutations. Design, Setting, and Participants A multi-institutional case series of 10 patients who presented with isolated nonsyndromic retinal disease and mutations in CLN3. Patient ages ranged from 16 to 70 years; duration of follow-up ranged from 3 to 29 years. Main Outcomes and Measures Longitudinal clinical evaluation, including full ophthalmic examination, multimodal retinal imaging, perimetry, and electrophysiology. Molecular analyses were performed using whole-genome sequencing or whole-exome sequencing. Electron microscopy studies of peripheral lymphocytes and CLN3 transcript analysis with polymerase chain reaction amplification were performed in a subset of patients. Results There were 7 females and 3 males in this case series, with a mean (range) age at last review of 37.1 (16-70) years. Of the 10 patients, 4 had a progressive late-onset rod-cone dystrophy, with a mean (range) age at onset of 29.7 (20-40) years, and 6 had an earlier onset rod-cone dystrophy, with a mean (range) age at onset of 12.1 (7-17) years. Ophthalmoscopic examination features included macular edema, mild intraretinal pigment migration, and widespread atrophy in advanced disease. Optical coherence tomography imaging demonstrated significant photoreceptor loss except in patients with late-onset disease who had a focal preservation of the ellipsoid zone and outer nuclear layer in the fovea. Electroretinography revealed a rod-cone pattern of dysfunction in 6 patients and were completely undetectable in 2 patients. Six novel CLN3 variants were identified in molecular analyses. Conclusions and Relevance This report describes detailed clinical, imaging, and genetic features of CLN3-associated nonsyndromic retinal degeneration. The age at onset and natural progression of retinal disease differs greatly between syndromic and nonsyndromic CLN3 disease, which may be associated with genotypic differences.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Sarah Hull
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Keren Carss
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England
| | - Robert Kayton
- Pathology Department, Oregon Health & Science University, Portland
| | - Douglas Weeks
- Pathology Department, Oregon Health & Science University, Portland
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, England
| | - Ryan Geraets
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Camille Parker
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota10Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Robert E MacLaren
- Moorfields Eye Hospital, London, England11Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, England12Oxford University Hospitals National Health Service Foundation Trust, Oxford, England
| | - Anthony G Robson
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - F Lucy Raymond
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England13Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, England
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England14Department of Ophthalmology, University of California, San Francisco Medical School, San Francisco
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland
| |
Collapse
|
21
|
Mohammed A, O'Hare MB, Warley A, Tear G, Tuxworth RI. in vivo localization of the neuronal ceroid lipofuscinosis proteins, CLN3 and CLN7, at endogenous expression levels. Neurobiol Dis 2017; 103:123-132. [PMID: 28365214 PMCID: PMC5441185 DOI: 10.1016/j.nbd.2017.03.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/03/2017] [Accepted: 03/27/2017] [Indexed: 12/20/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a group of recessively inherited, childhood-onset neurodegenerative conditions. Several forms are caused by mutations in genes encoding putative lysosomal membrane proteins. Studies of the cell biology underpinning these disorders are hampered by the poor antigenicity of the membrane proteins, which makes visualization of the endogenous proteins difficult. We have used Drosophila to generate knock-in YFP-fusions for two of the NCL membrane proteins: CLN7 and CLN3. The YFP-fusions are expressed at endogenous levels and the proteins can be visualized live without the need for overexpression. Unexpectedly, both CLN7 and CLN3 have restricted expression in the CNS of Drosophila larva and are predominantly expressed in the glia that form the insect blood-brain-barrier. CLN7 is also expressed in neurons in the developing visual system. Analogous with murine CLN3, Drosophila CLN3 is strongly expressed in the excretory and osmoregulatory Malpighian tubules, but the knock-in also reveals unexpected localization of the protein to the apical domain adjacent to the lumen. In addition, some CLN3 protein in the tubules is localized within mitochondria. Our in vivo imaging of CLN7 and CLN3 suggests new possibilities for function and promotes new ideas about the cell biology of the NCLs.
Collapse
Affiliation(s)
- Alamin Mohammed
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Megan B O'Hare
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Alice Warley
- Centre for Ultrastructural Imaging, King's College London, London, SE1 1UL, UK
| | - Guy Tear
- Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
22
|
Subcellular Trafficking of Mammalian Lysosomal Proteins: An Extended View. Int J Mol Sci 2016; 18:ijms18010047. [PMID: 28036022 PMCID: PMC5297682 DOI: 10.3390/ijms18010047] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 12/15/2016] [Accepted: 12/18/2016] [Indexed: 01/02/2023] Open
Abstract
Lysosomes clear macromolecules, maintain nutrient and cholesterol homeostasis, participate in tissue repair, and in many other cellular functions. To assume these tasks, lysosomes rely on their large arsenal of acid hydrolases, transmembrane proteins and membrane-associated proteins. It is therefore imperative that, post-synthesis, these proteins are specifically recognized as lysosomal components and are correctly sorted to this organelle through the endosomes. Lysosomal transmembrane proteins contain consensus motifs in their cytosolic regions (tyrosine- or dileucine-based) that serve as sorting signals to the endosomes, whereas most lysosomal acid hydrolases acquire mannose 6-phosphate (Man-6-P) moieties that mediate binding to two membrane receptors with endosomal sorting motifs in their cytosolic tails. These tyrosine- and dileucine-based motifs are tickets for boarding in clathrin-coated carriers that transport their cargo from the trans-Golgi network and plasma membrane to the endosomes. However, increasing evidence points to additional mechanisms participating in the biogenesis of lysosomes. In some cell types, for example, there are alternatives to the Man-6-P receptors for the transport of some acid hydrolases. In addition, several “non-consensus” sorting motifs have been identified, and atypical transport routes to endolysosomes have been brought to light. These “unconventional” or “less known” transport mechanisms are the focus of this review.
Collapse
|
23
|
Cherqui S, Courtoy PJ. The renal Fanconi syndrome in cystinosis: pathogenic insights and therapeutic perspectives. Nat Rev Nephrol 2016; 13:115-131. [PMID: 27990015 DOI: 10.1038/nrneph.2016.182] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Cystinosis is an autosomal recessive metabolic disease that belongs to the family of lysosomal storage disorders. It is caused by a defect in the lysosomal cystine transporter, cystinosin, which results in an accumulation of cystine in all organs. Despite the ubiquitous expression of cystinosin, a renal Fanconi syndrome is often the first manifestation of cystinosis, usually presenting within the first year of life and characterized by the early and severe dysfunction of proximal tubule cells, highlighting the unique vulnerability of this cell type. The current therapy for cystinosis, cysteamine, facilitates lysosomal cystine clearance and greatly delays progression to kidney failure but is unable to correct the Fanconi syndrome. This Review summarizes decades of studies that have fostered a better understanding of the pathogenesis of the renal Fanconi syndrome associated with cystinosis. These studies have unraveled some of the early molecular changes that occur before the onset of tubular atrophy and identified a role for cystinosin beyond cystine transport, in endolysosomal trafficking and proteolysis, lysosomal clearance, autophagy and the regulation of energy balance. These studies have also led to the identification of new potential therapeutic targets and here, we outline the potential role of stem cell therapy for cystinosis and provide insights into the mechanism of haematopoietic stem cell-mediated kidney protection.
Collapse
Affiliation(s)
- Stephanie Cherqui
- Department of Pediatrics, Division of Genetics, University of California San Diego, 9500 Gilman Drive, MC 0734, La Jolla, California 92093-0734, USA
| | - Pierre J Courtoy
- Cell biology, de Duve Institute and Université catholique de Louvain, UCL-Brussels, 75 Avenue Hippocrate, B-1200 Brussels, Belgium
| |
Collapse
|
24
|
Rodríguez-Arribas M, Yakhine-Diop SMS, Pedro JMBS, Gómez-Suaga P, Gómez-Sánchez R, Martínez-Chacón G, Fuentes JM, González-Polo RA, Niso-Santano M. Mitochondria-Associated Membranes (MAMs): Overview and Its Role in Parkinson's Disease. Mol Neurobiol 2016; 54:6287-6303. [PMID: 27714635 DOI: 10.1007/s12035-016-0140-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 09/19/2016] [Indexed: 12/21/2022]
Abstract
Mitochondria-associated membranes (MAMs) are structures that regulate physiological functions between endoplasmic reticulum (ER) and mitochondria in order to maintain calcium signaling and mitochondrial biogenesis. Several proteins located in MAMs, including those encoded by PARK genes and some of neurodegeneration-related proteins (huntingtin, presenilin, etc.), ensure this regulation. In this regard, MAM alteration is associated with neurodegenerative diseases such as Parkinson's (PD), Alzheimer's (AD), and Huntington's diseases (HD) and contributes to the appearance of the pathogenesis features, i.e., autophagy dysregulation, mitochondrial dysfunction, oxidative stress, and lately, neuronal death. Moreover,, ER stress and/or damaged mitochondria can be the cause of these disruptions. Therefore, ER-mitochondria contact structure and function are crucial to multiple cellular processes. This review is focused on the molecular interaction between ER and mitochondria indispensable to MAM formation and on MAM alteration-induced etiology of neurodegenerative diseases.
Collapse
Affiliation(s)
- M Rodríguez-Arribas
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - S M S Yakhine-Diop
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - J M Bravo-San Pedro
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, 75006, Paris, France.,INSERM U1138, 75006, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, 75006, Paris, France.,Université Pierre et Marie Curie/Paris VI, 75006, Paris, France.,Gustave Roussy Comprehensive Cancer Institute, 94805, Villejuif, France
| | - P Gómez-Suaga
- Department Basic and Clinical Neuroscience, Maurice Wohl Clinical Neuroscience Institute Kings College London, London, SE5 9RX, UK
| | - R Gómez-Sánchez
- Department of Cell Biology, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - G Martínez-Chacón
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - J M Fuentes
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain.,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain
| | - R A González-Polo
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain. .,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain.
| | - M Niso-Santano
- Centro de Investigación Biomédica en Red en Enfermedades Neurodegenerativas (CIBERNED), Universidad de Extremadura, Avda. De la Universidad S/N, C.P, 10003, Cáceres, Cáceres, Spain. .,Facultad de Enfermería y Terapia Ocupacional, Universidad de Extremadura, Avda. de la Universidad s/n, C.P, 10003, Cáceres, Cáceres, Spain.
| |
Collapse
|
25
|
Oetjen S, Kuhl D, Hermey G. Revisiting the neuronal localization and trafficking of CLN3 in juvenile neuronal ceroid lipofuscinosis. J Neurochem 2016; 139:456-470. [DOI: 10.1111/jnc.13744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Sandra Oetjen
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Dietmar Kuhl
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition; Center for Molecular Neurobiology Hamburg; University Medical Center Hamburg-Eppendorf; Hamburg Germany
| |
Collapse
|
26
|
Bellomo F, Taranta A, Petrini S, Venditti R, Rocchetti MT, Rega LR, Corallini S, Gesualdo L, De Matteis MA, Emma F. Carboxyl-Terminal SSLKG Motif of the Human Cystinosin-LKG Plays an Important Role in Plasma Membrane Sorting. PLoS One 2016; 11:e0154805. [PMID: 27148969 PMCID: PMC4858208 DOI: 10.1371/journal.pone.0154805] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 04/19/2016] [Indexed: 11/18/2022] Open
Abstract
Cystinosin mediates an ATP-dependent cystine efflux from lysosomes and causes, if mutated, nephropathic cystinosis, a rare inherited lysosomal storage disease. Alternative splicing of the last exon of the cystinosin sequence produces the cystinosin-LKG isoform that is characterized by a different C-terminal region causing changes in the subcellular distribution of the protein. We have constructed RFP-tagged proteins and demonstrated by site-directed mutagenesis that the carboxyl-terminal SSLKG sequence of cystinosin-LKG is an important sorting motif that is required for efficient targeting the protein to the plasma membrane, where it can mediate H+ coupled cystine transport. Deletion of the SSLKG sequence reduced cystinosin-LKG expression in the plasma membrane and cystine transport by approximately 30%, and induced significant accumulation of the protein in the Golgi apparatus and in lysosomes. Cystinosin-LKG, unlike the canonical isoform, also moves to the lysosomes by the indirect pathway, after endocytic retrieval from the plasma membrane, mainly by a clathrin-mediated endocytosis. Nevertheless, silencing of AP-2 triggers the clathrin-independent endocytosis, showing the complex adaptability of cystinosin-LKG trafficking.
Collapse
Affiliation(s)
- Francesco Bellomo
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
- * E-mail:
| | - Anna Taranta
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Stefania Petrini
- Confocal Microscopy Core Facility, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Rossella Venditti
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - Maria Teresa Rocchetti
- Department of Emergency and Organ Transplantation (DETO), Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | - Laura Rita Rega
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Serena Corallini
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation (DETO), Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| | | | - Francesco Emma
- Department of Nephrology-Urology, Division of Nephrology and Dialysis, Bambino Gesù Children’s Hospital and Research Institute, Rome, Italy
| |
Collapse
|
27
|
Ouseph MM, Kleinman ME, Wang QJ. Vision loss in juvenile neuronal ceroid lipofuscinosis (CLN3 disease). Ann N Y Acad Sci 2016; 1371:55-67. [PMID: 26748992 DOI: 10.1111/nyas.12990] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL; also known as CLN3 disease) is a devastating neurodegenerative lysosomal storage disorder and the most common form of Batten disease. Progressive visual and neurological symptoms lead to mortality in patients by the third decade. Although ceroid-lipofuscinosis, neuronal 3 (CLN3) has been identified as the sole disease gene, the biochemical and cellular bases of JNCL and the functions of CLN3 are yet to be fully understood. As severe ocular pathologies manifest early in disease progression, the retina is an ideal tissue to study in the efforts to unravel disease etiology and design therapeutics. There are significant discrepancies in the ocular phenotypes between human JNCL and existing murine models, impeding investigations on the sequence of events occurring during the progression of vision impairment. This review focuses on current understanding of vision loss in JNCL and discusses future research directions toward molecular dissection of the pathogenesis of the disease and associated vision problems in order to ultimately improve the quality of patient life and cure the disease.
Collapse
Affiliation(s)
| | | | - Qing Jun Wang
- Department of Molecular and Cellular Biochemistry.,Department of Toxicology and Cancer Biology.,Markey Cancer Center, University of Kentucky, Lexington, Kentucky
| |
Collapse
|
28
|
Effects of sialidase NEU1 siRNA on proliferation, apoptosis, and invasion in human ovarian cancer. Mol Cell Biochem 2015; 411:213-9. [PMID: 26463994 DOI: 10.1007/s11010-015-2583-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
Abstract
Ovarian cancer is one of the most common malignancies encountered in the world. In ovarian cancer tissues of patients, NEU1 was expressed in a higher level than that in adjacent normal tissues. In this research, we aimed to elucidate the role of NEU1 siRNA on proliferation, apoptosis, and invasion of OVCAR3 and SKOV3 cells which expressed NEU1 notably. By cell viability assay and flow cytometry method, we found that NEU1 siRNA effectively inhibited the cancer proliferation, arrested cells cycle at G0/G1 phase, and induced apoptosis when compared to the Mock group. Result of transwell assay showed that invasion of cells in OVCAR3 and SKOV3 treated with NEU1 siRNA were suppressed significantly. Gene set enrichment analysis showed that lysosome and oxidative phosphorylation related signal pathway were associated with the NEU1 expression. In addition, Western blot revealed that expressions of Cln3 and Cln5 were depressed, and ATP5B and ATP5J expressions were also reduced. In conclusion, NEU1 siRNA can effectively inhibit proliferation, apoptosis, and invasion of human ovarian cancer cells by targeting lysosome and oxidative phosphorylation signaling, which can serve as a new target ovarian cancer treatment.
Collapse
|
29
|
Andrzejewska Z, Névo N, Thomas L, Bailleux A, Chauvet V, Benmerah A, Antignac C. Lysosomal Targeting of Cystinosin Requires AP-3. Traffic 2015; 16:712-26. [PMID: 25753619 DOI: 10.1111/tra.12277] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/28/2023]
Abstract
Cystinosin is a lysosomal cystine transporter defective in cystinosis, an autosomal recessive lysosomal storage disorder. It is composed of seven transmembrane (TM) domains and contains two lysosomal targeting motifs: a tyrosine-based signal (GYDQL) in its C-terminal tail and a non-classical motif in its fifth inter-TM loop. Using the yeast two-hybrid system, we showed that the GYDQL motif specifically interacted with the μ subunit of the adaptor protein complex 3 (AP-3). Moreover, cell surface biotinylation and total internal reflection fluorescence microscopy revealed that cystinosin was partially mislocalized to the plasma membrane (PM) in AP-3-depleted cells. We generated a chimeric CD63 protein to specifically analyze the function of the GYDQL motif. This chimeric protein was targeted to lysosomes in a manner similar to cystinosin and was partially mislocalized to the PM in AP-3 knockdown cells where it also accumulated in the trans-Golgi network and early endosomes. Together with the fact that the surface levels of cystinosin and of the CD63-GYDQL chimeric protein were not increased when clathrin-mediated endocytosis was impaired, our data show that the tyrosine-based motif of cystinosin is a 'strong' AP-3 interacting motif responsible for lysosomal targeting of cystinosin by a direct intracellular pathway.
Collapse
Affiliation(s)
- Zuzanna Andrzejewska
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Nathalie Névo
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Lucie Thomas
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Anne Bailleux
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Véronique Chauvet
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Alexandre Benmerah
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Corinne Antignac
- Inserm U1163, Laboratory of Hereditary Kidney Diseases, Paris, France.,Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France.,Assistance Publique - Hôpitaux de Paris (AP-HP), Department of Genetics, Necker Hospital, Paris,, France
| |
Collapse
|
30
|
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene, which encodes for a putative lysosomal transmembrane protein with thus far undescribed structure and function. Here we investigate the membrane topology of human CLN3 protein with a combination of advanced molecular cloning, spectroscopy, and in silico computation. Using the transposomics cloning method we first created a library of human CLN3 cDNA clones either with a randomly inserted eGFP, a myc-tag, or both. The functionality of the clones was evaluated by assessing their ability to revert a previously reported lysosomal phenotype in immortalized cerebellar granular cells derived from Cln3Δex7/8 mice (CbCln3Δex7/8). The double-tagged clones were expressed in HeLa cells, and FRET was measured between the donor eGFP and an acceptor DyLight547 coupled to a monoclonal α-myc antibody to assess their relative membrane orientation. The data were used together with previously reported experimental data to compile a constrained membrane topology model for hCLN3 using TOPCONS consensus membrane prediction algorithm. Our model with six transmembrane domains and cytosolic N- and C-termini largely agrees with those previously suggested but differs in terms of the transmembrane domain positions as well as in the size of the luminal loops. This finding improves understanding the function of the native hCLN3 protein.
Collapse
|
31
|
NCL disease mechanisms. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1882-93. [DOI: 10.1016/j.bbadis.2013.05.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/13/2023]
|
32
|
Drack AV, Miller JN, Pearce DA. A novel c.1135_1138delCTGT mutation in CLN3 leads to juvenile neuronal ceroid lipofuscinosis. J Child Neurol 2013; 28:1112-6. [PMID: 23877479 DOI: 10.1177/0883073813494812] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neuronal ceroid lipofuscinosis is the most common childhood neurodegenerative disorder in the world, with an incidence of 1 in 100,000 live births. More than 400 mutations in at least 14 different genes are linked to multiple clinical variants. These progressive genetic disorders primarily manifest in the central nervous system due to an extensive loss of neurons, primarily in the cerebral and cerebellar cortices. Juvenile neuronal ceroid lipofuscinosis is the most common form and is primarily due to mutations in CLN3, which encodes a protein of unknown function. The most common such mutation in CLN3 is a 1.02-kb deletion that results in a frameshift and subsequent premature termination codon. Here we describe a patient with juvenile neuronal ceroid lipofuscinosis who has a novel c.1135_1138delCTGT mutation in CLN3. This deletion induces a frameshift and premature termination codon in CLN3 messenger ribonucleic acid that is likely recognized by nonsense-mediated decay and degraded, subsequently leading to decreased CLN3 protein abundance.
Collapse
Affiliation(s)
- Arlene V Drack
- Department of Ophthalmology and Visual Sciences, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | | | | |
Collapse
|
33
|
Getty A, Kovács AD, Lengyel-Nelson T, Cardillo A, Hof C, Chan CH, Pearce DA. Osmotic stress changes the expression and subcellular localization of the Batten disease protein CLN3. PLoS One 2013; 8:e66203. [PMID: 23840424 PMCID: PMC3688782 DOI: 10.1371/journal.pone.0066203] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/05/2013] [Indexed: 12/25/2022] Open
Abstract
Juvenile CLN3 disease (formerly known as juvenile neuronal ceroid lipofuscinosis) is a fatal childhood neurodegenerative disorder caused by mutations in the CLN3 gene. CLN3 encodes a putative lysosomal transmembrane protein with unknown function. Previous cell culture studies using CLN3-overexpressing vectors and/or anti-CLN3 antibodies with questionable specificity have also localized CLN3 in cellular structures other than lysosomes. Osmoregulation of the mouse Cln3 mRNA level in kidney cells was recently reported. To clarify the subcellular localization of the CLN3 protein and to investigate if human CLN3 expression and localization is affected by osmotic changes we generated a stably transfected BHK (baby hamster kidney) cell line that expresses a moderate level of myc-tagged human CLN3 under the control of the human ubiquitin C promoter. Hyperosmolarity (800 mOsm), achieved by either NaCl/urea or sucrose, dramatically increased the mRNA and protein levels of CLN3 as determined by quantitative real-time PCR and Western blotting. Under isotonic conditions (300 mOsm), human CLN3 was found in a punctate vesicular pattern surrounding the nucleus with prominent Golgi and lysosomal localizations. CLN3-positive early endosomes, late endosomes and cholesterol/sphingolipid-enriched plasma membrane microdomain caveolae were also observed. Increasing the osmolarity of the culture medium to 800 mOsm extended CLN3 distribution away from the perinuclear region and enhanced the lysosomal localization of CLN3. Our results reveal that CLN3 has multiple subcellular localizations within the cell, which, together with its expression, prominently change following osmotic stress. These data suggest that CLN3 is involved in the response and adaptation to cellular stress.
Collapse
Affiliation(s)
- Amanda Getty
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Attila D. Kovács
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Tímea Lengyel-Nelson
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Andrew Cardillo
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Caitlin Hof
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - Chun-Hung Chan
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
| | - David A. Pearce
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, South Dakota, United States of America
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States of America
- * E-mail:
| |
Collapse
|
34
|
Kollmann K, Uusi-Rauva K, Scifo E, Tyynelä J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1866-81. [PMID: 23402926 DOI: 10.1016/j.bbadis.2013.01.019] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/18/2013] [Accepted: 01/23/2013] [Indexed: 01/17/2023]
Abstract
Neuronal ceroid lipofuscinoses (NCL) comprise a group of inherited lysosomal disorders with variable age of onset, characterized by lysosomal accumulation of autofluorescent ceroid lipopigments, neuroinflammation, photoreceptor- and neurodegeneration. Most of the NCL-related genes encode soluble and transmembrane proteins which localize to the endoplasmic reticulum or to the endosomal/lysosomal compartment and directly or indirectly regulate lysosomal function. Recently, exome sequencing led to the identification of four novel gene defects in NCL patients and a new NCL nomenclature currently comprising CLN1 through CLN14. Although the precise function of most of the NCL proteins remains elusive, comprehensive analyses of model organisms, particularly mouse models, provided new insight into pathogenic mechanisms of NCL diseases and roles of mutant NCL proteins in cellular/subcellular protein and lipid homeostasis, as well as their adaptive/compensatorial regulation at the transcriptional level. This review summarizes the current knowledge on the expression, function and regulation of NCL proteins and their impact on lysosomal integrity. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
Affiliation(s)
- Katrin Kollmann
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
35
|
Bioinformatic perspectives in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2012; 1832:1831-41. [PMID: 23274885 DOI: 10.1016/j.bbadis.2012.12.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/16/2012] [Accepted: 12/19/2012] [Indexed: 02/06/2023]
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of rare genetic diseases characterised clinically by the progressive deterioration of mental, motor and visual functions and histopathologically by the intracellular accumulation of autofluorescent lipopigment - ceroid - in affected tissues. The NCLs are clinically and genetically heterogeneous and more than 14 genetically distinct NCL subtypes have been described to date (CLN1-CLN14) (Haltia and Goebel, 2012 [1]). In this review we will chronologically summarise work which has led over the years to identification of NCL genes, and outline the potential of novel genomic techniques and related bioinformatic approaches for further genetic dissection and diagnosis of NCLs. This article is part of a Special Issue entitled: The Neuronal Ceroid Lipofuscinoses or Batten Disease.
Collapse
|
36
|
Uusi-Rauva K, Kyttälä A, van der Kant R, Vesa J, Tanhuanpää K, Neefjes J, Olkkonen VM, Jalanko A. Neuronal ceroid lipofuscinosis protein CLN3 interacts with motor proteins and modifies location of late endosomal compartments. Cell Mol Life Sci 2012; 69:2075-89. [PMID: 22261744 PMCID: PMC11114557 DOI: 10.1007/s00018-011-0913-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/08/2011] [Accepted: 12/29/2011] [Indexed: 01/17/2023]
Abstract
CLN3 is an endosomal/lysosomal transmembrane protein mutated in classical juvenile onset neuronal ceroid lipofuscinosis, a fatal inherited neurodegenerative lysosomal storage disorder. The function of CLN3 in endosomal/lysosomal events has remained elusive due to poor understanding of its interactions in these compartments. It has previously been shown that the localisation of late endosomal/lysosomal compartments is disturbed in cells expressing the most common disease-associated CLN3 mutant, CLN3∆ex7-8 (c.462-677del). We report here that a protracted disease causing mutant, CLN3E295K, affects the properties of late endocytic compartments, since over-expression of the CLN3E295K mutant protein in HeLa cells induced relocalisation of Rab7 and a perinuclear clustering of late endosomes/lysosomes. In addition to the previously reported disturbances in the endocytic pathway, we now show that the anterograde transport of late endosomal/lysosomal compartments is affected in CLN3 deficiency. CLN3 interacted with motor components driving both plus and minus end microtubular trafficking: tubulin, dynactin, dynein and kinesin-2. Most importantly, CLN3 was found to interact directly with active, guanosine-5'-triphosphate (GTP)-bound Rab7 and with the Rab7-interacting lysosomal protein (RILP) that anchors the dynein motor. The data presented in this study provide novel insights into the role of CLN3 in late endosomal/lysosomal membrane transport.
Collapse
Affiliation(s)
- Kristiina Uusi-Rauva
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | - Aija Kyttälä
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| | - Rik van der Kant
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Jouni Vesa
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Gonda Neuroscience and Genetics Research Center, Los Angeles, CA 90095-7088 USA
| | - Kimmo Tanhuanpää
- Light Microscopy Unit, Institute of Biotechnology, University of Helsinki, PO Box 56, 00014 Helsinki, Finland
| | - Jacques Neefjes
- Division of Cell Biology, The Netherlands Cancer Institute, 1066 CX Amsterdam, Netherlands
| | - Vesa M. Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki, 2U, Tukholmankatu 8, 00290 Helsinki, Finland
| | - Anu Jalanko
- National Institute for Health and Welfare and FIMM, Institute for Molecular Medicine Finland, Biomedicum Helsinki, PO Box 104, 00251 Helsinki, Finland
| |
Collapse
|
37
|
Cheng X, Wang H. Multiple targeting motifs direct NRAMP1 into lysosomes. Biochem Biophys Res Commun 2012; 419:578-83. [PMID: 22382021 DOI: 10.1016/j.bbrc.2012.02.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 02/12/2012] [Indexed: 11/16/2022]
Abstract
Natural resistance-associated macrophage protein 1 (NRAMP1) containing 548 amino acids (AA) and 12 transmembrane domains (TMDs) is localized in membranes of lysosomes. Our study aimed to investigate the targeting motifs of NRAMP1 by expressing GFP-tagged full-length and truncated NRAMP1 proteins and overlapping with the lysosomal marker Lamp1-RFP in Chinese hamster ovary (CHO) cells. The NH(2)-terminal amino acids 73-140 region including TMD2 was essential for NRAMP1 lysosomal targeting. The AA.263-334 region containing the tyrosine-based motif (327)YAPI(330) targeted NRAMP1 into lysosomes. Additionally, two internal signal peptides AA.451-483 and AA.489-522 were identified as lysosomal targeting motifs. Taken together, NRAMP1 consists of multiple targeting motifs for trafficking into lysosomes.
Collapse
Affiliation(s)
- Xiang Cheng
- Department of Animal Biotechnology, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | | |
Collapse
|
38
|
Cotman SL, Staropoli JF. The juvenile Batten disease protein, CLN3, and its role in regulating anterograde and retrograde post-Golgi trafficking. ACTA ACUST UNITED AC 2012; 7:79-91. [PMID: 22545070 DOI: 10.2217/clp.11.70] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Loss-of-function mutations in CLN3 are responsible for juvenile-onset neuronal ceroid lipofuscinosis (JNCL), or Batten disease, which is an incurable lysosomal disease that manifests with vision loss, followed by seizures and progressive neurodegeneration, robbing children of motor skills, speech and cognition, and eventually leading to death in the second or third decade of life. Emerging clinical evidence points to JNCL pathology outside of the CNS, including the cardiovascular system. The CLN3 gene encodes an unusual transmembrane protein, CLN3 or battenin, whose elusive function has been the subject of intense study for more than 10 years. Owing to the detailed characterization of a large number of disease models, our knowledge of CLN3 protein function is finally coming into focus. This review will describe the most current understanding of CLN3 structure, function and dysfunction in JNCL.
Collapse
Affiliation(s)
- Susan L Cotman
- Molecular Neurogenetics Unit, Center for Human Genetic Research, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
39
|
Padilla-López S, Langager D, Chan CH, Pearce DA. BTN1, the Saccharomyces cerevisiae homolog to the human Batten disease gene, is involved in phospholipid distribution. Dis Model Mech 2011; 5:191-9. [PMID: 22107873 PMCID: PMC3291640 DOI: 10.1242/dmm.008490] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BTN1, the yeast homolog to human CLN3 (which is defective in Batten disease), has been implicated in the regulation of vacuolar pH, potentially by modulating vacuolar-type H+-ATPase (V-ATPase) activity. However, we report that Btn1p and the V-ATPase complex do not physically interact, suggesting that any influence that Btn1p has on V-ATPase is indirect. Because membrane lipid environment plays a crucial role in the activity and function of membrane proteins, we investigated whether cells lacking BTN1 have altered membrane phospholipid content. Deletion of BTN1 (btn1-Δ) led to a decreased level of phosphatidylethanolamine (PtdEtn) in both mitochondrial and vacuolar membranes. In yeast there are two phosphatidylserine (PtdSer) decarboxylases, Psd1p and Psd2p, and these proteins are responsible for the synthesis of PtdEtn in mitochondria and Golgi-endosome, respectively. Deletion of both BTN1 and PSD1 (btn1-Δ psd1-Δ) led to a further decrease in levels of PtdEtn in ER membranes associated to mitochondria (MAMs), with a parallel increase in PtdSer. Fluorescent-labeled PtdSer (NBD-PtdSer) transport assays demonstrated that transport of NBD-PtdSer from the ER to both mitochondria and endosomes and/or vacuole is affected in btn1-Δ cells. Moreover, btn1-Δ affects the synthesis of PtdEtn by the Kennedy pathway and impairs the ability of psd1-Δ cells to restore PtdEtn to normal levels in mitochondria and vacuoles by ethanolamine addition. In summary, lack of Btn1p alters phospholipid levels and might play a role in regulating their subcellular distribution.
Collapse
Affiliation(s)
- Sergio Padilla-López
- Sanford Children's Health Research Center, Sanford Research/USD, Sioux Falls, SD 57104, USA
| | | | | | | |
Collapse
|
40
|
Kousi M, Lehesjoki AE, Mole SE. Update of the mutation spectrum and clinical correlations of over 360 mutations in eight genes that underlie the neuronal ceroid lipofuscinoses. Hum Mutat 2011; 33:42-63. [DOI: 10.1002/humu.21624] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Accepted: 08/29/2011] [Indexed: 12/17/2022]
|
41
|
Two dileucine motifs mediate late endosomal/lysosomal targeting of transmembrane protein 192 (TMEM192) and a C-terminal cysteine residue is responsible for disulfide bond formation in TMEM192 homodimers. Biochem J 2011; 434:219-31. [PMID: 21143193 DOI: 10.1042/bj20101396] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
TMEM192 (transmembrane protein 192) is a novel constituent of late endosomal/lysosomal membranes with four potential transmembrane segments and an unknown function that was initially discovered by organellar proteomics. Subsequently, localization in late endosomes/lysosomes has been confirmed for overexpressed and endogenous TMEM192, and homodimers of TMEM192 linked by disulfide bonds have been reported. In the present study the molecular determinants of TMEM192 mediating its transport to late endosomes/lysosomes were analysed by using CD4 chimaeric constructs and mutagenesis of potential targeting motifs in TMEM192. Two directly adjacent N-terminally located dileucine motifs of the DXXLL-type were found to be critical for transport of TMEM192 to late endosomes/lysosomes. Whereas disruption of both dileucine motifs resulted in mistargeting of TMEM192 to the plasma membrane, each of the two motifs was sufficient to ensure correct targeting of TMEM192. In order to study disulfide bond formation, mutagenesis of cysteine residues was performed. Mutation of Cys266 abolished disulfide bridge formation between TMEM192 molecules, indicating that TMEM192 dimers are linked by a disulfide bridge between their C-terminal tails. According to the predicted topology, Cys266 would be localized in the reductive milieu of the cytosol where disulfide bridges are generally uncommon. Using immunogold labelling and proteinase protection assays, the localization of the N- and C-termini of TMEM192 on the cytosolic side of the late endosomal/lysosomal membrane was experimentally confirmed. These findings may imply close proximity of the C-termini in TMEM192 dimers and a possible involvement of this part of the protein in dimer assembly.
Collapse
|
42
|
Salek RM, Pears MR, Cooper JD, Mitchison HM, Pearce DA, Mortishire-Smith RJ, Griffin JL. A metabolomic comparison of mouse models of the Neuronal Ceroid Lipofuscinoses. JOURNAL OF BIOMOLECULAR NMR 2011; 49:175-184. [PMID: 21461951 PMCID: PMC4123122 DOI: 10.1007/s10858-011-9491-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 01/26/2011] [Indexed: 05/30/2023]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL) are a group of fatal inherited neurodegenerative diseases in humans distinguished by a common clinical pathology, characterized by the accumulation of storage body material in cells and gross brain atrophy. In this study, metabolic changes in three NCL mouse models were examined looking for pathways correlated with neurodegeneration. Two mouse models; motor neuron degeneration (mnd) mouse and a variant model of late infantile NCL, termed the neuronal ceroid lipofuscinosis (nclf) mouse were investigated experimentally. Both models exhibit a characteristic accumulation of autofluorescent lipopigment in neuronal and non neuronal cells. The NMR profiles derived from extracts of the cortex and cerebellum from mnd and nclf mice were distinguished according to disease/wildtype status. In particular, a perturbation in glutamine and glutamate metabolism, and a decrease in γ-amino butyric acid (GABA) in the cerebellum and cortices of mnd (adolescent mice) and nclf mice relative to wildtype at all ages were detected. Our results were compared to the Cln3 mouse model of NCL. The metabolism of mnd mice resembled older (6 month) Cln3 mice, where the disease is relatively advanced, while the metabolism of nclf mice was more akin to younger (1-2 months) Cln3 mice, where the disease is in its early stages of progression. Overall, our results allowed the identification of metabolic traits common to all NCL subtypes for the three animal models.
Collapse
Affiliation(s)
- Reza M. Salek
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Michael R. Pears
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | - Jonathan D. Cooper
- Pediatric Storage Disorders Laboratory, Department of Neuroscience, Institute of Psychiatry, King’s College London, London, UK
| | - Hannah M. Mitchison
- Department of Paediatrics and Child Health, Royal Free and University College Medical School, London, UK
| | - David A. Pearce
- Department of Pediatrics, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | | - Julian L. Griffin
- Department of Biochemistry and the Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK. Department of Biochemistry, University of Cambridge, Building O, Downing Site, Tennis Court Road, Cambridge CB2 1QW, UK
| |
Collapse
|
43
|
Wolfe DM, Padilla-Lopez S, Vitiello SP, Pearce DA. pH-dependent localization of Btn1p in the yeast model for Batten disease. Dis Model Mech 2010; 4:120-5. [PMID: 20959629 PMCID: PMC3008966 DOI: 10.1242/dmm.006114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Btn1p the yeast homolog of human CLN3, which is associated with juvenile Batten disease has been implicated in several cellular pathways. Yeast cells lacking BTN1 are unable to couple ATP hydrolysis and proton pumping activities by the vacuolar ATPase (V-ATPase). In this work, we demonstrate that changes in extracellular pH result in altered transcription of BTN1, as well as a change in the glycosylation state and localization of Btn1p. At high pH, Btn1p expression was increased and the protein was mainly located in vacuolar membranes. However, low pH decreased Btn1p expression and changed its location to undefined punctate membranes. Moreover, our results suggest that differential Btn1p localization may be regulated by its glycosylation state. Underlying pathogenic implications for Batten disease of altered cellular distribution of CLN3 are discussed.
Collapse
Affiliation(s)
- Devin M Wolfe
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
44
|
A knock-in reporter mouse model for Batten disease reveals predominant expression of Cln3 in visual, limbic and subcortical motor structures. Neurobiol Dis 2010; 41:237-48. [PMID: 20875858 DOI: 10.1016/j.nbd.2010.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Revised: 08/30/2010] [Accepted: 09/19/2010] [Indexed: 11/23/2022] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) or Batten disease is an autosomal recessive neurodegenerative disorder of children caused by mutation in CLN3. JNCL is characterized by progressive visual impairment, cognitive and motor deficits, seizures and premature death. Information about the localization of CLN3 expressing neurons in the nervous system is limited, especially during development. The present study has systematically mapped the spatial and temporal localization of CLN3 reporter neurons in the entire nervous system including retina, using a knock-in reporter mouse model. CLN3 reporter is expressed predominantly in post-migratory neurons in visual and limbic cortices, anterior and intralaminar thalamic nuclei, amygdala, cerebellum, red nucleus, reticular formation, vestibular nuclei and retina. CLN3 reporter in the nervous system is mainly expressed during the first postnatal month except in the dentate gyrus, parasolitary nucleus and retina, where it is still strongly expressed in adulthood. The predominant distribution of CLN3 reporter neurons in visual, limbic and subcortical motor structures correlates well with the clinical symptoms of JNCL. These findings have also revealed potential target brain regions and time periods for future investigations of the disease mechanisms and therapeutic intervention.
Collapse
|
45
|
Seo YA, Kelleher SL. Functional analysis of two single nucleotide polymorphisms in SLC30A2 (ZnT2): implications for mammary gland function and breast disease in women. Physiol Genomics 2010; 42A:219-27. [PMID: 20858712 DOI: 10.1152/physiolgenomics.00137.2010] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Zinc transporter 2 (ZnT2) plays a major role in zinc (Zn) export from the mammary gland. Recently, we determined that ZnT2 is associated with secretory vesicles reflecting its role in Zn secretion during lactation. Herein, we identified two distinct single nucleotide polymorphisms (SNPs) in SLC30A2, which encodes ZnT2. SNP1 (rs35235055) results in a leucine-to-proline substitution (Leu(23)Pro), while SNP2 (rs35623192) results in an arginine-to-cysteine substitution (Arg(340)Cys). We examined the localization and function of each SNP in cells generated to express these polymorphic variants. SNP1 was mislocalized to lysosomes, while SNP2 was mislocalized to the Golgi apparatus. FluoZin-3 fluorescence illustrated increased lysosomal accumulation of Zn in cells expressing SNP1 concomitant with the abrogation of Zn secretion. In contrast, ectopic expression of SNP2 was associated with the expansion of cytoplasmic Zn pools, elevated reactive oxygen species, and increased Zn efflux. Taken together, our data indicate that polymorphic variants in ZnT2 distinctly alter mammary cell Zn metabolism. We speculate that these SNPs may compromise mammary cell function, which may have important implications in human health and breast disease.
Collapse
Affiliation(s)
- Young Ah Seo
- Department of Nutritional Sciences, The Pennsylvania State University, University Park, Pennsylvania, USA
| | | |
Collapse
|
46
|
Getty AL, Benedict JW, Pearce DA. A novel interaction of CLN3 with nonmuscle myosin-IIB and defects in cell motility of Cln3(-/-) cells. Exp Cell Res 2010; 317:51-69. [PMID: 20850431 DOI: 10.1016/j.yexcr.2010.09.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/15/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is a pediatric lysosomal storage disorder characterized by accumulation of autofluorescent storage material and neurodegeneration, which result from mutations in CLN3. The function of CLN3, a lysosomal membrane protein, is currently unknown. We report that CLN3 interacts with cytoskeleton-associated nonmuscle myosin-IIB. Both CLN3 and myosin-IIB are ubiquitously expressed, yet mutations in either produce dramatic consequences in the CNS such as neurodegeneration in JNCL patients and Cln3(-/-) mouse models, or developmental deficiencies in Myh10(-/-) mice, respectively. A scratch assay revealed a migration defect associated with Cln3(-/-) cells. Inhibition of nonmuscle myosin-II with blebbistatin in WT cells resulted in a phenotype that mimics the Cln3(-/-) migration defect. Moreover, inhibiting lysosome function by treating cells with chloroquine exacerbated the migration defect in Cln3(-/-). Cln3(-/-) cells traversing a transwell filter under gradient trophic factor conditions displayed altered migration, further linking lysosomal function and cell migration. The myosin-IIB distribution in Cln3(-/-) cells is elongated, indicating a cytoskeleton defect caused by the loss of CLN3. In summary, cells lacking CLN3 have defects that suggest altered myosin-IIB activity, supporting a functional and physical interaction between CLN3 and myosin-IIB. We propose that the migration defect in Cln3(-/-) results, in part, from the loss of the CLN3-myosin-IIB interaction.
Collapse
Affiliation(s)
- Amanda L Getty
- Center for Neural Development and Disease, Aab Institute of Biomedical Sciences, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
47
|
Sharifi A, Kousi M, Sagné C, Bellenchi GC, Morel L, Darmon M, Hulková H, Ruivo R, Debacker C, El Mestikawy S, Elleder M, Lehesjoki AE, Jalanko A, Gasnier B, Kyttälä A. Expression and lysosomal targeting of CLN7, a major facilitator superfamily transporter associated with variant late-infantile neuronal ceroid lipofuscinosis. Hum Mol Genet 2010; 19:4497-514. [PMID: 20826447 DOI: 10.1093/hmg/ddq381] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Neuronal ceroid lipofuscinoses (NCLs) constitute a group of progressive neurodegenerative disorders resulting from mutations in at least eight different genes. Mutations in the most recently identified NCL gene, MFSD8/CLN7, underlie a variant of late-infantile NCL (vLINCL). The MFSD8/CLN7 gene encodes a polytopic protein with unknown function, which shares homology with ion-coupled membrane transporters. In this study, we confirmed the lysosomal localization of the native CLN7 protein. This localization of CLN7 is not impaired by the presence of pathogenic missense mutations or after genetic ablation of the N-glycans. Expression of chimeric and full-length constructs showed that lysosomal targeting of CLN7 is mainly determined by an N-terminal dileucine motif, which specifically binds to the heterotetrameric adaptor AP-1 in vitro. We also show that CLN7 mRNA is more abundant in neurons than astrocytes and microglia, and that it is expressed throughout rat brain, with increased levels in the granular layer of cerebellum and hippocampal pyramidal cells. Interestingly, this cellular and regional distribution is in good agreement with the autofluorescent lysosomal storage and cell loss patterns found in brains from CLN7-defective patients. Overall, these data highlight lysosomes as the primary site of action for CLN7, and suggest that the pathophysiology underpinning CLN7-associated vLINCL is a cell-autonomous process.
Collapse
Affiliation(s)
- A Sharifi
- Institut de Biologie Physico-Chimique, Université Paris Descartes, Centre National de la Recherche Scientifique, UMR 8192, Institut de Biologie Physico-Chimique, 13 Rue P. et M. Curie, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Getty AL, Pearce DA. Interactions of the proteins of neuronal ceroid lipofuscinosis: clues to function. Cell Mol Life Sci 2010; 68:453-74. [PMID: 20680390 DOI: 10.1007/s00018-010-0468-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/13/2010] [Indexed: 12/21/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCL) are caused by mutations in eight different genes, are characterized by lysosomal accumulation of autofluorescent storage material, and result in a disease that causes degeneration of the central nervous system (CNS). Although functions are defined for some of the soluble proteins that are defective in NCL (cathepsin D, PPT1, and TPP1), the primary function of the other proteins defective in NCLs (CLN3, CLN5, CLN6, CLN7, and CLN8) remain poorly defined. Understanding the localization and network of interactions for these proteins can offer clues as to the function of the NCL proteins and also the pathways that will be disrupted in their absence. Here, we present a review of the current understanding of the localization, interactions, and function of the proteins associated with NCL.
Collapse
Affiliation(s)
- Amanda L Getty
- Sanford Children's Health Research Center, Sanford Research USD, Sanford School of Medicine of the University of South Dakota, 2301 East 60th Street North, Sioux Falls, SD 57104-0589, USA
| | | |
Collapse
|
49
|
Steenhuis P, Herder S, Gelis S, Braulke T, Storch S. Lysosomal targeting of the CLN7 membrane glycoprotein and transport via the plasma membrane require a dileucine motif. Traffic 2010; 11:987-1000. [PMID: 20406422 DOI: 10.1111/j.1600-0854.2010.01073.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CLN7 is a polytopic lysosomal membrane protein deficient in variant late infantile neuronal ceroid lipofuscinosis, a neurodegenerative lysosomal storage disorder. In this study fluorescence protease protection assays and mutational analyses revealed the N- and C-terminal tails of CLN7 in the cytosol and two N-glycosylation sites at N371 and N376. Both partially and non-glycosylated CLN7 were correctly transported to lysosomes. To identify lysosomal targeting motifs, we generated CD4-chimera fused to the N- and C-terminal domains of CLN7. Lysosomal localization of the chimeric proteins requires a consensus acidic dileucine-based motif in the N-terminus and two tandem tyrosine-based signals in the C-terminus. Mutation of these sorting motifs resulted in cell surface redistribution of CD4 chimeras. However, the dileucine-based motif is of critical importance for lysosomal localization of the full-length CLN7 in different cell lines. Cell surface biotinylation revealed that at equilibrium 22% of total CLN7 is localized at the plasma membrane. Mutation of the dileucine motif or the co-expression of dominant-negative mutant dynamin K44A led to a further increase of CLN7 at the plasma membrane. Our data demonstrate that CLN7 contains several cytoplasmic lysosomal targeting signals of which the N-terminal dileucine-based motif is required for the predominant lysosomal targeting along the indirect pathway and clathrin-mediated endocytosis of CLN7.
Collapse
Affiliation(s)
- Pieter Steenhuis
- Department of Biochemistry, Children's Hospital, University Medical Center Hamburg-Eppendorf, Martinistr. 52, D-20246 Hamburg, Germany
| | | | | | | | | |
Collapse
|
50
|
Schmiedt ML, Bessa C, Heine C, Ribeiro MG, Jalanko A, Kyttälä A. The neuronal ceroid lipofuscinosis protein CLN5: new insights into cellular maturation, transport, and consequences of mutations. Hum Mutat 2010; 31:356-65. [PMID: 20052765 DOI: 10.1002/humu.21195] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuronal ceroid lipofuscinoses (NCLs) represent a group of children's inherited neurodegenerative disorders caused by mutations in at least eight different genes. Mutations in the CLN5 gene result in the Finnish variant late infantile NCL characterized by gradual loss of vision, epileptic seizures, and mental deterioration. The CLN5 gene encodes a lysosomal glycoprotein of unidentified function. In this study, we have used both transient and stable expression systems for the characterization of CLN5, focusing on the localization, processing, and intracellular trafficking. We show that CLN5 is proteolytically cleaved, and that the mature polypeptide is transported to the lysosomes. Our data provide the first evidence that soluble CLN5 protein can also undergo mannose-6-phosphate receptor-independent trafficking to the lysosomes. We studied the localization and maturation of the CLN5 carrying the previously uncharacterized vLINCL disease causing mutations in HeLa cells. All analyzed disease mutations disturb the lysosomal trafficking of the mutated CLN5 proteins. The level of lysosomal targeting does not correlate, however, to disease onset, indicating that CLN5 may also function outside lysosomes. This study furthers our understanding of the basic properties of the CLN5 protein, necessary for the characterization of the consequences of disease mutations and for the planning of future therapies for vLINCL.
Collapse
Affiliation(s)
- Mia-Lisa Schmiedt
- National Institute for Health and Welfare (THL), Public Health Genomics Unit, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|