1
|
Ihle M, Biber S, Schroeder IS, Blattner C, Deniz M, Damia G, Gottifredi V, Wiesmüller L. Impact of the interplay between stemness features, p53 and pol iota on replication pathway choices. Nucleic Acids Res 2021; 49:7457-7475. [PMID: 34165573 PMCID: PMC8287946 DOI: 10.1093/nar/gkab526] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022] Open
Abstract
Using human embryonic, adult and cancer stem cells/stem cell-like cells (SCs), we demonstrate that DNA replication speed differs in SCs and their differentiated counterparts. While SCs decelerate DNA replication, differentiated cells synthesize DNA faster and accumulate DNA damage. Notably, both replication phenotypes depend on p53 and polymerase iota (POLι). By exploring protein interactions and newly synthesized DNA, we show that SCs promote complex formation of p53 and POLι at replication sites. Intriguingly, in SCs the translocase ZRANB3 is recruited to POLι and required for slow-down of DNA replication. The known role of ZRANB3 in fork reversal suggests that the p53–POLι complex mediates slow but safe bypass of replication barriers in SCs. In differentiated cells, POLι localizes more transiently to sites of DNA synthesis and no longer interacts with p53 facilitating fast POLι-dependent DNA replication. In this alternative scenario, POLι associates with the p53 target p21, which antagonizes PCNA poly-ubiquitination and, thereby potentially disfavors the recruitment of translocases. Altogether, we provide evidence for diametrically opposed DNA replication phenotypes in SCs and their differentiated counterparts putting DNA replication-based strategies in the spotlight for the creation of therapeutic opportunities targeting SCs.
Collapse
Affiliation(s)
- Michaela Ihle
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Stephanie Biber
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Insa S Schroeder
- Department of Biophysics, GSI Helmholtz Center for Heavy Ion Research, Darmstadt 64291, Germany
| | - Christine Blattner
- Institute for Biological and Chemical Systems - Biological Information Processing, Karlsruhe Institute of Technology, Karlsruhe 76021, Germany
| | - Miriam Deniz
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| | - Giovanna Damia
- Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri-IRCCS Milan, Milan 20156, Italy
| | - Vanesa Gottifredi
- Cell cycle and Genomic Stability Laboratory, Fundación Instituto Leloir, Buenos Aires C1405BWE, Argentina
| | - Lisa Wiesmüller
- Department of Obstetrics and Gynecology, Ulm University, Ulm 89075, Germany
| |
Collapse
|
2
|
Iyama T, Okur MN, Golato T, McNeill DR, Lu H, Hamilton R, Raja A, Bohr VA, Wilson DM. Regulation of the Intranuclear Distribution of the Cockayne Syndrome Proteins. Sci Rep 2018; 8:17490. [PMID: 30504782 PMCID: PMC6269539 DOI: 10.1038/s41598-018-36027-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 11/01/2018] [Indexed: 12/04/2022] Open
Abstract
Cockayne syndrome (CS) is an inherited disorder that involves photosensitivity, developmental defects, progressive degeneration and characteristics of premature aging. Evidence indicates primarily nuclear roles for the major CS proteins, CSA and CSB, specifically in DNA repair and RNA transcription. We reveal herein a complex regulation of CSB targeting that involves three major consensus signals: NLS1 (aa467-481), which directs nuclear and nucleolar localization in cooperation with NoLS1 (aa302-341), and NLS2 (aa1038-1055), which seemingly optimizes nuclear enrichment. CSB localization to the nucleolus was also found to be important for full UVC resistance. CSA, which does not contain any obvious targeting sequences, was adversely affected (i.e. presumably destabilized) by any form of truncation. No inter-coordination between the subnuclear localization of CSA and CSB was observed, implying that this aspect does not underlie the clinical features of CS. The E3 ubiquitin ligase binding partner of CSA, DDB1, played an important role in CSA stability (as well as DDB2), and facilitated CSA association with chromatin following UV irradiation; yet did not affect CSB chromatin binding. We also observed that initial recruitment of CSB to DNA interstrand crosslinks is similar in the nucleoplasm and nucleolus, although final accumulation is greater in the former. Whereas assembly of CSB at sites of DNA damage in the nucleolus was not affected by RNA polymerase I inhibition, stable retention at these sites of presumed repair was abrogated. Our studies reveal a multi-faceted regulation of the intranuclear dynamics of CSA and CSB that plays a role in mediating their cellular functions.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Mustafa N Okur
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Tyler Golato
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Daniel R McNeill
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Huiming Lu
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Royce Hamilton
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Aishwarya Raja
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Blvd., Ste. 100, Baltimore, MD, 21224, USA.
| |
Collapse
|
3
|
|
4
|
Iyama T, Wilson DM. Elements That Regulate the DNA Damage Response of Proteins Defective in Cockayne Syndrome. J Mol Biol 2015; 428:62-78. [PMID: 26616585 DOI: 10.1016/j.jmb.2015.11.020] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 11/18/2015] [Accepted: 11/18/2015] [Indexed: 10/22/2022]
Abstract
Cockayne syndrome (CS) is a premature aging disorder characterized by developmental defects, multisystem progressive degeneration and sensitivity to ultraviolet light. CS is divided into two primary complementation groups, A and B, with the CSA and CSB proteins presumably functioning in DNA repair and transcription. Using laser microirradiation and confocal microscopy, we characterized the nature and regulation of the CS protein response to oxidative DNA damage, double-strand breaks (DSBs), angelicin monoadducts and trioxsalen interstrand crosslinks (ICLs). Our data indicate that CSB recruitment is influenced by the type of DNA damage and is most rapid and robust as follows: ICLs>DSBs>monoadducts>oxidative lesions. Transcription inhibition reduced accumulation of CSB at sites of monoadducts and ICLs, but it did not affect recruitment to (although slightly affected retention at) oxidative damage. Inhibition of histone deacetylation altered the dynamics of CSB assembly, suggesting a role for chromatin status in the response to DNA damage, whereas the proteasome inhibitor MG132 had no effect. The C-terminus of CSB and, in particular, its ubiquitin-binding domain were critical to recruitment, while the N-terminus and a functional ATPase domain played a minor role at best in facilitating protein accumulation. Although the absence of CSA had no effect on CSB recruitment, CSA itself localized at sites of ICLs, DSBs and monoadducts but not at oxidative lesions. Our results reveal molecular components of the CS protein response and point to a major involvement of complex lesions in the pathology of CS.
Collapse
Affiliation(s)
- Teruaki Iyama
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA
| | - David M Wilson
- Laboratory of Molecular Gerontology, National Institute on Aging, Intramural Research Program, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA.
| |
Collapse
|
5
|
Duderstadt KE, Reyes-Lamothe R, van Oijen AM, Sherratt DJ. Replication-fork dynamics. Cold Spring Harb Perspect Biol 2014; 6:cshperspect.a010157. [PMID: 23881939 DOI: 10.1101/cshperspect.a010157] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The proliferation of all organisms depends on the coordination of enzymatic events within large multiprotein replisomes that duplicate chromosomes. Whereas the structure and function of many core replisome components have been clarified, the timing and order of molecular events during replication remains obscure. To better understand the replication mechanism, new methods must be developed that allow for the observation and characterization of short-lived states and dynamic events at single replication forks. Over the last decade, great progress has been made toward this goal with the development of novel DNA nanomanipulation and fluorescence imaging techniques allowing for the direct observation of replication-fork dynamics both reconstituted in vitro and in live cells. This article reviews these new single-molecule approaches and the revised understanding of replisome operation that has emerged.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Zernike Institute for Advanced Materials, University of Groningen, 9747 AG, Groningen, Netherlands
| | | | | | | |
Collapse
|
6
|
Abstract
Fluorescent protein labelling, as well as impressive progress in live cell imaging have revolutionised the view on how essential nuclear functions like gene transcription regulation and DNA repair are organised. Here, we address questions like how DNA-interacting molecules find and bind their target sequences in the vast amount of DNA. In addition, we discuss methods that have been developed for quantitative analysis of data from fluorescence recovery after photobleaching experiments (FRAP).
Collapse
|
7
|
Sekimoto T, Oda T, Pozo FM, Murakumo Y, Masutani C, Hanaoka F, Yamashita T. The molecular chaperone Hsp90 regulates accumulation of DNA polymerase eta at replication stalling sites in UV-irradiated cells. Mol Cell 2010; 37:79-89. [PMID: 20129057 DOI: 10.1016/j.molcel.2009.12.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 06/23/2009] [Accepted: 10/15/2009] [Indexed: 12/19/2022]
Abstract
DNA polymerase eta (Pol eta) is a member of the mammalian Y family polymerases and performs error-free translesion synthesis across UV-damaged DNA. For this function, Pol eta accumulates in nuclear foci at replication stalling sites via its interaction with monoubiquitinated PCNA. However, little is known about the posttranslational control mechanisms of Pol eta, which regulate its accumulation in replication foci. Here, we report that the molecular chaperone Hsp90 promotes UV irradiation-induced nuclear focus formation of Pol eta through control of its stability and binding to monoubiquitinated PCNA. Our data indicate that Hsp90 facilitates the folding of Pol eta into an active form in which PCNA- and ubiquitin-binding regions are functional. Furthermore, Hsp90 inhibition potentiates UV-induced cytotoxicity and mutagenesis in a Pol eta-dependent manner. Our studies identify Hsp90 as an essential regulator of Pol eta-mediated translesion synthesis.
Collapse
Affiliation(s)
- Takayuki Sekimoto
- Laboratory of Molecular Genetics, The Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma 371-8512, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
9
|
Watson NB, Nelson E, Digman M, Thornburg JA, Alphenaar BW, McGregor WG. RAD18 and associated proteins are immobilized in nuclear foci in human cells entering S-phase with ultraviolet light-induced damage. Mutat Res 2008; 648:23-31. [PMID: 18926833 PMCID: PMC2610409 DOI: 10.1016/j.mrfmmm.2008.09.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Revised: 09/09/2008] [Accepted: 09/10/2008] [Indexed: 05/26/2023]
Abstract
Proteins required for translesion DNA synthesis localize in nuclear foci of cells with replication-blocking lesions. The dynamics of this process were examined in human cells with fluorescence-based biophysical techniques. Photobleaching recovery and raster image correlation spectroscopy experiments indicated that involvement in the nuclear foci reduced the movement of RAD18 from diffusion-controlled to virtual immobility. Examination of the mobility of REV1 indicated that it is similarly immobilized when it is observed in nuclear foci. Reducing the level of RAD18 greatly reduced the focal accumulation of REV1 and reduced UV mutagenesis to background frequencies. Fluorescence lifetime measurements indicated that RAD18 and RAD6A or poleta only transferred resonance energy when these proteins colocalized in damage-induced nuclear foci, indicating a close physical association only within such foci. Our data support a model in which RAD18 within damage-induced nuclear foci is immobilized and is required for recruitment of Y-family DNA polymerases and subsequent mutagenesis. In the absence of damage these proteins are not physically associated within the nucleoplasm.
Collapse
Affiliation(s)
- Nicholas B. Watson
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Eric Nelson
- Department of Computer and Electrical Engineering, University of Louisville, Louisville, KY 40202
| | - Michelle Digman
- Laboratory for Fluorescence Dynamics, University of California, Irvine, CA 92697
| | - Joshua A. Thornburg
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| | - Bruce W. Alphenaar
- Department of Computer and Electrical Engineering, University of Louisville, Louisville, KY 40202
| | - W. Glenn McGregor
- Department of Pharmacology and Toxicology and James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202
| |
Collapse
|
10
|
Sabbioneda S, Gourdin AM, Green CM, Zotter A, Giglia-Mari G, Houtsmuller A, Vermeulen W, Lehmann AR. Effect of proliferating cell nuclear antigen ubiquitination and chromatin structure on the dynamic properties of the Y-family DNA polymerases. Mol Biol Cell 2008; 19:5193-202. [PMID: 18799611 DOI: 10.1091/mbc.e08-07-0724] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Y-family DNA polymerases carry out translesion synthesis past damaged DNA. DNA polymerases (pol) eta and iota are usually uniformly distributed through the nucleus but accumulate in replication foci during S phase. DNA-damaging treatments result in an increase in S phase cells containing polymerase foci. Using photobleaching techniques, we show that poleta is highly mobile in human fibroblasts. Even when localized in replication foci, it is only transiently immobilized. Although ubiquitination of proliferating cell nuclear antigen (PCNA) is not required for the localization of poleta in foci, it results in an increased residence time in foci. poliota is even more mobile than poleta, both when uniformly distributed and when localized in foci. Kinetic modeling suggests that both poleta and poliota diffuse through the cell but that they are transiently immobilized for approximately 150 ms, with a larger proportion of poleta than poliota immobilized at any time. Treatment of cells with DRAQ5, which results in temporary opening of the chromatin structure, causes a dramatic immobilization of poleta but not poliota. Our data are consistent with a model in which the polymerases are transiently probing the DNA/chromatin. When DNA is exposed at replication forks, the polymerase residence times increase, and this is further facilitated by the ubiquitination of PCNA.
Collapse
Affiliation(s)
- Simone Sabbioneda
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Schultz-Norton JR, Gabisi VA, Ziegler YS, McLeod IX, Yates JR, Nardulli AM. Interaction of estrogen receptor alpha with proliferating cell nuclear antigen. Nucleic Acids Res 2007; 35:5028-38. [PMID: 17636311 PMCID: PMC1976446 DOI: 10.1093/nar/gkm533] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The ability of estrogen receptor alpha (ERalpha) to modulate gene expression is influenced by the recruitment of a host of co-regulatory proteins to target genes. To further understand how estrogen-responsive genes are regulated, we have isolated and identified proteins associated with ERalpha when it is bound to DNA containing the consensus estrogen response element (ERE). One of the proteins identified in this complex, proliferating cell nuclear antigen (PCNA), is required for DNA replication and repair. We show that PCNA interacts with ERalpha in the absence and in the presence of DNA, enhances the interaction of ERalpha with ERE-containing DNA, and associates with endogenous estrogen-responsive genes. Interestingly, rather than altering hormone responsiveness of endogenous, estrogen-responsive genes, PCNA increases the basal expression of these genes. Our studies suggest that in addition to serving as a platform for the recruitment of DNA replication and repair proteins, PCNA may serve as a platform for transcription factors involved in regulating gene expression.
Collapse
Affiliation(s)
- Jennifer R. Schultz-Norton
- Department of Molecular and Integrative Physiology and Department of Biochemistry, University of Illinois, Urbana, IL 61801 and Department of Cell Biology, The Scripps Institute, LaJolla, CA 92037, USA
| | - Vivian A. Gabisi
- Department of Molecular and Integrative Physiology and Department of Biochemistry, University of Illinois, Urbana, IL 61801 and Department of Cell Biology, The Scripps Institute, LaJolla, CA 92037, USA
| | - Yvonne S. Ziegler
- Department of Molecular and Integrative Physiology and Department of Biochemistry, University of Illinois, Urbana, IL 61801 and Department of Cell Biology, The Scripps Institute, LaJolla, CA 92037, USA
| | - Ian X. McLeod
- Department of Molecular and Integrative Physiology and Department of Biochemistry, University of Illinois, Urbana, IL 61801 and Department of Cell Biology, The Scripps Institute, LaJolla, CA 92037, USA
| | - John R. Yates
- Department of Molecular and Integrative Physiology and Department of Biochemistry, University of Illinois, Urbana, IL 61801 and Department of Cell Biology, The Scripps Institute, LaJolla, CA 92037, USA
| | - Ann M. Nardulli
- Department of Molecular and Integrative Physiology and Department of Biochemistry, University of Illinois, Urbana, IL 61801 and Department of Cell Biology, The Scripps Institute, LaJolla, CA 92037, USA
- *To whom correspondence should be addressed.+1 217 244 5679+1 217 333 1133
| |
Collapse
|
12
|
Saijo M, Hirai T, Ogawa A, Kobayashi A, Kamiuchi S, Tanaka K. Functional TFIIH is required for UV-induced translocation of CSA to the nuclear matrix. Mol Cell Biol 2007; 27:2538-47. [PMID: 17242193 PMCID: PMC1899911 DOI: 10.1128/mcb.01288-06] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcription-coupled repair (TCR) efficiently removes a variety of lesions from the transcribed strand of active genes. Mutations in Cockayne syndrome group A and B genes (CSA and CSB) result in defective TCR, but the molecular mechanism of TCR in mammalian cells is not clear. We have found that CSA protein is translocated to the nuclear matrix after UV irradiation and colocalized with the hyperphosphorylated form of RNA polymerase II and that the translocation is dependent on CSB. We developed a cell-free system for the UV-induced translocation of CSA. A cytoskeleton (CSK) buffer-soluble fraction containing CSA and a CSK buffer-insoluble fraction prepared from UV-irradiated CS-A cells were mixed. After incubation, the insoluble fraction was treated with DNase I. CSA protein was detected in the DNase I-insoluble fraction, indicating that it was translocated to the nuclear matrix. In this cell-free system, the translocation was dependent on UV irradiation, CSB function, and TCR-competent CSA. Moreover, the translocation was dependent on functional TFIIH, as well as chromatin structure and transcription elongation. These results suggest that alterations of chromatin at the RNA polymerase II stall site, which depend on CSB and TFIIH at least, are necessary for the UV-induced translocation of CSA to the nuclear matrix.
Collapse
Affiliation(s)
- Masafumi Saijo
- Graduate School of Frontier Biosciences, Osaka University, Yamadaoka 1-3, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | |
Collapse
|
13
|
|
14
|
Prosperi E. The fellowship of the rings: distinct pools of proliferating cell nuclear antigen trimer at work. FASEB J 2006; 20:833-7. [PMID: 16675840 DOI: 10.1096/fj.05-5469hyp] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The proliferating cell nuclear antigen (PCNA) is a homotrimeric ring-shaped protein that, by encircling DNA, may function as a sliding platform for proteins participating in various DNA transactions. PCNA plays a fundamental role in DNA replication and repair, but also in postreplicative events, like DNA methylation, chromatin assembly and remodeling, sister chromatid cohesion, and coordinates these activities with cell cycle control. However, relevant aspects of PCNA function are still not well understood, like the role of PCNA in the association with partner proteins, and how multiple protein interactions are orchestrated. Based on emerging evidence, I suggest that 1) PCNA interacting proteins may be reclassified in three major categories, namely, a) cell cycle control; b) DNA replication/repair; c) chromatin regulation/transcription. 2) PCNA is a negative regulator, rather than a processivity/recruitment factor, of chromatin-modifying enzymes. 3) At DNA replication sites, PCNA function may be envisaged with a model of "dynamic hand-off" of interacting partners that rapidly and transiently exchange in a mutually exclusive manner, while cyclin-dependent kinase (Cdk) 2 (CDK2) is stably bound to PCNA. The partner exchange might occur through a conformational change of the PCNA/protein/DNA complex allowing CDK2 to phosphorylate the partner protein, thereby enabling its hand-off from PCNA.
Collapse
Affiliation(s)
- Ennio Prosperi
- Istituto di Genetica Molecolare del CNR, sez. Istochimica e Citometria, Dipartimento di Biologia Animale, Università di Pavia, Piazza Botta, 10, Pavia 27100, Italy.
| |
Collapse
|
15
|
Essers J, Vermeulen W, Houtsmuller AB. DNA damage repair: anytime, anywhere? Curr Opin Cell Biol 2006; 18:240-6. [PMID: 16631362 DOI: 10.1016/j.ceb.2006.03.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Accepted: 03/29/2006] [Indexed: 10/24/2022]
Abstract
Regulation of the DNA damage response is tightly connected to transcription and replication. These DNA transacting processes share common factors and use similar strategies to exert their function. However, unlike replication and transcription, DNA repair systems may be required anywhere, and at any time, whenever DNA damage occurs in the cell nucleus. This raises questions concerning the spatiotemporal organization of genome caretaking. Currently, quantitative live cell imaging techniques combined with methods to induce local DNA damage in a small region of the nucleus are contributing substantially to unravelling the molecular mechanisms underlying the cellular response to DNA damage.
Collapse
Affiliation(s)
- Jeroen Essers
- Department of Cell Biology and Genetics, Erasmus MC, University Medical Centre Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands
| | | | | |
Collapse
|
16
|
Abstract
Translesion synthesis is an important mechanism by which cells replicate past DNA damage. The sliding clamp DNA polymerase processivity factors play a central role in this process. The clamps are dimeric in bacteria and trimeric in eukaryotes and archaea, raising the question of whether more than one polymerase can interact with the clamp simultaneously. Recently published data suggest that this is indeed the case.
Collapse
Affiliation(s)
- Alan R Lehmann
- Genome Damage and Stability Centre, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| |
Collapse
|