1
|
Ernst P, Xu N, Qu J, Chen H, Goldberg MS, Darley-Usmar V, Zhang JJ, O'Rourke B, Liu X, Zhou L. Precisely Control Mitochondria with Light to Manipulate Cell Fate Decision. Biophys J 2019; 117:631-645. [PMID: 31400914 DOI: 10.1016/j.bpj.2019.06.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/13/2019] [Accepted: 06/17/2019] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial dysfunction has been implicated in many pathological conditions and diseases. The normal functioning of mitochondria relies on maintaining the inner mitochondrial membrane potential (also known as ΔΨm) that is essential for ATP synthesis, Ca2+ homeostasis, redox balance, and regulation of other key signaling pathways such as mitophagy and apoptosis. However, the detailed mechanisms by which ΔΨm regulates cellular function remain incompletely understood, partially because of the difficulty of manipulating ΔΨm with spatiotemporal resolution, reversibility, or cell type specificity. To address this need, we have developed a next generation optogenetic-based technique for controllable mitochondrial depolarization with light. We demonstrate successful targeting of the heterologous channelrhodopsin-2 fusion protein to the inner mitochondrial membrane and formation of functional cationic channels capable of light-induced selective ΔΨm depolarization and mitochondrial autophagy. Importantly, we for the first time, to our knowledge, show that optogenetic-mediated mitochondrial depolarization can be well controlled to differentially influence the fate of cells expressing mitochondrial channelrhodopsin-2; whereas sustained moderate light illumination induces substantial apoptotic cell death, transient mild light illumination elicits cytoprotection via mitochondrial preconditioning. Finally, we show that Parkin overexpression exacerbates, instead of ameliorating, mitochondrial depolarization-mediated cell death in HeLa cells. In summary, we provide evidence that the described mitochondrial-targeted optogenetics may have a broad application for studying the role of mitochondria in regulating cell function and fate decision.
Collapse
Affiliation(s)
- Patrick Ernst
- Departments of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama; Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Ningning Xu
- Departments of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Jing Qu
- Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Herbert Chen
- Surgery, University of Alabama at Birmingham, Birmingham, Alabama
| | | | | | - Jianyi J Zhang
- Departments of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Brian O'Rourke
- Division of Cardiology, Department of Medicine, The Johns Hopkins University, Baltimore, Maryland
| | - Xiaoguang Liu
- Departments of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Lufang Zhou
- Departments of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama; Medicine, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
2
|
Cotranslational Intersection between the SRP and GET Targeting Pathways to the Endoplasmic Reticulum of Saccharomyces cerevisiae. Mol Cell Biol 2016; 36:2374-83. [PMID: 27354063 DOI: 10.1128/mcb.00131-16] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 06/17/2016] [Indexed: 01/21/2023] Open
Abstract
Targeting of transmembrane proteins to the endoplasmic reticulum (ER) proceeds via either the signal recognition particle (SRP) or the guided entry of tail-anchored proteins (GET) pathway, consisting of Get1 to -5 and Sgt2. While SRP cotranslationally targets membrane proteins containing one or multiple transmembrane domains, the GET pathway posttranslationally targets proteins containing a single C-terminal transmembrane domain termed the tail anchor. Here, we dissect the roles of the SRP and GET pathways in the sorting of homologous, two-membrane-spanning K(+) channel proteins termed Kcv, Kesv, and Kesv-VV. We show that Kcv is targeted to the ER cotranslationally via its N-terminal transmembrane domain, while Kesv-VV is targeted posttranslationally via its C-terminal transmembrane domain, which recruits Get4-5/Sgt2 and Get3. Unexpectedly, nascent Kcv recruited not only SRP but also the Get4-5 module of the GET pathway to ribosomes. Ribosome binding of Get4-5 was independent of Sgt2 and was strongly outcompeted by SRP. The combined data indicate a previously unrecognized cotranslational interplay between the SRP and GET pathways.
Collapse
|
3
|
Kang K, Takahara M, Sakaue H, Sakaguchi M. Capsid protease domain as a tool for assessing protein-domain folding during organelle import of nascent polypeptides in living cells. J Biochem 2015; 159:497-508. [DOI: 10.1093/jb/mvv129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 11/03/2015] [Indexed: 01/16/2023] Open
|
4
|
Sakaue H, Iwashita S, Yamashita Y, Kida Y, Sakaguchi M. The N-terminal motif of PMP70 suppresses cotranslational targeting to the endoplasmic reticulum. J Biochem 2015; 159:539-51. [PMID: 26711236 DOI: 10.1093/jb/mvv132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/06/2015] [Indexed: 11/13/2022] Open
Abstract
Many membrane proteins possessing hydrophobic transmembrane (TM) segments are cotranslationally integrated into the endoplasmic reticulum (ER) membrane. Various peroxisomal and mitochondrial membrane proteins escape the ER-targeting mechanism and are targeted to their destinations. Here, we discovered a short segment in the 70-kDa peroxisomal membrane protein (PMP70) that suppresses ER targeting. The first TM segment has an intrinsic signal function that targets the nascent chain to the ER. The ER targeting was suppressed by a short N-terminal sequence of nine residues that is 80 residues upstream of the TM segment. Among the nine residues, Ser(5) is indispensable. The short segment also suppressed the signal peptide function of an authentic secretory protein. This function of the short segment was suppressed by the recombinant motif-GST fusion protein. The 50-kDa and 20-kDa proteins were crosslinked with the motif. The PMP70 molecule with the Ser5Ala point mutation predominantly localized to the ER. We propose the concept of an ER-targeting suppressor that suppresses the ER-targeting mechanism via a binding factor.
Collapse
Affiliation(s)
- Haruka Sakaue
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Shohei Iwashita
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Yukari Yamashita
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Yuichiro Kida
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| | - Masao Sakaguchi
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297, Japan
| |
Collapse
|
5
|
Abstract
Mitochondria are energy-producing organelles in eukaryotic cells considered to be of bacterial origin. The mitochondrial genome has evolved under selection for minimization of gene content, yet it is not known why not all mitochondrial genes have been transferred to the nuclear genome. Here, we predict that hydrophobic membrane proteins encoded by the mitochondrial genomes would be recognized by the signal recognition particle and targeted to the endoplasmic reticulum if they were nuclear-encoded and translated in the cytoplasm. Expression of the mitochondrially encoded proteins Cytochrome oxidase subunit 1, Apocytochrome b, and ATP synthase subunit 6 in the cytoplasm of HeLa cells confirms export to the endoplasmic reticulum. To examine the extent to which the mitochondrial proteome is driven by selective constraints within the eukaryotic cell, we investigated the occurrence of mitochondrial protein domains in bacteria and eukaryotes. The accessory protein domains of the oxidative phosphorylation system are unique to mitochondria, indicating the evolution of new protein folds. Most of the identified domains in the accessory proteins of the ribosome are also found in eukaryotic proteins of other functions and locations. Overall, one-third of the protein domains identified in mitochondrial proteins are only rarely found in bacteria. We conclude that the mitochondrial genome has been maintained to ensure the correct localization of highly hydrophobic membrane proteins. Taken together, the results suggest that selective constraints on the eukaryotic cell have played a major role in modulating the evolution of the mitochondrial genome and proteome.
Collapse
|
6
|
Superresolution imaging of viral protein trafficking. Med Microbiol Immunol 2015; 204:449-60. [PMID: 25724304 DOI: 10.1007/s00430-015-0395-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/13/2015] [Indexed: 12/25/2022]
Abstract
The endoplasmic reticulum (ER) membrane is closely apposed to the outer mitochondrial membrane (OMM), which facilitates communication between these organelles. These contacts, known as mitochondria-associated membranes (MAM), facilitate calcium signaling, lipid transfer, as well as antiviral and stress responses. How cellular proteins traffic to the MAM, are distributed therein, and interact with ER and mitochondrial proteins are subject of great interest. The human cytomegalovirus UL37 exon 1 protein or viral mitochondria-localized inhibitor of apoptosis (vMIA) is crucial for viral growth. Upon synthesis at the ER, vMIA traffics to the MAM and OMM, where it reprograms the organization and function of these compartments. vMIA significantly changes the abundance of cellular proteins at the MAM and OMM, including proteins that regulate calcium homeostasis and cell death. Through the use of superresolution imaging, we have shown that vMIA is distributed at the OMM in nanometer scale clusters. This is similar to the clusters reported for the mitochondrial calcium channel, VDAC, as well as electron transport chain, translocase of the OMM complex, and mitochondrial inner membrane organizing system components. Thus, aside from addressing how vMIA targets the MAM and regulates survival of infected cells, biochemical studies and superresolution imaging of vMIA offer insights into the formation, organization, and functioning of MAM. Here, we discuss these insights into trafficking, function, and organization of vMIA at the MAM and OMM and discuss how the use of superresolution imaging is contributing to the study of the formation and trafficking of viruses.
Collapse
|
7
|
Emi Y, Harada Y, Sakaguchi M. Involvement of a di-leucine motif in targeting of ABCC1 to the basolateral plasma membrane of polarized epithelial cells. Biochem Biophys Res Commun 2013; 441:89-95. [PMID: 24129190 DOI: 10.1016/j.bbrc.2013.10.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 10/05/2013] [Indexed: 01/24/2023]
Abstract
Localization of ATP-binding cassette transporter isoform C1 (ABCC1) to the basolateral membrane of polarized cells is crucial for export of a variety of cellular metabolites; however, the mechanism regulating basolateral targeting of the transporter is poorly understood. Here we describe identification of a basolateral targeting signal in the first cytoplasmic loop domain (CLD1) of human ABCC1. Comparison of the CLD1 amino acid sequences from ABCC1 to ABCC2 revealed that ABCC1 possesses a characteristic sequence, E(295)EVEALI(301), which is comprised of a cluster of acidic glutamate residues followed by a di-leucine motif. This characteristic sequence is highly conserved among vertebrate ABCC1 orthologs and is positioned at a site that is structurally equivalent to the apical targeting signal previously described in ABCC2. Alanine scanning mutagenesis of this sequence in full-length human ABCC1 showed that both L(300) and I(301) residues were required for basolateral targeting of ABCC1 in polarized HepG2 and MDCK cells. Conversely, E(295), E(296), and E(298) residues were not required for basolateral localization of the transporter. Therefore, a di-leucine motif within the CLD1 is a basolateral targeting determinant of ABCC1.
Collapse
Affiliation(s)
- Yoshikazu Emi
- Graduate School of Life Science, University of Hyogo, Harima Science Park City, Hyogo 678-1205, Japan.
| | | | | |
Collapse
|
8
|
Reithinger JH, Yim C, Park K, Björkholm P, von Heijne G, Kim H. A short C-terminal tail prevents mis-targeting of hydrophobic mitochondrial membrane proteins to the ER. FEBS Lett 2013; 587:3480-6. [PMID: 24055247 DOI: 10.1016/j.febslet.2013.08.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 08/28/2013] [Indexed: 10/26/2022]
Abstract
Sdh3/Shh3, a subunit of mitochondrial succinate dehydrogenase, contains transmembrane domains with a hydrophobicity comparable to that of endoplasmic reticulum (ER) proteins. Here, we show that a C-terminal reporter fusion to Sdh3/Shh3 results in partial mis-targeting of the protein to the ER. This mis-targeting is mediated by the signal recognition particle (SRP) and depends on the length of the C-terminal tail. These results imply that if nuclear-encoded mitochondrial proteins contain strongly hydrophobic transmembrane domains and a long C-terminal tail, they have the potential to be recognized by SRP and mis-targeted to the ER.
Collapse
Affiliation(s)
- Johannes H Reithinger
- School of Biological Sciences, Seoul National University, Seoul 151-747, South Korea; Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
9
|
von Loeffelholz O, Knoops K, Ariosa A, Zhang X, Karuppasamy M, Huard K, Schoehn G, Berger I, Shan SO, Schaffitzel C. Structural basis of signal sequence surveillance and selection by the SRP-FtsY complex. Nat Struct Mol Biol 2013; 20:604-10. [PMID: 23563142 DOI: 10.1038/nsmb.2546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 02/21/2013] [Indexed: 11/09/2022]
Abstract
Signal-recognition particle (SRP)-dependent targeting of translating ribosomes to membranes is a multistep quality-control process. Ribosomes that are translating weakly hydrophobic signal sequences can be rejected from the targeting reaction even after they are bound to the SRP. Here we show that the early complex, formed by Escherichia coli SRP and its receptor FtsY with ribosomes translating the incorrect cargo EspP, is unstable and rearranges inefficiently into subsequent conformational states, such that FtsY dissociation is favored over successful targeting. The N-terminal extension of EspP is responsible for these defects in the early targeting complex. The cryo-electron microscopy structure of this 'false' early complex with EspP revealed an ordered M domain of SRP protein Ffh making two ribosomal contacts, and the NG domains of Ffh and FtsY forming a distorted, flexible heterodimer. Our results provide a structural basis for SRP-mediated signal-sequence selection during recruitment of the SRP receptor.
Collapse
|
10
|
Liesa M, Qiu W, Shirihai OS. Mitochondrial ABC transporters function: the role of ABCB10 (ABC-me) as a novel player in cellular handling of reactive oxygen species. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1945-57. [PMID: 22884976 DOI: 10.1016/j.bbamcr.2012.07.013] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/22/2022]
Abstract
Mitochondria are one of the major sources of reactive oxygen species (ROS) in the cell. When exceeding the capacity of antioxidant mechanisms, ROS production may lead to different pathologies, such as ischemia-reperfusion injury, neurodegeneration, anemia and ageing. As a consequence of the endosymbiotic origin of mitochondria, eukaryotic cells have developed different transport mechanisms that coordinate mitochondrial function with other cellular compartments. Four mitochondrial ATP-binding cassette (ABC) transporters have been described to date in mammals: ABCB6, ABCB8, ABCB7 and ABCB10. ABCB10 is located in the inner mitochondrial membrane forming homodimers, with the ATP binding domain facing the mitochondrial matrix. ABCB10 expression is highly induced during erythroid differentiation and its overexpression increases hemoglobin synthesis in erythroid cells. However, ABCB10 is also expressed in nonerythroid tissues, suggesting a role not directly related to hemoglobin synthesis. Recent evidence points toward ABCB10 as an important player in the protection from oxidative stress in mammals. In this regard, ABCB10 is required for normal erythropoiesis and cardiac recovery after ischemia-reperfusion, processes intimately related to mitochondrial ROS generation. Here, we review the current knowledge on mitochondrial ABC transporters and ABCB10 and discuss the potential mechanisms by which ABCB10 and its transport activity may regulate oxidative stress. We discuss ABCB10 as a potential therapeutic target for diseases in which increased mitochondrial ROS production and oxidative stress play a major role.
Collapse
Affiliation(s)
- Marc Liesa
- Department of Medicine, Obesity and Nutrition Section, Mitochondria ARC, Evans Biomedical Research Center, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | |
Collapse
|
11
|
Vanhee C, Guillon S, Masquelier D, Degand H, Deleu M, Morsomme P, Batoko H. A TSPO-related protein localizes to the early secretory pathway in Arabidopsis, but is targeted to mitochondria when expressed in yeast. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:497-508. [PMID: 20847098 PMCID: PMC3003801 DOI: 10.1093/jxb/erq283] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/16/2010] [Accepted: 08/19/2010] [Indexed: 05/29/2023]
Abstract
AtTSPO is a TspO/MBR domain-protein potentially involved in multiple stress regulation in Arabidopsis. As in most angiosperms, AtTSPO is encoded by a single, intronless gene. Expression of AtTSPO is tightly regulated both at the transcriptional and post-translational levels. It has been shown previously that overexpression of AtTSPO in plant cell can be detrimental, and the protein was detected in the endoplasmic reticulum (ER) and Golgi stacks, contrasting with previous findings and suggesting a mitochondrial subcellular localization for this protein. To ascertain these findings, immunocytochemistry and ABA induction were used to demonstrate that, in plant cells, physiological levels of AtTSPO colocalized with AtArf1, a mainly Golgi-localized protein in plant cells. In addition, fluorescent protein-tagged AtTSPO was targeted to the secretory pathway and did not colocalize with MitoTracker-labelled mitochondria. These results suggest that the polytopic membrane protein AtTSPO is cotranslationally targeted to the ER in plant cells and accumulates in the Trans-Golgi Network. Heterologous expression of AtTSPO in Saccharomyces cerevisiae, yeast devoid of TSPO-related protein, resulted in growth defects. However, subcellular fractionation and immunoprecipitation experiments showed that AtTSPO was targeted to mitochondria where it colocalized and interacted with the outer mitochondrial membrane porin VDAC1p, reminiscent of the subcellular localization and activity of mammalian translocator protein 18 kDa TSPO. The evolutionarily divergent AtTSPO appears therefore to be switching its sorting mode in a species-dependent manner, an uncommon peculiarity for a polytopic membrane protein in eukaryotic cells. These results are discussed in relation to the recognition and organelle targeting mechanisms of polytopic membrane proteins in eukaryotic cells.
Collapse
Affiliation(s)
- Celine Vanhee
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Stéphanie Guillon
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Danièle Masquelier
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Hervé Degand
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Magali Deleu
- Unité de Chimie Biologique Industrielle, Université de Liège, Gembloux Agro-BioTech (GxABT), Passage des Déportés 2, 5030 Gembloux, Belgium
| | - Pierre Morsomme
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| | - Henri Batoko
- Institut des Sciences de la Vie (ISV), Molecular Physiology Group (FYMO), Université catholique de Louvain, Croix du Sud 4-15, 1348 Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Trafficking of UL37 proteins into mitochondrion-associated membranes during permissive human cytomegalovirus infection. J Virol 2010; 84:7898-903. [PMID: 20504938 DOI: 10.1128/jvi.00885-10] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human cytomegalovirus (HCMV) UL37 proteins traffic sequentially from the endoplasmic reticulum (ER) to the mitochondria. In transiently transfected cells, UL37 proteins traffic into the mitochondrion-associated membranes (MAM), the site of contact between the ER and mitochondria. In HCMV-infected cells, the predominant UL37 exon 1 protein, pUL37x1, trafficked into the ER, the MAM, and the mitochondria. Surprisingly, a component of the MAM calcium signaling junction complex, cytosolic Grp75, was increasingly enriched in heavy MAM from HCMV-infected cells. These studies show the first documented case of a herpesvirus protein, HCMV pUL37x1, trafficking into the MAM during permissive infection and HCMV-induced alteration of the MAM protein composition.
Collapse
|
13
|
Intracellular sorting signals for sequential trafficking of human cytomegalovirus UL37 proteins to the endoplasmic reticulum and mitochondria. J Virol 2010; 84:6400-9. [PMID: 20410282 DOI: 10.1128/jvi.00556-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Human cytomegalovirus UL37 antiapoptotic proteins, including the predominant UL37 exon 1 protein (pUL37x1), traffic sequentially from the endoplasmic reticulum (ER) through the mitochondrion-associated membrane compartment to the mitochondrial outer membrane (OMM), where they inactivate the proapoptotic activity of Bax. We found that widespread mitochondrial distribution occurs within 1 h of pUL37x1 synthesis. The pUL37x1 mitochondrial targeting signal (MTS) spans its first antiapoptotic domain (residues 5 to 34) and consists of a weak hydrophobicity leader (MTSalpha) and proximal downstream residues (MTSbeta). This MTS arrangement of a hydrophobic leader and downstream proximal basic residues is similar to that of the translocase of the OMM 20, Tom20. We examined whether the UL37 MTS functions analogously to Tom20 leader. Surprisingly, lowered hydropathy of the UL37x1 MTSalpha, predicted to block ER translocation, still allowed dual targeting of mutant to the ER and OMM. However, increased hydropathy of the MTS leader caused exclusion of the UL37x1 high-hydropathy mutant from mitochondrial import. Conversely, UL37 MTSalpha replacement with the Tom20 leader did not retarget pUL37x1 exclusively to the OMM; rather, the UL37x1-Tom20 chimera retained dual trafficking. Moreover, replacement of the UL37 MTSbeta basic residues did not reduce OMM import. Ablation of the MTSalpha posttranslational modification site or of the downstream MTS proline-rich domain (PRD) increased mitochondrial import. Our results suggest that pUL37x1 sequential ER to mitochondrial trafficking requires a weakly hydrophobic leader and is regulated by MTSbeta sequences. Thus, HCMV pUL37x1 uses a mitochondrial importation pathway that is genetically distinguishable from that of known OMM proteins.
Collapse
|
14
|
Iwashita S, Tsuchida M, Tsukuda M, Yamashita Y, Emi Y, Kida Y, Komori M, Kashiwayama Y, Imanaka T, Sakaguchi M. Multiple organelle-targeting signals in the N-terminal portion of peroxisomal membrane protein PMP70. J Biochem 2009; 147:581-90. [DOI: 10.1093/jb/mvp205] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
15
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Iqbal Hamza
- Department of Animal & Avian Sciences and Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
16
|
Affiliation(s)
- Scott Severance
- Department of Animal & Avian Sciences, University of Maryland, College Park, Maryland 20742, USA
| | | |
Collapse
|
17
|
Biochemical evidence of the interactions of membrane type-1 matrix metalloproteinase (MT1-MMP) with adenine nucleotide translocator (ANT): potential implications linking proteolysis with energy metabolism in cancer cells. Biochem J 2009; 420:37-47. [PMID: 19232058 DOI: 10.1042/bj20090082] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Invasion-promoting MT1-MMP (membrane type-1 matrix metalloproteinase) is a key element in cell migration processes. To identify the proteins that interact and therefore co-precipitate with this proteinase from cancer cells, we used the proteolytically active WT (wild-type), the catalytically inert E240A and the C-end truncated (tailless; DeltaCT) MT1-MMP-FLAG constructs as baits. The identity of the pulled-down proteins was determined by LC-MS/MS (liquid chromatography tandem MS) and then confirmed by Western blotting using specific antibodies. We determined that, in breast carcinoma MCF cells (MCF-7 cells), ANT (adenine nucleotide translocator) efficiently interacted with the WT, E240A and DeltaCT constructs. The WT and E240A constructs also interacted with alpha-tubulin, an essential component of clathrin-mediated endocytosis. In turn, tubulin did not co-precipitate with the DeltaCT construct because of the inefficient endocytosis of the latter, thus suggesting a high level of selectivity of our test system. To corroborate these results, we then successfully used the ANT2-FLAG construct as a bait to pull-down MT1-MMP, which was naturally produced by fibrosarcoma HT1080 cells. We determined that the presence of the functionally inert catalytic domain alone was sufficient to cause the proteinase to interact with ANT2, thus indicating that there is a non-proteolytic mode of these interactions. Overall, it is tempting to hypothesize that by interacting with pro-invasive MT1-MMP, ANT plays a yet to be identified role in a coupling mechanism between energy metabolism and pericellular proteolysis in migrating cancer cells.
Collapse
|
18
|
Sato T, Mihara K. Topogenesis of mammalian Oxa1, a component of the mitochondrial inner membrane protein export machinery. J Biol Chem 2009; 284:14819-27. [PMID: 19349278 DOI: 10.1074/jbc.m809520200] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxa1 is a mitochondrial inner membrane protein with a predicted five-transmembrane segment (TM1 approximately 5) topology in which the N terminus and a hydrophilic loop, L2, are exposed to the intermembrane space and the C-terminal region and two loops, L1 and L3, are exposed to the matrix. Oxa1 mediates the insertion of mitochondrial DNA-encoded subunits of respiratory complexes and several nuclear DNA-encoded proteins into the inner membrane from the matrix. Compared with yeast Oxa1, little is known about the import and function of mammalian Oxa1. Here, we investigated the topogenesis of Oxa1 in HeLa cells using systematic deletion or mutation constructs and found that (i) the N-terminal 64-residue segment formed a presequence, and its deletion directed the mature protein to the endoplasmic reticulum, indicating that the presequence arrests cotranslational activation of the potential endoplasmic reticulum-targeting signal within mature Oxa1, (ii) systematic deletion of Oxa1 TM segments revealed that the presence of all five TMs is essential for efficient membrane integration, (iii) the species-conserved hexapeptide (GLPWWG) located near the N terminus of TM1 was essential for export of the N-terminal segment and L2 into the intermembrane space from the matrix, i.e. for correct topogenesis of Oxa1, and (iv) GLPWWG placed near the N terminus of TM2 or TM3 in the reporter construct also supported its membrane integration in the Nout-Cin orientation. Together, these results demonstrated that topogenesis of Oxa1 is a cooperative event of all five TMs, and GLPWWG followed immediately by TM1 is essential for correct Oxa1 topogenesis.
Collapse
Affiliation(s)
- Takashi Sato
- Department of Molecular Biology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812, Japan
| | | |
Collapse
|
19
|
Abstract
Correct protein function depends on delivery to the appropriate cellular or subcellular compartment. Following the initiation of protein synthesis in the cytosol, many bacterial and eukaryotic proteins must be integrated into or transported across a membrane to reach their site of function. Whereas in the post-translational delivery pathway ATP-dependent factors bind to completed polypeptides and chaperone them until membrane translocation is initiated, a GTP-dependent co-translational pathway operates to couple ongoing protein synthesis to membrane transport. These distinct pathways provide different solutions for the maintenance of proteins in a state that is competent for membrane translocation and their delivery for export from the cytosol.
Collapse
|
20
|
Zutz A, Gompf S, Schägger H, Tampé R. Mitochondrial ABC proteins in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2009; 1787:681-90. [PMID: 19248758 DOI: 10.1016/j.bbabio.2009.02.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/13/2009] [Indexed: 12/14/2022]
Abstract
ABC transporters represent one of the largest families of membrane proteins that are found in all three phyla of life. Mitochondria comprise up to four ABC systems, ABCB7/ATM1, ABCB10/MDL1, ABCB8 and ABCB6. These half-transporters, which assemble into homodimeric complexes, are involved in a number of key cellular processes, e.g. biogenesis of cytosolic iron-sulfur clusters, heme biosynthesis, iron homeostasis, multidrug resistance, and protection against oxidative stress. Here, we summarize recent advances and emerging themes in our understanding of how these ABC systems in the inner and outer mitochondrial membrane fulfill their functions in important (patho) physiological processes, including neurodegenerative and hematological disorders.
Collapse
Affiliation(s)
- Ariane Zutz
- Institute of Biochemistry, Biocenter, Goethe-University, Max-von-Laue-Str. 9, D-60348 Frankfurt a.M., Germany
| | | | | | | |
Collapse
|
21
|
70-kDa peroxisomal membrane protein related protein (P70R/ABCD4) localizes to endoplasmic reticulum not peroxisomes, and NH2-terminal hydrophobic property determines the subcellular localization of ABC subfamily D proteins. Exp Cell Res 2009; 315:190-205. [DOI: 10.1016/j.yexcr.2008.10.031] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2008] [Revised: 10/01/2008] [Accepted: 10/23/2008] [Indexed: 11/22/2022]
|
22
|
Transmembrane domain length of viral K+ channels is a signal for mitochondria targeting. Proc Natl Acad Sci U S A 2008; 105:12313-8. [PMID: 18719119 DOI: 10.1073/pnas.0805709105] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
K(+) channels operate in the plasma membrane and in membranes of organelles including mitochondria. The mechanisms and topogenic information for their differential synthesis and targeting is unknown. This article describes 2 similar viral K(+) channels that are differentially sorted; one protein (Kesv) is imported by the Tom complex into the mitochondria, the other (Kcv) to the plasma membrane. By creating chimeras we discovered that mitochondrial sorting of Kesv depends on a hierarchical combination of N- and C-terminal signals. Crucial is the length of the second transmembrane domain; extending its C terminus by > or = 2 hydrophobic amino acids redirects Kesv from the mitochondrial to the plasma membrane. Activity of Kesv in the plasma membrane is detected electrically or by yeast rescue assays only after this shift in sorting. Hence only minor structural alterations in a transmembrane domain are sufficient to switch sorting of a K(+) channel between the plasma membrane and mitochondria.
Collapse
|
23
|
Tsuchida M, Emi Y, Kida Y, Sakaguchi M. Human ABC transporter isoform B6 (ABCB6) localizes primarily in the Golgi apparatus. Biochem Biophys Res Commun 2008; 369:369-75. [DOI: 10.1016/j.bbrc.2008.02.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 02/06/2008] [Indexed: 01/13/2023]
|
24
|
Ichikawa J, Tsuchimoto D, Oka S, Ohno M, Furuichi M, Sakumi K, Nakabeppu Y. Oxidation of mitochondrial deoxynucleotide pools by exposure to sodium nitroprusside induces cell death. DNA Repair (Amst) 2008; 7:418-30. [DOI: 10.1016/j.dnarep.2007.11.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2007] [Revised: 11/06/2007] [Accepted: 11/12/2007] [Indexed: 11/16/2022]
|
25
|
Ma Y, Taylor SS. A molecular switch for targeting between endoplasmic reticulum (ER) and mitochondria: conversion of a mitochondria-targeting element into an ER-targeting signal in DAKAP1. J Biol Chem 2008; 283:11743-51. [PMID: 18287098 DOI: 10.1074/jbc.m710494200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
dAKAP1 (AKAP121, S-AKAP84), a dual specificity PKA scaffold protein, exists in several forms designated as a, b, c, and d. Whether dAKAP1 targets to endoplasmic reticulum (ER) or mitochondria depends on the presence of the N-terminal 33 amino acids (N1), and these N-terminal variants are generated by either alternative splicing and/or differential initiation of translation. The mitochondrial targeting motif, which is localized between residues 49 and 63, is comprised of a hydrophobic helix followed by positive charges ( Ma, Y., and Taylor, S. (2002) J. Biol. Chem. 277, 27328-27336 ). dAKAP1 is located on the cytosolic surface of mitochondria outer membrane and both smooth and rough ER membrane. A single residue, Asp(31), within the first 33 residues of dAKAP1b is required for ER targeting. Asp(31), which functions as a separate motif from the mitochondrial targeting signal, converts the mitochondrial-targeting signal into a bipartite ER-targeting signal, without destroying the mitochondria-targeting signal. Therefore dAKAP1 possesses a single targeting element capable of targeting to both mitochondria and ER, with the ER signal overlapping the mitochondria signal. The specificity of ER or mitochondria targeting is determined and switched by the availability of the negatively charged residue, Asp(31).
Collapse
Affiliation(s)
- Yuliang Ma
- Howard Hughes Medical Institute and the Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
26
|
Gompf S, Zutz A, Hofacker M, Haase W, van der Does C, Tampé R. Switching of the homooligomeric ATP-binding cassette transport complex MDL1 from post-translational mitochondrial import to endoplasmic reticulum insertion. FEBS J 2007; 274:5298-310. [PMID: 17892490 DOI: 10.1111/j.1742-4658.2007.06052.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ATP-binding cassette transporter MDL1 of Saccharomyces cerevisiae has been implicated in mitochondrial quality control, exporting degradation products of misassembled respiratory chain complexes. In the present study, we identified an unusually long leader sequence of 59 amino acids, which targets MDL1 to the inner mitochondrial membrane with its nucleotide-binding domain oriented to the matrix. By contrast, MDL1 lacking this leader sequence is directed into the endoplasmic reticulum membrane with the nucleotide-binding domain facing the cytosol. Remarkably, in both targeting routes, the ATP-binding cassette transporter maintains its intrinsic properties of membrane insertion and assembly, leading to homooligomeric complexes with similar activities in ATP hydrolysis. The physiological consequences of both targeting routes were elucidated in cells lacking the mitochondrial ATP-binding cassette transporter ATM1, which is essential for biogenesis of cytosolic iron-sulfur proteins. The mitochondrial MDL1 complex can complement ATM1 function, whereas the endoplasmic reticulum-targeted version, as well as MDL1 mutants deficient in ATP binding and hydrolysis, cannot overcome the Deltaatm1 growth phenotype.
Collapse
Affiliation(s)
- Simone Gompf
- Institute of Biochemistry, Biocenter, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | | | | | | | | | | |
Collapse
|
27
|
Szabadkai G, Rizzuto R. Chaperones as Parts of Organelle Networks. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 594:64-77. [PMID: 17205676 DOI: 10.1007/978-0-387-39975-1_7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The efficiency, divergence, and specificity of virtually all intracellular metabolic and signalling pathways largely depend on their compartmentalized organization. A corollary of the requirement of compartmentalization is the dynamic structural partition of the intracellular space by endomembrane systems. A branch of these membranes communicate with the extracellular space through the endo- and exocytotic processes. Others, like the mitochondrial and endoplasmic reticulum networks accomplish a further role, being fundamental for the maintenance of cellular energy balance and for determination of cell fate under stress conditions. Recent structural and functional studies revealed that the interaction of these networks and the connectivity state of mitochondria controls metabolic flow, protein transport, intracellular Ca2+ signalling, and cell death. Moreover, reflecting the fact that the above processes are accomplished in a microdomain between collaborating organelle membranes, the existence of macromolecular complexes at their contact sites have also been revealed. Being not only assistants of nascent protein folding, chaperones are proposed to participate in assembling and maintaining the function of the above complexes. In this chapter we discuss recently found examples of such an assembly of protein interactions driven by chaperone proteins, and their role in regulating physiological and pathological processes.
Collapse
Affiliation(s)
- György Szabadkai
- Department of Experimental and Diagnostic Medicine, University of Ferrara, Via Borsari 46, Ferrara, 44100, Italy.
| | | |
Collapse
|
28
|
Kashiwayama Y, Asahina K, Shibata H, Morita M, Muntau AC, Roscher AA, Wanders RJA, Shimozawa N, Sakaguchi M, Kato H, Imanaka T. Role of Pex19p in the targeting of PMP70 to peroxisome. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1746:116-28. [PMID: 16344115 DOI: 10.1016/j.bbamcr.2005.10.006] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 10/12/2005] [Accepted: 10/13/2005] [Indexed: 11/19/2022]
Abstract
Pex19p is a protein required for the peroxisomal membrane synthesis. The 70-kDa peroxisomal membrane protein (PMP70) is synthesized on free cytosolic ribosomes and then inserted posttranslationally into peroxisomal membranes. Pex19p has been shown to play an important role in this process. Using an in vitro translation system, we investigated the role of Pex19p as a chaperone and identified the regions of PMP70 required for the interaction with Pex19p. When PMP70 was translated in the presence of purified Pex19p, a large part of PMP70 existed as soluble form and was co-immunoprecipitated with Pex19p. However, in the absence of Pex19p, PMP70 formed aggregates during translation. To identify the regions that interact with Pex19p, various truncated PMP70 were translated in the presence of Pex19p and subjected to co-immunoprecipitation. The interaction was markedly reduced by the deletion of the NH(2)-terminal 61 amino acids or the region around TMD6. Further, we expressed these deletion constructs of PMP70 in fusion with the green fluorescent protein in CHO cells. Fusion proteins lacking these Pex19p binding sites did not display any peroxisomal localization. These results suggest that Pex19p binds to PMP70 co-translationally and keeps PMP70 as a proper conformation for the localization to peroxisome.
Collapse
Affiliation(s)
- Yoshinori Kashiwayama
- Department of Biological Chemistry, Faculty of Pharmaceutical Sciences, Toyama Medical and Pharmaceutical University, 2630 Sugitani, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ikeda M, Kida Y, Ikushiro SI, Sakaguchi M. Manipulation of Membrane Protein Topology on the Endoplasmic Reticulum by a Specific Ligand in Living Cells. ACTA ACUST UNITED AC 2005; 138:631-7. [PMID: 16272575 DOI: 10.1093/jb/mvi157] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Almost all integral membrane proteins in the secretory pathway are cotranslationally inserted into the endoplasmic reticulum membrane. Their membrane topology is determined by their amino acid sequences. Here we show that the topology can be manipulated by a factor other than the amino acid sequence. A dihydrofolate reductase (DHFR) domain was fused to the N-terminus of the type I signal-anchor sequence of synaptotagmin II, which mediates translocation of the preceding portion. The DHFR domain was translocated through the membrane in COS7 cells and a transmembrane (TM) topology was achieved. When a DHFR ligand, methotrexate, was added to the culture medium, translocation of the DHFR domain was suppressed and both ends of the signal-anchor sequence remained on the cytoplasmic side. In contrast, translocation of the DHFR domain fused after the signal peptide, which translocates the following region, was not affected by the ligand. The topology-altered fusion protein was anchored to the membrane in a high salt-resistant state, and partially extracted from the membrane under alkali conditions. We concluded that the topology of membrane proteins can be manipulated by a trans-acting factor, even in living cells.
Collapse
Affiliation(s)
- Motoyasu Ikeda
- Graduate School of Life Science, University of Hyogo, Ako, Hyogo 678-1297
| | | | | | | |
Collapse
|
30
|
Levine T, Rabouille C. Endoplasmic reticulum: one continuous network compartmentalized by extrinsic cues. Curr Opin Cell Biol 2005; 17:362-8. [PMID: 15975783 DOI: 10.1016/j.ceb.2005.06.005] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 06/06/2005] [Indexed: 11/19/2022]
Abstract
The endoplasmic reticulum (ER) is an extensive three-dimensional network that stretches from the inner nuclear envelope to the cell cortex with a single, continuous membrane and a single, continuous lumen. Yet the ER contains specialized regions that carry out unique functions. The question that immediately arises is how the ER can be compartmentalized if it is continuous, and the answer to this is that cellular landmarks with unique sub-cellular distributions impose non-uniformity on the ER from outside, creating structural and functional sub-domains of the ER.
Collapse
Affiliation(s)
- Tim Levine
- Division of Cell Biology, Institute of Ophthalmology, 11-43 Bath Street, London EC1V 9EL, UK
| | | |
Collapse
|