1
|
Murcia-Garzón J, Méndez-Tenorio A. Promiscuous Domains in Eukaryotes and HAT Proteins in FUNGI Have Followed Different Evolutionary Paths. J Mol Evol 2022; 90:124-138. [PMID: 35084521 DOI: 10.1007/s00239-021-10046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/27/2021] [Indexed: 10/19/2022]
Abstract
Diverse studies have shown that the content of genes present in sequenced genomes does not seem to correlate with the complexity of the organisms. However, various studies have shown that organism complexity and the size of the proteome has, indeed, a significant correlation. This characteristic allows us to postulate that some molecular mechanisms have permitted a greater functional diversity to some proteins to increase their participation in developing organisms with higher complexity. Among those mechanisms, the domain promiscuity, defined as the ability of the domains to organize in combination with other distinct domains, is of great importance for the evolution of organisms. Previous works have analyzed the degree of domain promiscuity of the proteomes showing how it seems to have paralleled the evolution of eukaryotic organisms. The latter has motivated the present study, where we analyzed the domain promiscuity in a collection of 84 eukaryotic proteomes representative of all the taxonomy groups of the tree of life. Using a grammar definition approach, we determined the architecture of 1,223,227 proteins, conformed by 2,296,371 domains, which established 839,184 bigram types. The phylogenetic reconstructions based on differences in the content of information from measures of proteome promiscuity confirm that the evolution of the promiscuity of domains in eukaryotic organisms resembles the evolutionary history of the species. However, a close analysis of the PHD and RING domains, the most promiscuous domains found in fungi and functional components of chromatin remodeling enzymes and important expression regulators, suggests an evolution according to their function.
Collapse
Affiliation(s)
- Jazmín Murcia-Garzón
- Laboratorio de Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Boulevard del Maestro S/N esq. Elías Piña, Col. Narciso Mendoza, 88710, Reynosa, Tamaulipas, Mexico
| | - Alfonso Méndez-Tenorio
- Laboratorio de Biotecnología y Bioinformática Genómica, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prol. de Carpio y Plan de Ayala s/n, Col. Santo Tomás, 11340, Mexico City, Mexico.
| |
Collapse
|
2
|
Wehrs M, Thompson MG, Banerjee D, Prahl JP, Morella NM, Barcelos CA, Moon J, Costello Z, Keasling JD, Shih PM, Tanjore D, Mukhopadhyay A. Investigation of Bar-seq as a method to study population dynamics of Saccharomyces cerevisiae deletion library during bioreactor cultivation. Microb Cell Fact 2020; 19:167. [PMID: 32811554 PMCID: PMC7437010 DOI: 10.1186/s12934-020-01423-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/11/2020] [Indexed: 12/15/2022] Open
Abstract
Background Despite the latest advancements in metabolic engineering for genome editing and characterization of host performance, the successful development of robust cell factories used for industrial bioprocesses and accurate prediction of the behavior of microbial systems, especially when shifting from laboratory-scale to industrial conditions, remains challenging. To increase the probability of success of a scale-up process, data obtained from thoroughly performed studies mirroring cellular responses to typical large-scale stimuli may be used to derive crucial information to better understand potential implications of large-scale cultivation on strain performance. This study assesses the feasibility to employ a barcoded yeast deletion library to assess genome-wide strain fitness across a simulated industrial fermentation regime and aims to understand the genetic basis of changes in strain physiology during industrial fermentation, and the corresponding roles these genes play in strain performance. Results We find that mutant population diversity is maintained through multiple seed trains, enabling large scale fermentation selective pressures to act upon the community. We identify specific deletion mutants that were enriched in all processes tested in this study, independent of the cultivation conditions, which include MCK1, RIM11, MRK1, and YGK3 that all encode homologues of mammalian glycogen synthase kinase 3 (GSK-3). Ecological analysis of beta diversity between all samples revealed significant population divergence over time and showed feed specific consequences of population structure. Further, we show that significant changes in the population diversity during fed-batch cultivations reflect the presence of significant stresses. Our observations indicate that, for this yeast deletion collection, the selection of the feeding scheme which affects the accumulation of the fermentative by-product ethanol impacts the diversity of the mutant pool to a higher degree as compared to the pH of the culture broth. The mutants that were lost during the time of most extreme population selection suggest that specific biological processes may be required to cope with these specific stresses. Conclusions Our results demonstrate the feasibility of Bar-seq to assess fermentation associated stresses in yeast populations under industrial conditions and to understand critical stages of a scale-up process where variability emerges, and selection pressure gets imposed. Overall our work highlights a promising avenue to identify genetic loci and biological stress responses required for fitness under industrial conditions.
Collapse
Affiliation(s)
- Maren Wehrs
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Mitchell G Thompson
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| | - Deepanwita Banerjee
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jan-Philip Prahl
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Norma M Morella
- Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Carolina A Barcelos
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Jadie Moon
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA
| | - Zak Costello
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Energy Agile BioFoundry, Emeryville, CA, 94608, USA
| | - Jay D Keasling
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Department of Bioengineering, University of California, Berkeley, CA, 94720, USA.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, 94720, USA.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK 2970, Horsholm, Denmark.,Synthetic Biochemistry Center, Institute for Synthetic Biology, Shenzhen Institutes for Advanced Technologies, Shenzhen, China
| | - Patrick M Shih
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant Biology, University of California-Davis, Davis, CA, 95616, USA
| | - Deepti Tanjore
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Advanced Biofuels and Bioproducts Process Development Unit, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA.
| | - Aindrila Mukhopadhyay
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Emeryville, CA, 94608, USA. .,Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
3
|
How HP1 Post-Translational Modifications Regulate Heterochromatin Formation and Maintenance. Cells 2020; 9:cells9061460. [PMID: 32545538 PMCID: PMC7349378 DOI: 10.3390/cells9061460] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
Heterochromatin Protein 1 (HP1) is a highly conserved protein that has been used as a classic marker for heterochromatin. HP1 binds to di- and tri-methylated histone H3K9 and regulates heterochromatin formation, functions and structure. Besides the well-established phosphorylation of histone H3 Ser10 that has been shown to modulate HP1 binding to chromatin, several studies have recently highlighted the importance of HP1 post-translational modifications and additional epigenetic features for the modulation of HP1-chromatin binding ability and heterochromatin formation. In this review, we summarize the recent literature of HP1 post-translational modifications that have contributed to understand how heterochromatin is formed, regulated and maintained.
Collapse
|
4
|
Farley-Barnes KI, McCann KL, Ogawa LM, Merkel J, Surovtseva YV, Baserga SJ. Diverse Regulators of Human Ribosome Biogenesis Discovered by Changes in Nucleolar Number. Cell Rep 2019; 22:1923-1934. [PMID: 29444442 PMCID: PMC5828527 DOI: 10.1016/j.celrep.2018.01.056] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/09/2017] [Accepted: 11/19/2017] [Indexed: 12/31/2022] Open
Abstract
Ribosome biogenesis is a highly regulated, essential cellular process. Although studies in yeast have established some of the biological principles of ribosome biogenesis, many of the intricacies of its regulation in higher eukaryotes remain unknown. To understand how ribosome biogenesis is globally integrated in human cells, we conducted a genome-wide siRNA screen for regulators of nucleolar number. We found 139 proteins whose depletion changed the number of nucleoli per nucleus from 2–3 to only 1 in human MCF10A cells. Follow-up analyses on 20 hits found many (90%) to be essential for the nucleolar functions of rDNA transcription (7), pre-ribosomal RNA (pre-rRNA) processing (16), and/or global protein synthesis (14). This genome-wide analysis exploits the relationship between nucleolar number and function to discover diverse cellular pathways that regulate the making of ribosomes and paves the way for further exploration of the links between ribosome biogenesis and human disease.
Collapse
Affiliation(s)
- Katherine I Farley-Barnes
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Kathleen L McCann
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, NIH, PO Box 12233 MD F3-05, Research Triangle Park, NC 27709, USA
| | - Lisa M Ogawa
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Janie Merkel
- Yale Center for Molecular Discovery, Yale University, 600 West Campus Drive, West Haven, CT 06516, USA
| | - Yulia V Surovtseva
- Yale Center for Molecular Discovery, Yale University, 600 West Campus Drive, West Haven, CT 06516, USA
| | - Susan J Baserga
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
5
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
6
|
Judes G, Dubois L, Rifaï K, Idrissou M, Mishellany F, Pajon A, Besse S, Daures M, Degoul F, Bignon YJ, Penault-Llorca F, Bernard-Gallon D. TIP60: an actor in acetylation of H3K4 and tumor development in breast cancer. Epigenomics 2018; 10:1415-1430. [PMID: 30324811 DOI: 10.2217/epi-2018-0004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
AIM The acetyltransferase TIP60 is reported to be downregulated in several cancers, in particular breast cancer, but the molecular mechanisms resulting from its alteration are still unclear. MATERIALS & METHODS In breast tumors, H3K4ac enrichment and its link with TIP60 were evaluated by chromatin immunoprecipitation-qPCR and re-chromatin immunoprecipitation techniques. To assess the biological roles of TIP60 in breast cancer, two cell lines of breast cancer, MDA-MB-231 (ER-) and MCF-7 (ER+) were transfected with shRNA specifically targeting TIP60 and injected to athymic Balb-c mice. RESULTS We identified a potential target of TIP60, H3K4. We show that an underexpression of TIP60 could contribute to a reduction of H3K4 acetylation in breast cancer. An increase in tumor development was noted in sh-TIP60 MDA-MB-231 xenografts and a slowdown of tumor growth in sh-TIP60 MCF-7 xenografts. CONCLUSION This is evidence that the underexpression of TIP60 observed in breast cancer can promote the tumorigenesis of ER-negative tumors.
Collapse
Affiliation(s)
- Gaëlle Judes
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Lucas Dubois
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Khaldoun Rifaï
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Florence Mishellany
- INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Amaury Pajon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Sophie Besse
- INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Marine Daures
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Françoise Degoul
- INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France.,Department of Biopathology, Centre Jean Perrin, 58 rue Montalembert, 63011, Clermont-Ferrand, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 Place Henri-Dunant, 63001, Clermont-Ferrand, France.,INSERM U 1240, IMOST, University Clermont Auvergne, 58 rue Montalembert-BP184, 63005 Clermont-Ferrand, France
| |
Collapse
|
7
|
Pardo M, Yu L, Shen S, Tate P, Bode D, Letney BL, Quelle DE, Skarnes W, Choudhary JS. Myst2/Kat7 histone acetyltransferase interaction proteomics reveals tumour-suppressor Niam as a novel binding partner in embryonic stem cells. Sci Rep 2017; 7:8157. [PMID: 28811661 PMCID: PMC5557939 DOI: 10.1038/s41598-017-08456-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/10/2017] [Indexed: 12/28/2022] Open
Abstract
MYST histone acetyltransferases have crucial functions in transcription, replication and DNA repair and are hence implicated in development and cancer. Here we characterise Myst2/Kat7/Hbo1 protein interactions in mouse embryonic stem cells by affinity purification coupled to mass spectrometry. This study confirms that in embryonic stem cells Myst2 is part of H3 and H4 histone acetylation complexes similar to those described in somatic cells. We identify a novel Myst2-associated protein, the tumour suppressor protein Niam (Nuclear Interactor of ARF and Mdm2). Human NIAM is involved in chromosome segregation, p53 regulation and cell proliferation in somatic cells, but its role in embryonic stem cells is unknown. We describe the first Niam embryonic stem cell interactome, which includes proteins with roles in DNA replication and repair, transcription, splicing and ribosome biogenesis. Many of Myst2 and Niam binding partners are required for correct embryonic development, implicating Myst2 and Niam in the cooperative regulation of this process and suggesting a novel role for Niam in embryonic biology. The data provides a useful resource for exploring Myst2 and Niam essential cellular functions and should contribute to deeper understanding of organism early development and survival as well as cancer. Data are available via ProteomeXchange with identifier PXD005987.
Collapse
Affiliation(s)
- Mercedes Pardo
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom.
| | - Lu Yu
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Shihpei Shen
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Cold Genesys Inc., Santa Ana, CA, USA
| | - Peri Tate
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Daniel Bode
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
- Wellcome Trust PhD Program, Cambridge Stem Cell Institute, Cambridge, Cambridgeshire, United Kingdom
| | - Blake L Letney
- Departments of Pharmacology and Pathology, The University of Iowa and Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Dawn E Quelle
- Departments of Pharmacology and Pathology, The University of Iowa and Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - William Skarnes
- Stem Cell Engineering, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| | - Jyoti S Choudhary
- Proteomic Mass Spectrometry, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, United Kingdom
| |
Collapse
|
8
|
Chromatin Regulation by the NuA4 Acetyltransferase Complex Is Mediated by Essential Interactions Between Enhancer of Polycomb (Epl1) and Esa1. Genetics 2017; 205:1125-1137. [PMID: 28108589 DOI: 10.1534/genetics.116.197830] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Enzymes that modify and remodel chromatin act in broadly conserved macromolecular complexes. One key modification is the dynamic acetylation of histones and other chromatin proteins by opposing activities of acetyltransferase and deacetylase complexes. Among acetyltransferases, the NuA4 complex containing Tip60 or its Saccharomyces cerevisiae ortholog Esa1 is of particular significance because of its roles in crucial genomic processes including DNA damage repair and transcription. The catalytic subunit Esa1 is essential, as are five noncatalytic NuA4 subunits. We found that of the noncatalytic subunits, deletion of Enhancer of polycomb (Epl1), but not the others, can be bypassed by loss of a major deacetylase complex, a property shared by Esa1 Noncatalytic complex subunits can be critical for complex assembly, stability, genomic targeting, substrate specificity, and regulation. Understanding the essential role of Epl1 has been previously limited, a limitation now overcome by the discovery of its bypass suppression. Here, we present a comprehensive in vivo study of Epl1 using the powerful tool of suppression combined with transcriptional and mutational analyses. Our results highlight functional parallels between Epl1 and Esa1 and further illustrate that the structural role of Epl1 is important for promotion of Esa1 activity. This conclusion is strengthened by our dissection of Epl1 domains required in vivo for interaction with specific NuA4 subunits, histone acetylation, and chromatin targeting. These results provide new insights for the conserved, essential nature of Epl1 and its homologs, such as EPC1/2 in humans, which is frequently altered in cancers.
Collapse
|
9
|
Jezek M, Gast A, Choi G, Kulkarni R, Quijote J, Graham-Yooll A, Park D, Green EM. The histone methyltransferases Set5 and Set1 have overlapping functions in gene silencing and telomere maintenance. Epigenetics 2016; 12:93-104. [PMID: 27911222 DOI: 10.1080/15592294.2016.1265712] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Genes adjacent to telomeres are subject to transcriptional repression mediated by an integrated set of chromatin modifying and remodeling factors. The telomeres of Saccharomyces cerevisiae have served as a model for dissecting the function of diverse chromatin proteins in gene silencing, and their study has revealed overlapping roles for many chromatin proteins in either promoting or antagonizing gene repression. The H3K4 methyltransferase Set1, which is commonly linked to transcriptional activation, has been implicated in telomere silencing. Set5 is an H4 K5, K8, and K12 methyltransferase that functions with Set1 to promote repression at telomeres. Here, we analyzed the combined role for Set1 and Set5 in gene expression control at native yeast telomeres. Our data reveal that Set1 and Set5 promote a Sir protein-independent mechanism of repression that may primarily rely on regulation of H4K5ac and H4K8ac at telomeric regions. Furthermore, cells lacking both Set1 and Set5 have highly correlated transcriptomes to mutants in telomere maintenance pathways and display defects in telomere stability, linking their roles in silencing to protection of telomeres. Our data therefore provide insight into and clarify potential mechanisms by which Set1 contributes to telomere silencing and shed light on the function of Set5 at telomeres.
Collapse
Affiliation(s)
- Meagan Jezek
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Alison Gast
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Grace Choi
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Rushmie Kulkarni
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Jeremiah Quijote
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Andrew Graham-Yooll
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| | - DoHwan Park
- b Department of Mathematics and Statistics , University of Maryland Baltimore County , Baltimore , MD , USA
| | - Erin M Green
- a Department of Biological Sciences , University of Maryland Baltimore County , Baltimore , MD , USA
| |
Collapse
|
10
|
Abstract
Heterochromatin is the transcriptionally repressed portion of eukaryotic chromatin that maintains a condensed appearance throughout the cell cycle. At sites of ribosomal DNA (rDNA) heterochromatin, epigenetic states contribute to gene silencing and genome stability, which are required for proper chromosome segregation and a normal life span. Here, we focus on recent advances in the epigenetic regulation of rDNA silencing in Saccharomyces cerevisiae and in mammals, including regulation by several histone modifications and several protein components associated with the inner nuclear membrane within the nucleolus. Finally, we discuss the perturbations of rDNA epigenetic pathways in regulating cellular aging and in causing various types of diseases.
Collapse
|
11
|
Abstract
Growing evidence demonstrates that metabolism and chromatin dynamics are not separate processes but that they functionally intersect in many ways. For example, the lysine biosynthetic enzyme homocitrate synthase was recently shown to have unexpected functions in DNA damage repair, raising the question of whether other amino acid metabolic enzymes participate in chromatin regulation. Using an in silico screen combined with reporter assays, we discovered that a diverse range of metabolic enzymes function in heterochromatin regulation. Extended analysis of the glutamate dehydrogenase 1 (Gdh1) revealed that it regulates silent information regulator complex recruitment to telomeres and ribosomal DNA. Enhanced N-terminal histone H3 proteolysis is observed in GDH1 mutants, consistent with telomeric silencing defects. A conserved catalytic Asp residue is required for Gdh1's functions in telomeric silencing and H3 clipping. Genetic modulation of α-ketoglutarate levels demonstrates a key regulatory role for this metabolite in telomeric silencing. The metabolic activity of glutamate dehydrogenase thus has important and previously unsuspected roles in regulating chromatin-related processes.
Collapse
|
12
|
Antagonistic roles for the ubiquitin ligase Asr1 and the ubiquitin-specific protease Ubp3 in subtelomeric gene silencing. Proc Natl Acad Sci U S A 2016; 113:1309-14. [PMID: 26787877 DOI: 10.1073/pnas.1518375113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Ubiquitin, and components of the ubiquitin-proteasome system, feature extensively in the regulation of gene transcription. Although there are many examples of how ubiquitin controls the activity of transcriptional regulators and coregulators, there are few examples of core components of the transcriptional machinery that are directly controlled by ubiquitin-dependent processes. The budding yeast protein Asr1 is the prototypical member of the RPC (RING, PHD, CBD) family of ubiquitin-ligases, characterized by the presence of amino-terminal RING (really interesting new gene) and PHD (plant homeo domain) fingers and a carboxyl-terminal domain that directly binds the largest subunit of RNA polymerase II (pol II), Rpb1, in response to phosphorylation events tied to the initiation of transcription. Asr1-mediated oligo-ubiquitylation of pol II leads to ejection of two core subunits of the enzyme and is associated with inhibition of polymerase function. Here, we present evidence that Asr1-mediated ubiquitylation of pol II is required for silencing of subtelomeric gene transcription. We show that Asr1 associates with telomere-proximal chromatin and that disruption of the ubiquitin-ligase activity of Asr1--or mutation of ubiquitylation sites within Rpb1--induces transcription of silenced gene sequences. In addition, we report that Asr1 associates with the Ubp3 deubiquitylase and that Asr1 and Ubp3 play antagonistic roles in setting transcription levels from silenced genes. We suggest that control of pol II by nonproteolytic ubiquitylation provides a mechanism to enforce silencing by transient and reversible inhibition of pol II activity at subtelomeric chromatin.
Collapse
|
13
|
Grézy A, Chevillard-Briet M, Trouche D, Escaffit F. Control of genetic stability by a new heterochromatin compaction pathway involving the Tip60 histone acetyltransferase. Mol Biol Cell 2015; 27:599-607. [PMID: 26700317 PMCID: PMC4750920 DOI: 10.1091/mbc.e15-05-0316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 12/18/2015] [Indexed: 02/02/2023] Open
Abstract
A new compaction pathway of mammalian pericentric heterochromatin is identified, which relies on H4K12ac by Tip60, probably followed by recruitment of BRD2, and therefore chromatin compaction, which can contribute to genetic stability. Pericentric heterochromatin is a highly compacted structure required for accurate chromosome segregation in mitosis. In mammals, it relies on methylation of histone H3K9 by Suv39H enzymes, which provides a docking site for HP1 proteins, therefore mediating heterochromatin compaction. Here we show that, when this normal compaction pathway is defective, the histone acetyltransferase Tip60 is recruited to pericentric heterochromatin, where it mediates acetylation of histone H4K12. Furthermore, in such a context, depletion of Tip60 leads to derepression of satellite transcription, decompaction of pericentric heterochromatin, and defects in chromosome segregation in mitosis. Finally, we show that depletion of BRD2, a double bromodomain–containing protein that binds H4K12ac, phenocopies the Tip60 depletion with respect to heterochromatin decompaction and defects in chromosome segregation. Taking the results together, we identify a new compaction pathway of mammalian pericentric heterochromatin relying on Tip60 that might be dependent on BRD2 recruitment by H4K12 acetylation. We propose that the underexpression of Tip60 observed in many human tumors can promote genetic instability via defective pericentric heterochromatin.
Collapse
Affiliation(s)
- Aude Grézy
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Martine Chevillard-Briet
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Didier Trouche
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| | - Fabrice Escaffit
- Laboratoire de Biologie Cellulaire et Moléculaire du Contrôle de la Prolifération, Center for Integrative Biology, Université de Toulouse, UPS and CNRS, F-31062 Toulouse, France
| |
Collapse
|
14
|
The Set3 Complex Antagonizes the MYST Acetyltransferase Esa1 in the DNA Damage Response. Mol Cell Biol 2015; 35:3714-25. [PMID: 26303527 DOI: 10.1128/mcb.00298-15] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 08/14/2015] [Indexed: 11/20/2022] Open
Abstract
Acetylation is a dynamic posttranslational modification that contributes to chromatin-regulated processes, including DNA replication, repair, recombination, and gene expression. Acetylation is controlled by complexes containing opposing lysine and histone acetyltransferase (KAT and HAT) and deacetylase (KDAC and HDAC) activities. The essential MYST family Esa1 KAT acetylates core histones and many nonhistone substrates. Phenotypes of esa1 mutants include transcriptional silencing and activation defects, impaired growth at high temperatures, and sensitivity to DNA damage. The KDAC Rpd3 was previously identified as an activity opposing Esa1, as its deletion suppresses growth and silencing defects of esa1 mutants. However, loss of Rpd3 does not suppress esa1 DNA damage sensitivity. In this work, we identified Hos2 as a KDAC counteracting ESA1 in the damage response. Deletion of HOS2 resulted in changes of esa1's transcriptional response upon damage. Further, loss of HOS2 or components of the Set3 complex (Set3C) in which it acts specifically suppressed damage sensitivity and restored esa1 histone H4 acetylation. This rescue was mediated via loss of either Set3C integrity or of its binding to dimethylated histone H3K4. Our results thus add new insight into the interactions of an essential MYST acetyltransferase with diverse deacetylases to respond specifically to environmental and physiological challenges.
Collapse
|
15
|
Affiliation(s)
- Hui Jing
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Hening Lin
- Department
of Chemistry and
Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
16
|
Abstract
Histone acetylation is a key regulatory feature for chromatin that is established by opposing enzymatic activities of lysine acetyltransferases (KATs/HATs) and deacetylases (KDACs/HDACs). Esa1, like its human homolog Tip60, is an essential MYST family enzyme that acetylates histones H4 and H2A and other nonhistone substrates. Here we report that the essential requirement for ESA1 in Saccharomyces cerevisiae can be bypassed upon loss of Sds3, a noncatalytic subunit of the Rpd3L deacetylase complex. By studying the esa1∆ sds3∆ strain, we conclude that the essential function of Esa1 is in promoting the cellular balance of acetylation. We demonstrate this by fine-tuning acetylation through modulation of HDACs and the histone tails themselves. Functional interactions between Esa1 and HDACs of class I, class II, and the Sirtuin family define specific roles of these opposing activities in cellular viability, fitness, and response to stress. The fact that both increased and decreased expression of the ESA1 homolog TIP60 has cancer associations in humans underscores just how important the balance of its activity is likely to be for human well-being.
Collapse
|
17
|
Distinct and redundant roles of the two MYST histone acetyltransferases Esa1 and Sas2 in cell growth and morphogenesis of Candida albicans. EUKARYOTIC CELL 2013; 12:438-49. [PMID: 23355007 DOI: 10.1128/ec.00275-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Candida albicans is associated with humans, as both a harmless commensal organism and a pathogen. Adaption to human body temperature is extremely important for its growth and morphogenesis. Saccharomyces cerevisiae Esa1, a member of the MYST family HATs (histone acetyltransferases) and the catalytic subunit of the NuA4 complex, and its homologues in other eukaryotes have been shown to be essential for cell growth. To investigate the functional roles of two MYST family HATs, Esa1 and Sas2 in C. albicans, we deleted ESA1 and SAS2 in the C. albicans genome and performed cell growth analyses. Our results demonstrated that C. albicans Esa1 is not essential for general growth but is essential for filamentous growth. The esa1/esa1 mutant cells exhibited sensitivity to thermal, genotoxic, and oxidative stresses but tolerance to cold, osmotic, and cell wall stresses. In contrast, the sas2/sas2 mutant adapted to growth at higher temperatures and promoted filament formation at lower temperatures, resembling the phenotype of a C. albicans strain overexpressing ESA1. Cells with deletions of both ESA1 and SAS2 were inviable, reflecting the functional redundancy in cell growth. C. albicans Esa1 and Sas2 have distinct and synergistic effects on histone acetylation at H4K5, H4K12, and H4K16. Esa1 contributes mainly to acetylation of H4K5 and H4K12, whereas Sas2 contributes to acetylation of H4K16. Our findings suggest that C. albicans Esa1 and Sas2 play opposite roles in cell growth and morphogenesis and contribute coordinately to histone acetylation and gene regulation.
Collapse
|
18
|
Soukup AA, Chiang YM, Bok JW, Reyes-Dominguez Y, Oakley BR, Wang CCC, Strauss J, Keller NP. Overexpression of the Aspergillus nidulans histone 4 acetyltransferase EsaA increases activation of secondary metabolite production. Mol Microbiol 2012; 86:314-30. [PMID: 22882998 PMCID: PMC3514908 DOI: 10.1111/j.1365-2958.2012.08195.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2012] [Indexed: 01/07/2023]
Abstract
Regulation of secondary metabolite (SM) gene clusters in Aspergillus nidulans has been shown to occur through cluster-specific transcription factors or through global regulators of chromatin structure such as histone methyltransferases, histone deacetylases, or the putative methyltransferase LaeA. A multicopy suppressor screen for genes capable of returning SM production to the SM deficient ΔlaeA mutant resulted in identification of the essential histone acetyltransferase EsaA, able to complement an esa1 deletion in Saccharomyces cereviseae. Here we report that EsaA plays a novel role in SM cluster activation through histone 4 lysine 12 (H4K12) acetylation in four examined SM gene clusters (sterigmatocystin, penicillin, terrequinone and orsellinic acid), in contrast to no increase in H4K12 acetylation of the housekeeping tubA promoter. This augmented SM cluster acetylation requires LaeA for full effect and correlates with both increased transcript levels and metabolite production relative to wild type. H4K12 levels may thus represent a unique indicator of relative production potential, notably of SMs.
Collapse
Affiliation(s)
- Alexandra A. Soukup
- Department of Genetics, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706
| | - Yi-Ming Chiang
- Graduate Institute of Pharmaceutical Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC 71710,Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Jin Woo Bok
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706
| | - Yazmid Reyes-Dominguez
- Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna, and Austrian Institute of Technology GmbH, University and Research Center Campus Tulln, Konrad Lorenz Strasse 24, Tulln/Donau, Austria A-3430
| | - Berl R. Oakley
- Department of Molecular Biosciences, University of Kansas, 1200 Sunnyside Avenue, Lawrence, KS, USA 66045
| | - Clay C. C. Wang
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033,Department of Chemistry, University of Southern California, 1985 Zonal Avenue, Los Angeles, CA, USA 90033
| | - Joseph Strauss
- Fungal Genetics and Genomics Unit, University of Natural Resources and Life Sciences Vienna, and Austrian Institute of Technology GmbH, University and Research Center Campus Tulln, Konrad Lorenz Strasse 24, Tulln/Donau, Austria A-3430
| | - Nancy P. Keller
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1550 Linden Drive, Madison, WI, USA 53706,Corresponding author: 3476 Microbial Sciences, 1550 Linden Drive, Madison, WI, USA 53706 Phone: (608) 262-9795 Fax: (608)262-8418
| |
Collapse
|
19
|
Suppression analysis of esa1 mutants in Saccharomyces cerevisiae links NAB3 to transcriptional silencing and nucleolar functions. G3-GENES GENOMES GENETICS 2012; 2:1223-32. [PMID: 23050233 PMCID: PMC3464115 DOI: 10.1534/g3.112.003558] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/14/2012] [Indexed: 11/21/2022]
Abstract
The acetyltransferase Esa1 is essential in the yeast Saccharomyces cerevisiae and plays a critical role in multiple cellular processes. The most well-defined targets for Esa1 are lysine residues on histones. However, an increasing number of nonhistone proteins have recently been identified as substrates of Esa1. In this study, four genes (LYS20, LEU2, VAP1, and NAB3) were identified in a genetic screen as high-copy suppressors of the conditional temperature-sensitive lethality of an esa1 mutant. When expressed from a high-copy plasmid, each of these suppressors rescued the temperature-sensitivity of an esa1 mutant. Only NAB3 overexpression also rescued the rDNA-silencing defects of an esa1 mutant. Strengthening the connections between NAB3 and ESA1, mutants of nab3 displayed several phenotypes similar to those of esa1 mutants, including increased sensitivity to the topoisomerase I inhibitor camptothecin and defects in rDNA silencing and cell-cycle progression. In addition, nuclear localization of Nab3 was altered in the esa1 mutant. Finally, posttranslational acetylation of Nab3 was detected in vivo and found to be influenced by ESA1.
Collapse
|
20
|
Ha CW, Huh WK. The implication of Sir2 in replicative aging and senescence in Saccharomyces cerevisiae. Aging (Albany NY) 2011; 3:319-24. [PMID: 21415463 PMCID: PMC3091525 DOI: 10.18632/aging.100299] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The target of rapamycin (TOR) pathway regulates cell growth and aging in various organisms. In Saccharomyces cerevisiae, silent information regulator 2 (Sir2) modulates cellular senescence. Moreover, Sir2 plays a crucial role in promoting ribosomal DNA (rDNA) stability and longevity under TOR inhibition. Here we review the implication of rDNA stabilizers in longevity, discuss how Sir2 stabilizes rDNA under TOR inhibition and speculate on the link between sumoylation and Sir2-related pro-aging pathways.
Collapse
Affiliation(s)
- Cheol Woong Ha
- School of Biological Sciences, Research Center for Functional Cellulomics, Institute of Microbiology, Seoul National University, Republic of Korea
| | | |
Collapse
|
21
|
Koiwai K, Noma S, Takahashi Y, Hayano T, Maezawa S, Kouda K, Matsumoto T, Suzuki M, Furuichi M, Koiwai O. TdIF2 is a nucleolar protein that promotes rRNA gene promoter activity. Genes Cells 2011; 16:748-64. [PMID: 21668587 DOI: 10.1111/j.1365-2443.2011.01524.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Terminal deoxynucleotidyltransferase (TdT) interacting factor 2 (TdIF2) is an acidic protein that binds to TdT. TdIF2 binds to DNA and core histones and contains an acidic-amino acid-rich region in its C-terminus. It has therefore been suggested to function as a histone chaperone within the nucleus. TdIF2 localized within the nucleolus in HEK 293T cells, and its N-terminal (residues 1-234) and C-terminal (residues 606-756) regions were crucial for the nucleolar localization. A chromatin immunoprecipitation (ChIP) assay showed that TdIF2 associated with the promoter of human ribosomal RNA genes (hrDNAP), and an in vitro luciferase assay system showed that it promoted hrDNAP activity. Using the yeast two-hybrid system with TdIF2 as the bait, we isolated the cDNA encoding HIV Tat interactive protein 60 (Tip60), which has histone acetyltransferase (HAT) activity, as a TdIF2-binding protein. TdIF2 bound to Tip60 in vitro and in vivo, inhibited the Tip60 HAT activity in vitro and co-localized with Tip60 within the nucleolus. In addition, TdIF2 promotes upstream binding factor (UBF) acetylation in vivo. Thus, TdIF2 might promote hrDNAP activity by suppressing Tip60's HAT activity and promoting UBF acetylation.
Collapse
Affiliation(s)
- Kotaro Koiwai
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Lorbeck M, Pirooznia K, Sarthi J, Zhu X, Elefant F. Microarray analysis uncovers a role for Tip60 in nervous system function and general metabolism. PLoS One 2011; 6:e18412. [PMID: 21494552 PMCID: PMC3073973 DOI: 10.1371/journal.pone.0018412] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 03/07/2011] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Tip60 is a key histone acetyltransferase (HAT) enzyme that plays a central role in diverse biological processes critical for general cell function; however, the chromatin-mediated cell-type specific developmental pathways that are dependent exclusively upon the HAT activity of Tip60 remain to be explored. METHODS AND FINDINGS Here, we investigate the role of Tip60 HAT activity in transcriptional control during multicellular development in vivo by examining genome-wide changes in gene expression in a Drosophila model system specifically depleted for endogenous dTip60 HAT function. CONCLUSIONS We show that amino acid residue E431 in the catalytic HAT domain of dTip60 is critical for the acetylation of endogenous histone H4 in our fly model in vivo, and demonstrate that dTip60 HAT activity is essential for multicellular development. Moreover, our results uncover a novel role for Tip60 HAT activity in controlling neuronal specific gene expression profiles essential for nervous system function as well as a central regulatory role for Tip60 HAT function in general metabolism.
Collapse
Affiliation(s)
- Meridith Lorbeck
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Keerthy Pirooznia
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Jessica Sarthi
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Xianmin Zhu
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
| | - Felice Elefant
- Department of Biology, Drexel University, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
Zhou BO, Wang SS, Zhang Y, Fu XH, Dang W, Lenzmeier BA, Zhou JQ. Histone H4 lysine 12 acetylation regulates telomeric heterochromatin plasticity in Saccharomyces cerevisiae. PLoS Genet 2011; 7:e1001272. [PMID: 21249184 PMCID: PMC3020936 DOI: 10.1371/journal.pgen.1001272] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 12/08/2010] [Indexed: 12/21/2022] Open
Abstract
Recent studies have established that the highly condensed and transcriptionally silent heterochromatic domains in budding yeast are virtually dynamic structures. The underlying mechanisms for heterochromatin dynamics, however, remain obscure. In this study, we show that histones are dynamically acetylated on H4K12 at telomeric heterochromatin, and this acetylation regulates several of the dynamic telomere properties. Using a de novo heterochromatin formation assay, we surprisingly found that acetylated H4K12 survived the formation of telomeric heterochromatin. Consistently, the histone acetyltransferase complex NuA4 bound to silenced telomeric regions and acetylated H4K12. H4K12 acetylation prevented the over-accumulation of Sir proteins at telomeric heterochromatin and elimination of this acetylation caused defects in multiple telomere-related processes, including transcription, telomere replication, and recombination. Together, these data shed light on a potential histone acetylation mark within telomeric heterochromatin that contributes to telomere plasticity.
Collapse
Affiliation(s)
- Bo O. Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shan-Shan Wang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Zhang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Hong Fu
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wei Dang
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Brian A. Lenzmeier
- School of Science, Buena Vista University, Storm Lake, Iowa, United States of America
| | - Jin-Qiu Zhou
- State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
24
|
GCN5 is a positive regulator of origins of DNA replication in Saccharomyces cerevisiae. PLoS One 2010; 5:e8964. [PMID: 20126453 PMCID: PMC2813283 DOI: 10.1371/journal.pone.0008964] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Accepted: 01/05/2010] [Indexed: 12/31/2022] Open
Abstract
GCN5 encodes one of the non-essential Histone Acetyl Transferases in Saccharomyces cerevisiae. Extensive evidence has indicated that GCN5 is a key regulator of gene expression and could also be involved in transcriptional elongation, DNA repair and centromere maintenance. Here we show that the deletion of GCN5 decreases the stability of mini-chromosomes; that the tethering of Gcn5p to a crippled origin of replication stimulates its activity; that high dosage of GCN5 suppresses conditional phenotypes caused by mutant alleles of bona fide replication factors, orc2-1, orc5-1 and mcm5-461. Furthermore, Gcn5p physically associates with origins of DNA replication, while its deletion leads to localized condensation of chromatin at origins. Finally, Deltagcn5 cells display a deficiency in the assembly of pre-replicative complexes. We propose that GCN5 acts as a positive regulator of DNA replication by counteracting the inhibitory effect of Histone Deacetylases.
Collapse
|
25
|
Voss AK, Thomas T. MYST family histone acetyltransferases take center stage in stem cells and development. Bioessays 2009; 31:1050-61. [PMID: 19722182 DOI: 10.1002/bies.200900051] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Acetylation of histones is an essential element regulating chromatin structure and transcription. MYST (Moz, Ybf2/Sas3, Sas2, Tip60) proteins form the largest family of histone acetyltransferases and are present in all eukaryotes. Surprisingly, until recently this protein family was poorly studied. However, in the last few years there has been a substantial increase in interest in the MYST proteins and a number of key studies have shown that these chromatin modifiers are required for a diverse range of cellular processes, both in health and disease. Translocations affecting MYST histone acetyltransferases can lead to leukemia and solid tumors. Some members of the MYST family are required for the development and self-renewal of stem cell populations; other members are essential for the prevention of inappropriate heterochromatin spreading and for the maintenance of adequate levels of gene expression. In this review we discuss the function of MYST proteins in vivo.
Collapse
Affiliation(s)
- Anne K Voss
- Walter and Eliza Hall Institute of Medical Research, Parkville, Australia.
| | | |
Collapse
|
26
|
Collaboration between the essential Esa1 acetyltransferase and the Rpd3 deacetylase is mediated by H4K12 histone acetylation in Saccharomyces cerevisiae. Genetics 2009; 183:149-60. [PMID: 19596907 DOI: 10.1534/genetics.109.103846] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Histone modifications that regulate chromatin-dependent processes are catalyzed by multisubunit complexes. These can function in both targeting activities to specific genes and in regulating genomewide levels of modifications. In Saccharomyces cerevisiae, Esa1 and Rpd3 have opposing enzymatic activities and are catalytic subunits of multiple chromatin modifying complexes with key roles in processes such as transcriptional regulation and DNA repair. Esa1 is an essential histone acetyltransferase that belongs to the highly conserved MYST family. This study presents evidence that the yeast histone deacetylase gene, RPD3, when deleted, suppressed esa1 conditional mutant phenotypes. Deletion of RPD3 reversed rDNA and telomeric silencing defects and restored global H4 acetylation levels, in addition to rescuing the growth defect of a temperature-sensitive esa1 mutant. This functional genetic interaction between ESA1 and RPD3 was mediated through the Rpd3L complex. The suppression of esa1's growth defect by disruption of Rpd3L was dependent on lysine 12 of histone H4. We propose a model whereby Esa1 and Rpd3L act coordinately to control the acetylation of H4 lysine 12 to regulate transcription, thereby emphasizing the importance of dynamic acetylation and deacetylation of this particular histone residue in maintaining cell viability.
Collapse
|
27
|
The glucanosyltransferase Gas1 functions in transcriptional silencing. Proc Natl Acad Sci U S A 2009; 106:11224-9. [PMID: 19541632 DOI: 10.1073/pnas.0900809106] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Transcriptional silencing is a crucial process that is mediated through chromatin structure. The histone deacetylase Sir2 silences genomic regions that include telomeres, ribosomal DNA (rDNA) and the cryptic mating-type loci. Here, we report an unsuspected role for the enzyme Gas1 in locus-specific transcriptional silencing. GAS1 encodes a beta-1,3-glucanosyltransferase previously characterized for its role in cell wall biogenesis. In gas1 mutants, telomeric silencing is defective and rDNA silencing is enhanced. We show that the catalytic activity of Gas1 is required for normal silencing, and that Gas1's role in silencing is distinct from its role in cell wall biogenesis. Established hallmarks of silent chromatin, such as Sir2 and Sir3 binding, H4K16 deacetylation, and H3K56 deacetylation, appear unaffected in gas1 mutants. Thus, another event required for telomeric silencing must be influenced by GAS1. Because the catalytic activity of Gas1 is required for telomeric silencing, Gas1 localizes to the nuclear periphery, and Gas1 and Sir2 physically interact, we propose a model in which carbohydrate modification of chromatin components provides a new regulatory element that may be critical for chromatin function but which is virtually unexplored in the current landscape of chromatin analysis.
Collapse
|
28
|
Biswas M, Maqani N, Rai R, Kumaran SP, Iyer KR, Sendinc E, Smith JS, Laloraya S. Limiting the extent of the RDN1 heterochromatin domain by a silencing barrier and Sir2 protein levels in Saccharomyces cerevisiae. Mol Cell Biol 2009; 29:2889-98. [PMID: 19289503 PMCID: PMC2682026 DOI: 10.1128/mcb.00728-08] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 05/30/2008] [Accepted: 02/18/2009] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, transcriptional silencing occurs at the cryptic mating-type loci (HML and HMR), telomeres, and ribosomal DNA (rDNA; RDN1). Silencing in the rDNA is unusual in that polymerase II (Pol II) promoters within RDN1 are repressed by Sir2 but not Sir3 or Sir4. rDNA silencing unidirectionally spreads leftward, but the mechanism of limiting its spreading is unclear. We searched for silencing barriers flanking the left end of RDN1 by using an established assay for detecting barriers to HMR silencing. Unexpectedly, the unique sequence immediately adjacent to RDN1, which overlaps a prominent cohesin binding site (CARL2), did not have appreciable barrier activity. Instead, a fragment located 2.4 kb to the left, containing a tRNA(Gln) gene and the Ty1 long terminal repeat, had robust barrier activity. The barrier activity was dependent on Pol III transcription of tRNA(Gln), the cohesin protein Smc1, and the SAS1 and Gcn5 histone acetyltransferases. The location of the barrier correlates with the detectable limit of rDNA silencing when SIR2 is overexpressed, where it blocks the spreading of rDNA heterochromatin. We propose a model in which normal Sir2 activity results in termination of silencing near the physical rDNA boundary, while tRNA(Gln) blocks silencing from spreading too far when nucleolar Sir2 pools become elevated.
Collapse
MESH Headings
- Cell Cycle Proteins/genetics
- Cell Cycle Proteins/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- DNA, Ribosomal/genetics
- DNA, Ribosomal/metabolism
- Gene Expression Regulation, Fungal
- Gene Silencing
- Genome, Fungal
- Heterochromatin/metabolism
- Histone Acetyltransferases/metabolism
- Histone Deacetylases/genetics
- Histone Deacetylases/metabolism
- Microarray Analysis
- RNA Polymerase III/metabolism
- RNA, Transfer, Gln/genetics
- RNA, Transfer, Gln/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae/metabolism
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/genetics
- Silent Information Regulator Proteins, Saccharomyces cerevisiae/metabolism
- Sirtuin 2
- Sirtuins/genetics
- Sirtuins/metabolism
- Cohesins
Collapse
Affiliation(s)
- Moumita Biswas
- Department of Biochemistry, Indian Institute of Science, C. V. Raman Ave., Bangalore KA 560012, India
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhou J, Zhou BO, Lenzmeier BA, Zhou JQ. Histone deacetylase Rpd3 antagonizes Sir2-dependent silent chromatin propagation. Nucleic Acids Res 2009; 37:3699-713. [PMID: 19372273 PMCID: PMC2699518 DOI: 10.1093/nar/gkp233] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In the eukaryotic genome, transcriptionally silent chromatin tends to propagate along a chromosome and encroach upon adjacent active chromatin. The silencing machinery can be stopped by chromatin boundary elements. We performed a screen in Saccharomyces cerevisiae for proteins that may contribute to the establishment of a chromatin boundary. We found that disruption of histone deacetylase Rpd3p results in defective boundary activity, leading to a Sir-dependent local propagation of transcriptional repression. In rpd3 Delta cells, the amount of Sir2p that was normally found in the nucleolus decreased and the amount of Sir2p found at telomeres and at HM and its adjacent loci increased, leading to an extension of silent chromatin in those areas. In addition, Rpd3p interacted directly with chromatin at boundary regions to deacetylate histone H4 at lysine 5 and at lysine 12. Either the mutation of histone H4 at lysine 5 or a decrease in the histone acetyltransferase (HAT) activity of Esa1p abrogated the silencing phenotype associated with rpd3 mutation, suggesting a novel role for the H4 amino terminus in Rpd3p-mediated heterochromatin boundary regulation. Together, these data provide insight into the molecular mechanisms for the anti-silencing functions of Rpd3p during the formation of heterochromatin boundaries.
Collapse
Affiliation(s)
- Jing Zhou
- The State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Institutes for Biological Sciences, Chinese Academy of Sciences, The Graduate School, Shanghai 200031, China
| | | | | | | |
Collapse
|
30
|
Rehman MA, Wang D, Fourel G, Gilson E, Yankulov K. Subtelomeric ACS-containing proto-silencers act as antisilencers in replication factors mutants in Saccharomyces cerevisiae. Mol Biol Cell 2008; 20:631-41. [PMID: 19005221 DOI: 10.1091/mbc.e08-01-0099] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Subtelomeric genes are either fully active or completely repressed and can switch their state about once per 20 generations. This meta-stable telomeric position effect is mediated by strong repression signals emitted by the telomere and relayed/enhanced by weaker repressor elements called proto-silencers. In addition, subtelomeric regions contain sequences with chromatin partitioning and antisilencing activities referred to as subtelomeric antisilencing regions. Using extensive mutational analysis of subtelomeric elements, we show that ARS consensus sequence (ACS)-containing proto-silencers convert to antisilencers in several replication factor mutants. We point out the significance of the B1 auxiliary sequence next to ACS in mediating these effects. In contrast, an origin-derived ACS does not convert to antisilencer in mutants and its B1 element has little bearing on silencing. These results are specific for the analyzed ACS and in addition to the effects of each mutation (relative to wild type) on global silencing. Another line of experiments shows that Mcm5p possesses antisilencing activity and is recruited to telomeres in an ACS-dependent manner. Mcm5p persists at this location at the late stages of S phase. We propose that telomeric ACS are not static proto-silencers but conduct finely tuned silencing and antisilencing activities mediated by ACS-bound factors.
Collapse
Affiliation(s)
- Muhammad Attiq Rehman
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G2W1, Canada
| | | | | | | | | |
Collapse
|
31
|
Chromatin: linking structure and function in the nucleolus. Chromosoma 2008; 118:11-23. [PMID: 18925405 DOI: 10.1007/s00412-008-0184-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2008] [Revised: 09/17/2008] [Accepted: 09/18/2008] [Indexed: 01/07/2023]
Abstract
The nucleolus is an informative model structure for studying how chromatin-regulated transcription relates to nuclear organisation. In this review, we describe how chromatin controls nucleolar structure through both the modulation of rDNA activity by convergently-evolved remodelling complexes and by direct effects upon rDNA packaging. This packaging not only regulates transcription but may also be important for suppressing internal recombination between tandem rDNA repeats. The identification of nucleolar histone chaperones and novel chromatin proteins by mass spectrometry suggests that structure-specific chromatin components remain to be characterised and may regulate the nucleolus in novel ways. However, it also suggests that there is considerable overlap between nucleolar and non-nucleolar-chromatin components. We conclude that a fuller understanding of nucleolar chromatin will be essential for understanding how gene organisation is linked with nuclear architecture.
Collapse
|
32
|
Kawahara T, Siegel TN, Ingram AK, Alsford S, Cross GAM, Horn D. Two essential MYST-family proteins display distinct roles in histone H4K10 acetylation and telomeric silencing in trypanosomes. Mol Microbiol 2008; 69:1054-68. [PMID: 18631159 PMCID: PMC2556858 DOI: 10.1111/j.1365-2958.2008.06346.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chromatin modification is important for virtually all aspects of DNA metabolism but little is known about the consequences of such modification in trypanosomatids, early branching protozoa of significant medical and veterinary importance. MYST-family histone acetyltransferases in other species function in transcription regulation, DNA replication, recombination and repair. Trypanosoma brucei HAT3 was recently shown to acetylate histone H4K4 and we now report characterization of all three T. brucei MYST acetyltransferases (HAT1–3). First, GFP-tagged HAT1–3 all localize to the trypanosome nucleus. While HAT3 is dispensable, both HAT1 and HAT2 are essential for growth. Strains with HAT1 knock-down display mitosis without nuclear DNA replication and also specific de-repression of a telomeric reporter gene, a rare example of transcription control in an organism with widespread and constitutive polycistronic transcription. Finally, we show that HAT2 is responsible for H4K10 acetylation. By analogy to the situation in Saccharomyces cerevisiae, we discuss low-level redundancy of acetyltransferase function in T. brucei and suggest that two MYST-family acetyltransferases are essential due to the absence of a Gcn5 homologue. The results are also consistent with the idea that HAT1 contributes to establishing boundaries between transcriptionally active and repressed telomeric domains in T. brucei.
Collapse
Affiliation(s)
- Taemi Kawahara
- London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | |
Collapse
|
33
|
Pillus L. MYSTs mark chromatin for chromosomal functions. Curr Opin Cell Biol 2008; 20:326-33. [PMID: 18511253 DOI: 10.1016/j.ceb.2008.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 04/16/2008] [Accepted: 04/21/2008] [Indexed: 12/01/2022]
Abstract
The MYST family of lysine acetyltransferases has been intensely studied because of its broad conservation and biological significance. In humans, there are multiple correlations between the enzymes and development and disease. In model organisms, genetic and biochemical studies have been particularly productive because of mechanistic insights they provide in defining substrate specificity, the complexes through which the enzymes function, and the sites of their activity within the genome. Established and emerging data from yeast reveal roles for the three MYST enzymes in diverse chromosomal functions. In particular, recent studies help explain how MYST complexes coordinate with other modifiers, the histone variant H2A.Z, and remodeling complexes to demarcate silent and active chromosomal domains, facilitate transcription, and enable repair of DNA damage.
Collapse
Affiliation(s)
- Lorraine Pillus
- University of California, San Diego, Division of Biological Sciences, Molecular Biology and Moores Cancer Center, 9500 Gilman Drive, La Jolla, CA 92093-0347, United States.
| |
Collapse
|
34
|
Schizosaccharomyces pombe histone acetyltransferase Mst1 (KAT5) is an essential protein required for damage response and chromosome segregation. Genetics 2008; 179:757-71. [PMID: 18505873 DOI: 10.1534/genetics.107.085779] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Schizosaccharomyces pombe Mst1 is a member of the MYST family of histone acetyltransferases and is the likely ortholog of Saccharomyces cerevisiae Esa1 and human Tip60 (KAT5). We have isolated a temperature-sensitive allele of this essential gene. mst1 cells show a pleiotropic phenotype at the restrictive temperature. They are sensitive to a variety of DNA-damaging agents and to the spindle poison thiabendazole. mst1 has an increased frequency of Rad22 repair foci, suggesting endogenous damage. Two-hybrid results show that Mst1 interacts with a number of proteins involved in chromosome integrity and centromere function, including the methyltransferase Skb1, the recombination mediator Rad22 (Sc Rad52), the chromatin assembly factor Hip1 (Sc Hir1), and the Msc1 protein related to a family of histone demethylases. mst1 mutant sensitivity to hydroxyurea suggests a defect in recovery following HU arrest. We conclude that Mst1 plays essential roles in maintenance of genome stability and recovery from DNA damage.
Collapse
|
35
|
Shimojo H, Sano N, Moriwaki Y, Okuda M, Horikoshi M, Nishimura Y. Novel Structural and Functional Mode of a Knot Essential for RNA Binding Activity of the Esa1 Presumed Chromodomain. J Mol Biol 2008; 378:987-1001. [DOI: 10.1016/j.jmb.2008.03.021] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Revised: 02/29/2008] [Accepted: 03/01/2008] [Indexed: 11/24/2022]
|
36
|
Abstract
Esa1 is the only essential histone acetyltransferase (HAT) in budding yeast. It is the catalytic subunit of at least two multiprotein complexes, NuA4 and Piccolo NuA4 (picNuA4), and its essential function is believed to be its catalytic HAT activity. To examine the role of Esa1 in DNA damage repair, we isolated viable esa1 mutants with a range of hypersensitivities to the toposide camptothecin. Here we show that the sensitivity of these mutants to a variety of stresses is inversely proportional to their level of histone H4 acetylation, demonstrating the importance of Esa1 catalytic activity for resistance to genotoxic stress. Surprisingly, individual mutations in two residues directly involved in catalysis were not lethal even though the mutant enzymes appear catalytically inactive both in vivo and in vitro. However, the double-point mutant is lethal, demonstrating that the essential function of Esa1 relies on residues within the catalytic pocket but not catalysis. We propose that the essential function of Esa1 may be to bind acetyl-CoA or lysine substrates and positively regulate the activities of NuA4 and Piccolo NuA4.
Collapse
|
37
|
Garcia SN, Pereira-Smith O. MRGing Chromatin Dynamics and Cellular Senescence. Cell Biochem Biophys 2008; 50:133-41. [DOI: 10.1007/s12013-008-9006-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2007] [Accepted: 12/15/2007] [Indexed: 11/28/2022]
|
38
|
Earley KW, Shook MS, Brower-Toland B, Hicks L, Pikaard CS. In vitro specificities of Arabidopsis co-activator histone acetyltransferases: implications for histone hyperacetylation in gene activation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 52:615-26. [PMID: 17877703 DOI: 10.1111/j.1365-313x.2007.03264.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In genetic hybrids displaying nucleolar dominance, acetylation of lysines 5, 8, 12 and 16 of histone H4 (H4K5, H4K8, H4K12, H4K16) and acetylation of histone H3 on lysines 9 and 14 (H3K9, H3K14) occurs at the promoters of active ribosomal RNA (rRNA) genes, whereas silenced rRNA genes are deacetylated. Likewise, histone hyperacetylation correlates with the active state of transgenes and of endogenous plant genes involved in physiological processes, including cold tolerance, light-responsiveness and flowering. To investigate histone hyperacetylation dynamics we used sodium butyrate, a histone deacetylase inhibitor known to switch silent rRNA genes on, in order to enrich the pool of acetylated histones. Mass spectrometric analyses revealed unique mono- (K16Ac), di- (K12Ac, K16Ac), tri- (K8Ac, K12Ac, K16Ac), and tetra-acetylated (K5Ac, K8Ac, K12Ac, K16Ac) histone H4 isoforms, suggesting that H4 hyperacetylation occurs in a processive fashion, beginning with lysine 16 and ending with lysine 5. Using a combination of molecular and mass spectrometric assays we then determined the specificities of seven of the nine functional co-activator type histone acetyltransferases (HATs) in Arabidopsis thaliana: specifically HATs of the CBP (HAC1, HAC5, HAC12), GNAT (HAG1, HAG2), and MYST families (HAM1, HAM2). Specific HATs acetylate histone H4K5 (HAM1, HAM2), H4K12 (HAG2), and H3K14 (HAG1), suggesting that acetylation of these lysines may have special regulatory significance. Other acetylation events, including histone H3K9 acetylation, are likely to result from the activities of the broad-specificity HAC1, HAC5, and HAC12 histone acetyltransferases.
Collapse
Affiliation(s)
- Keith W Earley
- Biology Department, Washington University, 1 Brookings Drive, St Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
39
|
Lafon A, Chang CS, Scott EM, Jacobson SJ, Pillus L. MYST opportunities for growth control: yeast genes illuminate human cancer gene functions. Oncogene 2007; 26:5373-84. [PMID: 17694079 DOI: 10.1038/sj.onc.1210606] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The MYST family of histone acetyltransferases (HATs) was initially defined by human genes with disease connections and by yeast genes identified for their role in epigenetic transcriptional silencing. Since then, many new MYST genes have been discovered through genetic and genomic approaches. Characterization of the complexes through which MYST proteins act, regions of the genome to which they are targeted and biological consequences when they are disrupted, all deepen the connections of MYST proteins to development, growth control and human cancers. Many of the insights into MYST family function have come from studies in model organisms. Herein, we review functions of two of the founding MYST genes, yeast SAS2 and SAS3, and the essential yeast MYST ESA1. Analysis of these genes in yeast has defined roles for MYST proteins in transcriptional activation and silencing, and chromatin-mediated boundary formation. They have further roles in DNA damage repair and nuclear integrity. The observation that MYST protein complexes share subunits with other HATs, histone deacetylases and other key nuclear proteins, many with connections to human cancers, strengthens the idea that coordinating distinct chromatin modifications is critical for regulation.
Collapse
Affiliation(s)
- A Lafon
- Section of Molecular Biology, Division of Biological Sciences, UCSD Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | |
Collapse
|
40
|
Mueller JE, Li C, Bryk M. Isw2 regulates gene silencing at the ribosomal DNA locus in Saccharomyces cerevisiae. Biochem Biophys Res Commun 2007; 361:1017-21. [PMID: 17689493 PMCID: PMC2083704 DOI: 10.1016/j.bbrc.2007.07.140] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2007] [Accepted: 07/23/2007] [Indexed: 11/28/2022]
Abstract
Three heterochromatin-like domains have been identified in Saccharomyces cerevisiae that are refractory to transcription by Pol II, the silent mating-type loci, telomeres and the ribosomal DNA. Previous work has shown that chromatin remodelers can regulate silent chromatin. Here, we report the findings of an investigation into the role of ISW2 in transcriptional silencing at the rDNA. We show that the levels of retrotransposition and mRNA from a genetically marked Ty1 element located in the rDNA were increased significantly in isw2Delta cells, while transcript levels from Ty1 elements outside of the rDNA were not increased in cells lacking ISW2. Additionally, we show that Isw2 is not required for silencing at a telomere. Our findings demonstrate that Isw2 is required for transcriptional silencing at the rDNA and emphasize the differences in the regulation of transcriptional silencing at silent loci in S. cerevisiae.
Collapse
Affiliation(s)
- John E Mueller
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | |
Collapse
|
41
|
Mueller JE, Bryk M. Isw1 acts independently of the Isw1a and Isw1b complexes in regulating transcriptional silencing at the ribosomal DNA locus in Saccharomyces cerevisiae. J Mol Biol 2007; 371:1-10. [PMID: 17561109 PMCID: PMC1995125 DOI: 10.1016/j.jmb.2007.04.089] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 04/20/2007] [Accepted: 04/20/2007] [Indexed: 11/30/2022]
Abstract
Transcriptional silencing of Pol II-transcribed genes in Saccharomyces cerevisiae occurs at the HM loci, telomeres and ribosomal DNA (rDNA) locus. Gene silencing at these loci requires histone-modifying enzymes as well as factors that regulate local chromatin structure. Previous work has shown that the ATP-dependent chromatin remodeling protein Isw1 is required for silencing of a marker gene inserted at the HMR locus, but not at telomeres. Here we show that Isw1 is required for transcriptional silencing of Pol II-transcribed genes in the ribosomal DNA locus. Our results indicate that Isw1 associates with the rDNA and that this interaction is not altered in cells lacking other members of the Isw1a and Isw1b chromatin remodeling complexes. Further, the association of Isw1 with the rDNA is not altered in cells lacking the histone deacetylase Sir2 or the histone methyltransferase Set1, two factors that are required for gene silencing at the rDNA. Notably, the loss of transcriptional silencing at the rDNA in cells lacking Isw1 is correlated with a change in rDNA chromatin structure. Together, our data support a model in which Isw1 acts independently of the previously characterized Isw1a and Isw1b complexes to maintain a heterochromatin-like structure at the rDNA that is required for gene silencing.
Collapse
Affiliation(s)
- John E Mueller
- Department of Biochemistry and Biophysics, Texas A & M University, College Station, TX 77843-2128, USA
| | | |
Collapse
|
42
|
Rehman MA, Fourel G, Mathews A, Ramdin D, Espinosa M, Gilson E, Yankulov K. Differential requirement of DNA replication factors for subtelomeric ARS consensus sequence protosilencers in Saccharomyces cerevisiae. Genetics 2006; 174:1801-10. [PMID: 16980387 PMCID: PMC1698613 DOI: 10.1534/genetics.106.063446] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The establishment of silent chromatin requires passage through S-phase, but not DNA replication per se. Nevertheless, many proteins that affect silencing are bona fide DNA replication factors. It is not clear if mutations in these replication factors affect silencing directly or indirectly via deregulation of S-phase or DNA replication. Consequently, the relationship between DNA replication and silencing remains an issue of debate. Here we analyze the effect of mutations in DNA replication factors (mcm5-461, mcm5-1, orc2-1, orc5-1, cdc45-1, cdc6-1, and cdc7-1) on the silencing of a group of reporter constructs, which contain different combinations of "natural" subtelomeric elements. We show that the mcm5-461, mcm5-1, and orc2-1 mutations affect silencing through subtelomeric ARS consensus sequences (ACS), while cdc6-1 affects silencing independently of ACS. orc5-1, cdc45-1, and cdc7-1 affect silencing through ACS, but also show ACS-independent effects. We also demonstrate that isolated nontelomeric ACS do not recapitulate the same effects when inserted in the telomere. We propose a model that defines the modes of action of MCM5 and CDC6 in silencing.
Collapse
|