1
|
Salman B, Bon E, Delers P, Cottin S, Pasho E, Ciura S, Sapaly D, Lefebvre S. Understanding the Role of the SMN Complex Component GEMIN5 and Its Functional Relationship with Demethylase KDM6B in the Flunarizine-Mediated Neuroprotection of Motor Neuron Disease Spinal Muscular Atrophy. Int J Mol Sci 2024; 25:10039. [PMID: 39337533 PMCID: PMC11431868 DOI: 10.3390/ijms251810039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Dysregulated RNA metabolism caused by SMN deficiency leads to motor neuron disease spinal muscular atrophy (SMA). Current therapies improve patient outcomes but achieve no definite cure, prompting renewed efforts to better understand disease mechanisms. The calcium channel blocker flunarizine improves motor function in Smn-deficient mice and can help uncover neuroprotective pathways. Murine motor neuron-like NSC34 cells were used to study the molecular cell-autonomous mechanism. Following RNA and protein extraction, RT-qPCR and immunodetection experiments were performed. The relationship between flunarizine mRNA targets and RNA-binding protein GEMIN5 was explored by RNA-immunoprecipitation. Flunarizine increases demethylase Kdm6b transcripts across cell cultures and mouse models. It causes, in NSC34 cells, a temporal expression of GEMIN5 and KDM6B. GEMIN5 binds to flunarizine-modulated mRNAs, including Kdm6b transcripts. Gemin5 depletion reduces Kdm6b mRNA and protein levels and hampers responses to flunarizine, including neurite extension in NSC34 cells. Moreover, flunarizine increases the axonal extension of motor neurons derived from SMA patient-induced pluripotent stem cells. Finally, immunofluorescence studies of spinal cord motor neurons in Smn-deficient mice reveal that flunarizine modulates the expression of KDM6B and its target, the motor neuron-specific transcription factor HB9, driving motor neuron maturation. Our study reveals GEMIN5 regulates Kdm6b expression with implications for motor neuron diseases and therapy.
Collapse
Affiliation(s)
- Badih Salman
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Emeline Bon
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Perrine Delers
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Steve Cottin
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Elena Pasho
- INSERM UMR1163, Institut Imagine, Université Paris Cité, F-75015 Paris, France
| | - Sorana Ciura
- INSERM UMR1163, Institut Imagine, Université Paris Cité, F-75015 Paris, France
| | - Delphine Sapaly
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| | - Suzie Lefebvre
- T3S, INSERM UMR1124, Faculté des Sciences Fondamentales et Biomédicales, Université Paris Cité, F-75006 Paris, France
| |
Collapse
|
2
|
Staněk D. Coilin and Cajal bodies. Nucleus 2023; 14:2256036. [PMID: 37682044 PMCID: PMC10494742 DOI: 10.1080/19491034.2023.2256036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/24/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023] Open
Abstract
The nucleus of higher eukaryotes contains a number of structures that concentrate specific biomolecules and play distinct roles in nuclear metabolism. In recent years, the molecular mechanisms controlling their formation have been intensively studied. In this brief review, I focus on coilin and Cajal bodies. Coilin is a key scaffolding protein of Cajal bodies that is evolutionarily conserved in metazoans. Cajal bodies are thought to be one of the archetypal nuclear structures involved in the metabolism of several short non-coding nuclear RNAs. Yet surprisingly little is known about the structure and function of coilin, and a comprehensive model to explain the origin of Cajal bodies is also lacking. Here, I summarize recent results on Cajal bodies and coilin and discuss them in the context of the last three decades of research in this field.
Collapse
Affiliation(s)
- David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
3
|
Taliansky ME, Love AJ, Kołowerzo-Lubnau A, Smoliński DJ. Cajal bodies: Evolutionarily conserved nuclear biomolecular condensates with properties unique to plants. THE PLANT CELL 2023; 35:3214-3235. [PMID: 37202374 PMCID: PMC10473218 DOI: 10.1093/plcell/koad140] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/20/2023]
Abstract
Proper orchestration of the thousands of biochemical processes that are essential to the life of every cell requires highly organized cellular compartmentalization of dedicated microenvironments. There are 2 ways to create this intracellular segregation to optimize cellular function. One way is to create specific organelles, enclosed spaces bounded by lipid membranes that regulate macromolecular flux in and out of the compartment. A second way is via membraneless biomolecular condensates that form due to to liquid-liquid phase separation. Although research on these membraneless condensates has historically been performed using animal and fungal systems, recent studies have explored basic principles governing the assembly, properties, and functions of membraneless compartments in plants. In this review, we discuss how phase separation is involved in a variety of key processes occurring in Cajal bodies (CBs), a type of biomolecular condensate found in nuclei. These processes include RNA metabolism, formation of ribonucleoproteins involved in transcription, RNA splicing, ribosome biogenesis, and telomere maintenance. Besides these primary roles of CBs, we discuss unique plant-specific functions of CBs in RNA-based regulatory pathways such as nonsense-mediated mRNA decay, mRNA retention, and RNA silencing. Finally, we summarize recent progress and discuss the functions of CBs in responses to pathogen attacks and abiotic stresses, responses that may be regulated via mechanisms governed by polyADP-ribosylation. Thus, plant CBs are emerging as highly complex and multifunctional biomolecular condensates that are involved in a surprisingly diverse range of molecular mechanisms that we are just beginning to appreciate.
Collapse
Affiliation(s)
| | - Andrew J Love
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Agnieszka Kołowerzo-Lubnau
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| | - Dariusz Jan Smoliński
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Lwowska 1, 87-100 Torun, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Wilenska 4, 87-100 Torun, Poland
| |
Collapse
|
4
|
Klimešová K, Petržílková H, Bařinka C, Staněk D. SART3 associates with a post-splicing complex. J Cell Sci 2023; 136:jcs260380. [PMID: 36620952 DOI: 10.1242/jcs.260380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
SART3 is a multifunctional protein that acts in several steps of gene expression, including assembly and recycling of the spliceosomal U4/U6 small nuclear ribonucleoprotein particle (snRNP). In this work, we provide evidence that SART3 associates via its N-terminal HAT domain with the 12S U2 snRNP. Further analysis showed that SART3 associates with the post-splicing complex containing U2 and U5 snRNP components. In addition, we observed an interaction between SART3 and the RNA helicase DHX15, which disassembles post-splicing complexes. Based on our data, we propose a model that SART3 associates via its N-terminal HAT domain with the post-splicing complex, where it interacts with U6 snRNA to protect it and to initiate U6 snRNA recycling before a next round of splicing.
Collapse
MESH Headings
- RNA Splicing/genetics
- Spliceosomes/genetics
- Spliceosomes/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- Ribonucleoprotein, U4-U6 Small Nuclear/genetics
- Ribonucleoprotein, U4-U6 Small Nuclear/metabolism
- Ribonucleoprotein, U5 Small Nuclear/genetics
- Ribonucleoprotein, U5 Small Nuclear/metabolism
- Ribonucleoprotein, U2 Small Nuclear/genetics
- Ribonucleoprotein, U2 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Klára Klimešová
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Hana Petržílková
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Cyril Bařinka
- Laboratory of Structural Biology, Institute of Biotechnology, Czech Academy of Sciences, 252 50 Prague, Czech Republic
| | - David Staněk
- Department of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| |
Collapse
|
5
|
Sekar D, Tusubira D, Ross K. TDP-43 and NEAT long non-coding RNA: Roles in neurodegenerative disease. Front Cell Neurosci 2022; 16:954912. [PMID: 36385948 PMCID: PMC9650703 DOI: 10.3389/fncel.2022.954912] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 10/11/2022] [Indexed: 01/03/2023] Open
Abstract
Understanding and ameliorating neurodegenerative diseases represents a key challenge for supporting the health span of the aging population. Diverse protein aggregates have been implicated in such neurodegenerative disorders, including amyloid-β, α-synuclein, tau, fused in sarcoma (FUS), and transactivation response element (TAR) DNA-binding protein 43 (TDP-43). Recent years have seen significant growth in our mechanistic knowledge of relationships between these proteins and some of the membrane-less nuclear structures that fulfill key roles in the cell function. These include the nucleolus, nuclear speckles, and paraspeckles. The ability of macromolecular protein:RNA complexes to partition these nuclear condensates through biophysical processes that involve liquid-liquid phase separation (LLPS) has also gained attention recently. The paraspeckle, which is scaffolded by the architectural long-non-coding RNA nuclear enriched abundant transcript 1 (NEAT1) plays central roles in RNA processing and metabolism and has been linked dynamically to TDP-43. In this mini-review, we outline essential early and recent insights in relation to TDP-43 proteinopathies. We then appraise the relationships between TDP-43 and NEAT1 in the context of neuronal paraspeckles and neuronal stress. We highlight key areas for investigation based on recent advances in our understanding of how TDP-43 affects neuronal function, especially in relation to messenger ribosomal nucleic acid (mRNA) splicing. Finally, we offer perspectives that should be considered for translational pipelines in order to improve health outcomes for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Durairaj Sekar
- Centre for Cellular and Molecular Research, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India
| | - Deusdedit Tusubira
- Department of Biochemistry, Mbarara University of Science and Technology, Mbarara, Uganda,*Correspondence: Deusdedit Tusubira, ; orcid.org/0000-0002-4698-424X
| | - Kehinde Ross
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom,Institute for Health Research, Liverpool John Moores University, Liverpool, United Kingdom,Kehinde Ross, ; orcid.org/0000-0003-0252-1152
| |
Collapse
|
6
|
Courchaine E, Gelles-Watnick S, Machyna M, Straube K, Sauyet S, Enright J, Neugebauer KM. The coilin N-terminus mediates multivalent interactions between coilin and Nopp140 to form and maintain Cajal bodies. Nat Commun 2022; 13:6005. [PMID: 36224177 PMCID: PMC9556525 DOI: 10.1038/s41467-022-33434-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Cajal bodies (CBs) are ubiquitous nuclear membraneless organelles (MLOs) that concentrate and promote efficient biogenesis of snRNA-protein complexes involved in splicing (snRNPs). Depletion of the CB scaffolding protein coilin disperses snRNPs, making CBs a model system for studying the structure and function of MLOs. Although it is assumed that CBs form through condensation, the biomolecular interactions responsible remain elusive. Here, we discover the unexpected capacity of coilin’s N-terminal domain (NTD) to form extensive fibrils in the cytoplasm and discrete nuclear puncta in vivo. Single amino acid mutational analysis reveals distinct molecular interactions between coilin NTD proteins to form fibrils and additional NTD interactions with the nuclear Nopp140 protein to form puncta. We provide evidence that Nopp140 has condensation capacity and is required for CB assembly. From these observations, we propose a model in which coilin NTD–NTD mediated assemblies make multivalent contacts with Nopp140 to achieve biomolecular condensation in the nucleus. Cajal bodies are membraneless organelles scaffolded by coilin protein. Here, coilin–coilin and coilin–Nopp140 interaction sites are identified and perturbed, revealing coilin’s capacity to form long fibrils and be remodeled into spherical structures.
Collapse
Affiliation(s)
- Edward Courchaine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sara Gelles-Watnick
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Martin Machyna
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Korinna Straube
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Sarah Sauyet
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jade Enright
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Abulfaraj AA, Alhoraibi HM, Mariappan K, Bigeard J, Zhang H, Almeida-Trapp M, Artyukh O, Abdulhakim F, Parween S, Pflieger D, Blilou I, Hirt H, Rayapuram N. Analysis of the Arabidopsis coilin mutant reveals a positive role of AtCOILIN in plant immunity. PLANT PHYSIOLOGY 2022; 190:745-761. [PMID: 35674377 PMCID: PMC9434284 DOI: 10.1093/plphys/kiac280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Biogenesis of ribonucleoproteins occurs in dynamic subnuclear compartments called Cajal bodies (CBs). COILIN is a critical scaffolding component essential for CB formation, composition, and activity. We recently showed that Arabidopsis (Arabidopsis thaliana) AtCOILIN is phosphorylated in response to bacterial elicitor treatment. Here, we further investigated the role of AtCOILIN in plant innate immunity. Atcoilin mutants are compromised in defense responses to bacterial pathogens. Besides confirming a role of AtCOILIN in alternative splicing (AS), Atcoilin showed differential expression of genes that are distinct from those of AS, including factors involved in RNA biogenesis, metabolism, plant immunity, and phytohormones. Atcoilin mutant plants have reduced levels of defense phytohormones. As expected, the mutant plants were more sensitive to the necrotrophic fungal pathogen Botrytis cinerea. Our findings reveal an important role for AtCOILIN in innate plant immunity.
Collapse
Affiliation(s)
- Aala A Abulfaraj
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Hanna M Alhoraibi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, 21551 Jeddah, Saudi Arabia
| | - Kiruthiga Mariappan
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Jean Bigeard
- Institute of Plant Sciences Paris Saclay (IPS2), CNRS, INRAE, Univ Evry, Université Paris-Saclay, Université de Paris, Orsay 91405, France
| | - Huoming Zhang
- Corelabs, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Marilia Almeida-Trapp
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Olga Artyukh
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Fatimah Abdulhakim
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Sabiha Parween
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Delphine Pflieger
- Universite Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048 38000, Grenoble, France
| | - Ikram Blilou
- Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | | | | |
Collapse
|
8
|
Rudzka M, Wróblewska-Ankiewicz P, Majewska K, Hyjek-Składanowska M, Gołębiewski M, Sikora M, Smoliński DJ, Kołowerzo-Lubnau A. Functional nuclear retention of pre-mRNA involving Cajal bodies during meiotic prophase in European larch (Larix decidua). THE PLANT CELL 2022; 34:2404-2423. [PMID: 35294035 PMCID: PMC9134060 DOI: 10.1093/plcell/koac091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Gene regulation ensures that the appropriate genes are expressed at the proper time. Nuclear retention of incompletely spliced or mature mRNAs is emerging as a novel, previously underappreciated layer of posttranscriptional regulation. Studies on this phenomenon indicated that it exerts a significant influence on the regulation of gene expression by regulating export and translation delay, which allows the synthesis of specific proteins in response to a stimulus or at strictly controlled time points, for example, during cell differentiation or development. Here, we show that transcription in microsporocytes of European larch (Larix decidua) occurs in a pulsatile manner during prophase of the first meiotic division. Transcriptional activity was then silenced after each pulse. However, the transcripts synthesized were not exported immediately to the cytoplasm but were retained in the nucleoplasm and Cajal bodies (CBs). In contrast to the nucleoplasm, we did not detect mature transcripts in CBs, which only stored nonfully spliced transcripts with retained introns. Notably, the retained introns were spliced at precisely defined times, and fully mature mRNAs were released into the cytoplasm for translation. As similar processes have been observed during spermatogenesis in animals, our results illustrate an evolutionarily conserved mechanism of gene expression regulation during generative cells development in Eukaryota.
Collapse
Affiliation(s)
- Magda Rudzka
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Patrycja Wróblewska-Ankiewicz
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Karolina Majewska
- Department of Cellular and Molecular Biology, Nicolaus Copernicus University, Torun 87-100, Poland
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | | | - Marcin Gołębiewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University, Torun 87-100, Poland
| | - Marcin Sikora
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Torun 87-100, Poland
| | | | | |
Collapse
|
9
|
Lett KE, Logan MK, McLaurin DM, Hebert MD. Coilin enhances phosphorylation and stability of DGCR8 and promotes miRNA biogenesis. Mol Biol Cell 2021; 32:br4. [PMID: 34319763 PMCID: PMC8684749 DOI: 10.1091/mbc.e21-05-0225] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs (miRNAs) are ∼22 nt small noncoding RNAs that control gene expression at the posttranscriptional level through translational inhibition and destabilization of their target mRNAs. The biogenesis of miRNAs involves a series of processing steps beginning with cropping of the primary miRNA transcript by the Microprocessor complex, which is composed of Drosha and DGCR8. Here we report a novel regulatory interaction between the Microprocessor components and coilin, the Cajal body (CB) marker protein. Coilin knockdown causes alterations in the level of primary and mature miRNAs, let-7a and miR-34a, and their miRNA targets, HMGA2 and Notch1, respectively. We also found that coilin knockdown affects the levels of DGCR8 and Drosha in cells with (HeLa) and without (WI-38) CBs. To further explore the role of coilin in miRNA biogenesis, we conducted a series of coimmunoprecipitation experiments using coilin and DGCR8 constructs, which revealed that coilin and DGCR8 can form a complex. Additionally, our results indicate that phosphorylation of DGCR8, which has been shown to increase protein stability, is impacted by coilin knockdown. Collectively, our results implicate coilin as a member of the regulatory network governing miRNA biogenesis.
Collapse
Affiliation(s)
- Katheryn E. Lett
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| | - Madelyn K. Logan
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| | - Douglas M. McLaurin
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| | - Michael D. Hebert
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, MS 39216-4505
| |
Collapse
|
10
|
Imada T, Shimi T, Kaiho A, Saeki Y, Kimura H. RNA polymerase II condensate formation and association with Cajal and histone locus bodies in living human cells. Genes Cells 2021; 26:298-312. [PMID: 33608942 PMCID: PMC8252594 DOI: 10.1111/gtc.12840] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 02/14/2021] [Accepted: 02/15/2021] [Indexed: 12/24/2022]
Abstract
In eukaryotic nuclei, a number of phase‐separated nuclear bodies (NBs) are present. RNA polymerase II (Pol II) is the main player in transcription and forms large condensates in addition to localizing at numerous transcription foci. Cajal bodies (CBs) and histone locus bodies (HLBs) are NBs that are involved in transcriptional and post‐transcriptional regulation of small nuclear RNA and histone genes. By live‐cell imaging using human HCT116 cells, we here show that Pol II condensates (PCs) nucleated near CBs and HLBs, and the number of PCs increased during S phase concomitantly with the activation period of histone genes. Ternary PC–CB–HLB associates were formed via three pathways: nucleation of PCs and HLBs near CBs, interaction between preformed PC–HLBs with CBs and nucleation of PCs near preformed CB–HLBs. Coilin knockout increased the co‐localization rate between PCs and HLBs, whereas the number, nucleation timing and phosphorylation status of PCs remained unchanged. Depletion of PCs did not affect CBs and HLBs. Treatment with 1,6‐hexanediol revealed that PCs were more liquid‐like than CBs and HLBs. Thus, PCs are dynamic structures often nucleated following the activation of gene clusters associated with other NBs.
Collapse
Affiliation(s)
- Takashi Imada
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
| | - Takeshi Shimi
- World Research Hub InitiativeInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| | - Ai Kaiho
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
- Institute for Advanced Life SciencesHoshi UniversityTokyoJapan
| | - Yasushi Saeki
- Protein Metabolism ProjectTokyo Metropolitan Institute of Medical ScienceTokyoJapan
| | - Hiroshi Kimura
- School of Life Science and TechnologyTokyo Institute of TechnologyYokohamaJapan
- World Research Hub InitiativeInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
- Cell Biology CenterInstitute of Innovative ResearchTokyo Institute of TechnologyYokohamaJapan
| |
Collapse
|
11
|
Nusinersen ameliorates motor function and prevents motoneuron Cajal body disassembly and abnormal poly(A) RNA distribution in a SMA mouse model. Sci Rep 2020; 10:10738. [PMID: 32612161 PMCID: PMC7330045 DOI: 10.1038/s41598-020-67569-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/08/2020] [Indexed: 11/09/2022] Open
Abstract
Spinal muscular atrophy (SMA) is a devastating autosomal recessive neuromuscular disease characterized by degeneration of spinal cord alpha motor neurons (αMNs). SMA is caused by the homozygous deletion or mutation of the survival motor neuron 1 (SMN1) gene, resulting in reduced expression of SMN protein, which leads to αMN degeneration and muscle atrophy. The majority of transcripts of a second gene (SMN2) generate an alternative spliced isoform that lacks exon 7 and produces a truncated nonfunctional form of SMN. A major function of SMN is the biogenesis of spliceosomal snRNPs, which are essential components of the pre-mRNA splicing machinery, the spliceosome. In recent years, new potential therapies have been developed to increase SMN levels, including treatment with antisense oligonucleotides (ASOs). The ASO-nusinersen (Spinraza) promotes the inclusion of exon 7 in SMN2 transcripts and notably enhances the production of full-length SMN in mouse models of SMA. In this work, we used the intracerebroventricular injection of nusinersen in the SMN∆7 mouse model of SMA to evaluate the effects of this ASO on the behavior of Cajal bodies (CBs), nuclear structures involved in spliceosomal snRNP biogenesis, and the cellular distribution of polyadenylated mRNAs in αMNs. The administration of nusinersen at postnatal day (P) 1 normalized SMN expression in the spinal cord but not in skeletal muscle, rescued the growth curve and improved motor behavior at P12 (late symptomatic stage). Importantly, this ASO recovered the number of canonical CBs in MNs, significantly reduced the abnormal accumulation of polyadenylated RNAs in nuclear granules, and normalized the expression of the pre-mRNAs encoding chondrolectin and choline acetyltransferase, two key factors for αMN homeostasis. We propose that the splicing modulatory function of nusinersen in SMA αMN is mediated by the rescue of CB biogenesis, resulting in enhanced polyadenylated pre-mRNA transcription and splicing and nuclear export of mature mRNAs for translation. Our results support that the selective restoration of SMN expression in the spinal cord has a beneficial impact not only on αMNs but also on skeletal myofibers. However, the rescue of SMN expression in muscle appears to be necessary for the complete recovery of motor function.
Collapse
|
12
|
Xing W, Muhlrad D, Parker R, Rosen MK. A quantitative inventory of yeast P body proteins reveals principles of composition and specificity. eLife 2020; 9:56525. [PMID: 32553117 PMCID: PMC7373430 DOI: 10.7554/elife.56525] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/18/2020] [Indexed: 01/01/2023] Open
Abstract
P bodies are archetypal biomolecular condensates that concentrate proteins and RNA without a surrounding membrane. While dozens of P body proteins are known, the concentrations of components in the compartment have not been measured. We used live cell imaging to generate a quantitative inventory of the major proteins in yeast P bodies. Only seven proteins are highly concentrated in P bodies (5.1–15µM); the 24 others examined are appreciably lower (most ≤ 2.6µM). P body concentration correlates inversely with cytoplasmic exchange rate. Sequence elements driving Dcp2 concentration into P bodies are distributed across the protein and act synergistically. Our data indicate that P bodies, and probably other condensates, are compositionally simpler than suggested by proteomic analyses, with implications for specificity, reconstitution and evolution.
Collapse
Affiliation(s)
- Wenmin Xing
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| | - Denise Muhlrad
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
| | - Roy Parker
- Department of Biochemistry, Howard Hughes Medical Institute, University of Colorado, Boulder, United States
| | - Michael K Rosen
- Department of Biophysics, Howard Hughes Medical Institute, UT Southwestern Medical Center, Dallas, United States
| |
Collapse
|
13
|
Ghaemi Z, Peterson JR, Gruebele M, Luthey-Schulten Z. An in-silico human cell model reveals the influence of spatial organization on RNA splicing. PLoS Comput Biol 2020; 16:e1007717. [PMID: 32210422 PMCID: PMC7094823 DOI: 10.1371/journal.pcbi.1007717] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 02/06/2020] [Indexed: 01/12/2023] Open
Abstract
Spatial organization is a characteristic of all cells, achieved in eukaryotic cells by utilizing both membrane-bound and membrane-less organelles. One of the key processes in eukaryotes is RNA splicing, which readies mRNA for translation. This complex and highly dynamical chemical process involves assembly and disassembly of many molecules in multiple cellular compartments and their transport among compartments. Our goal is to model the effect of spatial organization of membrane-less organelles (specifically nuclear speckles) and of organelle heterogeneity on splicing particle biogenesis in mammalian cells. Based on multiple sources of complementary experimental data, we constructed a spatial model of a HeLa cell to capture intracellular crowding effects. We then developed chemical reaction networks to describe the formation of RNA splicing machinery complexes and splicing processes within nuclear speckles (specific type of non-membrane-bound organelles). We incorporated these networks into our spatially-resolved human cell model and performed stochastic simulations for up to 15 minutes of biological time, the longest thus far for a eukaryotic cell. We find that an increase (decrease) in the number of nuclear pore complexes increases (decreases) the number of assembled splicing particles; and that compartmentalization is critical for the yield of correctly-assembled particles. We also show that a slight increase of splicing particle localization into nuclear speckles leads to a disproportionate enhancement of mRNA splicing and a reduction in the noise of generated mRNA. Our model also predicts that the distance between genes and speckles has a considerable effect on the mRNA production rate, with genes located closer to speckles producing mRNA at higher levels, emphasizing the importance of genome organization around speckles. The HeLa cell model, including organelles and sub-compartments, provides a flexible foundation to study other cellular processes that are strongly modulated by spatiotemporal heterogeneity.
Collapse
Affiliation(s)
- Zhaleh Ghaemi
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Joseph R. Peterson
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Martin Gruebele
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Zaida Luthey-Schulten
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| |
Collapse
|
14
|
Moreno-Castro C, Prieto-Sánchez S, Sánchez-Hernández N, Hernández-Munain C, Suñé C. Role for the splicing factor TCERG1 in Cajal body integrity and snRNP assembly. J Cell Sci 2019; 132:jcs.232728. [PMID: 31636114 DOI: 10.1242/jcs.232728] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/11/2019] [Indexed: 12/29/2022] Open
Abstract
Cajal bodies are nuclear organelles involved in the nuclear phase of small nuclear ribonucleoprotein (snRNP) biogenesis. In this study, we identified the splicing factor TCERG1 as a coilin-associated factor that is essential for Cajal body integrity. Knockdown of TCERG1 disrupts the localization of the components of Cajal bodies, including coilin and NOLC1, with coilin being dispersed in the nucleoplasm into numerous small foci, without affecting speckles, gems or the histone locus body. Furthermore, the depletion of TCERG1 affects the recruitment of Sm proteins to uridine-rich small nuclear RNAs (snRNAs) to form the mature core snRNP. Taken together, the results of this study suggest that TCERG1 plays an important role in Cajal body formation and snRNP biogenesis.
Collapse
Affiliation(s)
- Cristina Moreno-Castro
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Silvia Prieto-Sánchez
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Noemí Sánchez-Hernández
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Cristina Hernández-Munain
- Department of Cell Biology and Immunology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| | - Carlos Suñé
- Department of Molecular Biology, Institute of Parasitology and Biomedicine "López-Neyra" (IPBLN-CSIC), PTS, 18016 Granada, Spain
| |
Collapse
|
15
|
Do Cellular Condensates Accelerate Biochemical Reactions? Lessons from Microdroplet Chemistry. Biophys J 2019; 115:3-8. [PMID: 29972809 DOI: 10.1016/j.bpj.2018.05.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/03/2018] [Accepted: 05/23/2018] [Indexed: 01/20/2023] Open
Abstract
Cellular condensates-phase-separated concentrates of proteins and nucleic acids-provide organizational structure for biochemistry that is distinct from membrane-bound compartments. It has been suggested that one major function of cellular condensates is to accelerate biochemical processes that are normally slow or thermodynamically unfavorable. Yet, the mechanisms leading to increased reaction rates within cellular condensates remain poorly understood. In this article, we highlight recent advances in microdroplet chemistry that accelerate reaction rates by many orders of magnitude as compared to bulk and suggest that similar mechanisms may also affect reaction kinetics in cellular condensates.
Collapse
|
16
|
Nakashima KK, Vibhute MA, Spruijt E. Biomolecular Chemistry in Liquid Phase Separated Compartments. Front Mol Biosci 2019; 6:21. [PMID: 31001538 PMCID: PMC6456709 DOI: 10.3389/fmolb.2019.00021] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/11/2019] [Indexed: 12/11/2022] Open
Abstract
Biochemical processes inside the cell take place in a complex environment that is highly crowded, heterogeneous, and replete with interfaces. The recently recognized importance of biomolecular condensates in cellular organization has added new elements of complexity to our understanding of chemistry in the cell. Many of these condensates are formed by liquid-liquid phase separation (LLPS) and behave like liquid droplets. Such droplet organelles can be reproduced and studied in vitro by using coacervates and have some remarkable features, including regulated assembly, differential partitioning of macromolecules, permeability to small molecules, and a uniquely crowded environment. Here, we review the main principles of biochemical organization in model membraneless compartments. We focus on some promising in vitro coacervate model systems that aptly mimic part of the compartmentalized cellular environment. We address the physicochemical characteristics of these liquid phase separated compartments, and their impact on biomolecular chemistry and assembly. These model systems enable a systematic investigation of the role of spatiotemporal organization of biomolecules in controlling biochemical processes in the cell, and they provide crucial insights for the development of functional artificial organelles and cells.
Collapse
Affiliation(s)
| | | | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Nijmegen, Netherlands
| |
Collapse
|
17
|
Kobayashi M, Zochodne DW. Diabetic neuropathy and the sensory neuron: New aspects of pathogenesis and their treatment implications. J Diabetes Investig 2018; 9:1239-1254. [PMID: 29533535 PMCID: PMC6215951 DOI: 10.1111/jdi.12833] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/20/2018] [Accepted: 03/03/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetic polyneuropathy (DPN) continues to be generally considered as a "microvascular" complication of diabetes mellitus alongside nephropathy and retinopathy. The microvascular hypothesis, however, might be tempered by the concept that diabetes directly targets dorsal root ganglion sensory neurons. This neuron-specific concept, supported by accumulating evidence, might account for important features of DPN, such as its early sensory neuron degeneration. Diabetic sensory neurons develop neuronal atrophy alongside a series of messenger ribonucleic acid (RNA) changes related to declines in structural proteins, increases in heat shock protein, increases in the receptor for advanced glycation end-products, declines in growth factor signaling and other changes. Insulin is recognized as a potent neurotrophic factor, and insulin ligation enhances neurite outgrowth through activation of the phosphoinositide 3-kinase-protein kinase B pathway within sensory neurons and attenuates phenotypic features of experimental DPN. Several interventions, including glucagon-like peptide-1 agonism, and phosphatase and tensin homolog inhibition to activate growth signals in sensory neurons, or heat shock protein overexpression, prevent or reverse neuropathic abnormalities in experimental DPN. Diabetic sensory neurons show a unique pattern of microRNA alterations, a key element of messenger RNA silencing. For example, let-7i is widely expressed in sensory neurons, supports their growth and is depleted in experimental DPN; its replenishment improves features of DPN models. Finally, impairment of pre-messenger RNA splicing in diabetic sensory neurons including abnormal nuclear RNA metabolism and structure with loss of survival motor neuron protein, a neuron survival molecule, and overexpression of CWC22, a splicing factor, offer further novel insights. The present review addresses these new aspects of DPN sensory neurodegeneration.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Department of Neurology and Neurological ScienceGraduate School of MedicineTokyo Medical and Dental UniversityTokyoJapan
- Department of NeurologyYokufukai Geriatric HospitalTokyoJapan
| | - Douglas W Zochodne
- Division of Neurology and Department of MedicineNeuroscience and Mental Health InstituteFaculty of Medicine and DentistryUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
18
|
Roithová A, Klimešová K, Pánek J, Will CL, Lührmann R, Staněk D, Girard C. The Sm-core mediates the retention of partially-assembled spliceosomal snRNPs in Cajal bodies until their full maturation. Nucleic Acids Res 2018; 46:3774-3790. [PMID: 29415178 PMCID: PMC5909452 DOI: 10.1093/nar/gky070] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 01/19/2018] [Accepted: 01/25/2018] [Indexed: 01/23/2023] Open
Abstract
Cajal bodies (CBs) are nuclear non-membrane bound organelles where small nuclear ribonucleoprotein particles (snRNPs) undergo their final maturation and quality control before they are released to the nucleoplasm. However, the molecular mechanism how immature snRNPs are targeted and retained in CBs has yet to be described. Here, we microinjected and expressed various snRNA deletion mutants as well as chimeric 7SK, Alu or bacterial SRP non-coding RNAs and provide evidence that Sm and SMN binding sites are necessary and sufficient for CB localization of snRNAs. We further show that Sm proteins, and specifically their GR-rich domains, are important for accumulating snRNPs in CBs. Accordingly, core snRNPs containing the Sm proteins, but not naked snRNAs, restore the formation of CBs after their depletion. Finally, we show that immature but not fully assembled snRNPs are able to induce CB formation and that microinjection of an excess of U2 snRNP-specific proteins, which promotes U2 snRNP maturation, chases U2 snRNA from CBs. We propose that the accessibility of the Sm ring represents the molecular basis for the quality control of the final maturation of snRNPs and the sequestration of immature particles in CBs.
Collapse
Affiliation(s)
- Adriana Roithová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Klára Klimešová
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Josef Pánek
- Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Cindy L Will
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | | | - David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Cyrille Girard
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
19
|
Didychuk AL, Butcher SE, Brow DA. The life of U6 small nuclear RNA, from cradle to grave. RNA (NEW YORK, N.Y.) 2018; 24:437-460. [PMID: 29367453 PMCID: PMC5855946 DOI: 10.1261/rna.065136.117] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Removal of introns from precursor messenger RNA (pre-mRNA) and some noncoding transcripts is an essential step in eukaryotic gene expression. In the nucleus, this process of RNA splicing is carried out by the spliceosome, a multi-megaDalton macromolecular machine whose core components are conserved from yeast to humans. In addition to many proteins, the spliceosome contains five uridine-rich small nuclear RNAs (snRNAs) that undergo an elaborate series of conformational changes to correctly recognize the splice sites and catalyze intron removal. Decades of biochemical and genetic data, along with recent cryo-EM structures, unequivocally demonstrate that U6 snRNA forms much of the catalytic core of the spliceosome and is highly dynamic, interacting with three snRNAs, the pre-mRNA substrate, and >25 protein partners throughout the splicing cycle. This review summarizes the current state of knowledge on how U6 snRNA is synthesized, modified, incorporated into snRNPs and spliceosomes, recycled, and degraded.
Collapse
Affiliation(s)
- Allison L Didychuk
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - Samuel E Butcher
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | - David A Brow
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin 53706, USA
| |
Collapse
|
20
|
Arias Escayola D, Neugebauer KM. Dynamics and Function of Nuclear Bodies during Embryogenesis. Biochemistry 2018; 57:2462-2469. [PMID: 29473743 DOI: 10.1021/acs.biochem.7b01262] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Nuclear bodies are RNA-rich membraneless organelles in the cell nucleus that concentrate specific sets of nuclear proteins and RNA-protein complexes. Nuclear bodies such as the nucleolus, Cajal body (CB), and the histone locus body (HLB) concentrate factors required for nuclear steps of RNA processing. Formation of these nuclear bodies occurs on genomic loci and is frequently associated with active sites of transcription. Whether nuclear body formation is dependent on a particular gene element, an active process such as transcription, or the nascent RNA present at gene loci is a topic of debate. Recently, this question has been addressed through studies in model organisms and their embryos. The switch from maternally provided RNA and protein to zygotic gene products in early embryos has been well characterized in a variety of organisms. This process, termed maternal-to-zygotic transition, provides an excellent model for studying formation of nuclear bodies before, during, and after the transcriptional activation of the zygotic genome. Here, we review findings in embryos that reveal key principles in the study of the formation and function of nucleoli, CBs, and HLBs. We propose that while particular gene elements may contribute to formation of these nuclear bodies, active transcription promotes maturation of nuclear bodies and efficient RNA processing within them.
Collapse
Affiliation(s)
- Dahyana Arias Escayola
- Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry , Yale University , New Haven , Connecticut 06520-8114 , United States
| |
Collapse
|
21
|
Small-molecule flunarizine increases SMN protein in nuclear Cajal bodies and motor function in a mouse model of spinal muscular atrophy. Sci Rep 2018; 8:2075. [PMID: 29391529 PMCID: PMC5794986 DOI: 10.1038/s41598-018-20219-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/16/2018] [Indexed: 02/07/2023] Open
Abstract
The hereditary neurodegenerative disorder spinal muscular atrophy (SMA) is characterized by the loss of spinal cord motor neurons and skeletal muscle atrophy. SMA is caused by mutations of the survival motor neuron (SMN) gene leading to a decrease in SMN protein levels. The SMN deficiency alters nuclear body formation and whether it can contribute to the disease remains unclear. Here we screen a series of small-molecules on SMA patient fibroblasts and identify flunarizine that accumulates SMN into Cajal bodies, the nuclear bodies important for the spliceosomal small nuclear RNA (snRNA)-ribonucleoprotein biogenesis. Using histochemistry, real-time RT-PCR and behavioural analyses in a mouse model of SMA, we show that along with the accumulation of SMN into Cajal bodies of spinal cord motor neurons, flunarizine treatment modulates the relative abundance of specific spliceosomal snRNAs in a tissue-dependent manner and can improve the synaptic connections and survival of spinal cord motor neurons. The treatment also protects skeletal muscles from cell death and atrophy, raises the neuromuscular junction maturation and prolongs life span by as much as 40 percent (p < 0.001). Our findings provide a functional link between flunarizine and SMA pathology, highlighting the potential benefits of flunarizine in a novel therapeutic perspective against neurodegenerative diseases.
Collapse
|
22
|
Kobayashi M, Chandrasekhar A, Cheng C, Martinez JA, Ng H, de la Hoz C, Zochodne DW. Diabetic polyneuropathy, sensory neurons, nuclear structure and spliceosome alterations: a role for CWC22. Dis Model Mech 2017; 10:215-224. [PMID: 28250049 PMCID: PMC5374325 DOI: 10.1242/dmm.028225] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Unique deficits in the function of adult sensory neurons as part of their early neurodegeneration might account for progressive polyneuropathy during chronic diabetes mellitus. Here, we provide structural and functional evidence for aberrant pre-mRNA splicing in a chronic type 1 model of experimental diabetic polyneuropathy (DPN). Cajal bodies (CBs), unique nuclear substructures involved in RNA splicing, increased in number in diabetic sensory neurons, but their expected colocalization with survival motor neuron (SMN) proteins was reduced - a mislocalization described in motor neurons of spinal muscular atrophy. Small nuclear ribonucleoprotein particles (snRNPs), also participants in the spliceosome, had abnormal multiple nuclear foci unassociated with CBs, and their associated snRNAs were reduced. CWC22, a key spliceosome protein, was aberrantly upregulated in diabetic dorsal root ganglia (DRG), and impaired neuronal function. CWC22 attenuated sensory neuron plasticity, with knockdown in vitro enhancing their neurite outgrowth. Further, axonal delivery of CWC22 siRNA unilaterally to locally knock down the aberrant protein in diabetic nerves improved aspects of sensory function in diabetic mice. Collectively, our findings identify subtle but significant alterations in spliceosome structure and function, including dysregulated CBs and CWC22 overexpression, in diabetic sensory neurons that offer new ideas regarding diabetic sensory neurodegeneration in polyneuropathy.
Collapse
Affiliation(s)
- Masaki Kobayashi
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada, T6G 2G3
| | - Ambika Chandrasekhar
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada, T6G 2G3
| | - Chu Cheng
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Canada, T2N 4N1
| | - Jose A Martinez
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Canada, T2N 4N1
| | - Hilarie Ng
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Canada, T2N 4N1
| | - Cristiane de la Hoz
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Canada, T2N 4N1
| | - Douglas W Zochodne
- Division of Neurology and Department of Medicine, Faculty of Medicine and Dentistry, and the Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada, T6G 2G3 .,Hotchkiss Brain Institute and Department of Clinical Neurosciences, Faculty of Medicine, University of Calgary, Canada, T2N 4N1
| |
Collapse
|
23
|
Chen Z, Gui B, Zhang Y, Xie G, Li W, Liu S, Xu B, Wu C, He L, Yang J, Yi X, Yang X, Sun L, Liang J, Shang Y. Identification of a 35S U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP) complex intermediate in spliceosome assembly. J Biol Chem 2017; 292:18113-18128. [PMID: 28878014 DOI: 10.1074/jbc.m117.797357] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/28/2017] [Indexed: 11/06/2022] Open
Abstract
The de novo assembly and post-splicing reassembly of the U4/U6.U5 tri-snRNP remain to be investigated. We report here that ZIP, a protein containing a CCCH-type zinc finger and a G-patch domain, as characterized by us previously, regulates pre-mRNA splicing independent of RNA binding. We found that ZIP physically associates with the U4/U6.U5 tri-small nuclear ribonucleoprotein (tri-snRNP). Remarkably, the ZIP-containing tri-snRNP, which has a sedimentation coefficient of ∼35S, is a tri-snRNP that has not been described previously. We also found that the 35S tri-snRNP contains hPrp24, indicative of a state in which the U4/U6 di-snRNP is integrating with the U5 snRNP. We found that the 35S tri-snRNP is enriched in the Cajal body, indicating that it is an assembly intermediate during 25S tri-snRNP maturation. We showed that the 35S tri-snRNP also contains hPrp43, in which ATPase/RNA helicase activities are stimulated by ZIP. Our study identified, for the first time, a tri-snRNP intermediate, shedding new light on the de novo assembly and recycling of the U4/U6.U5 tri-snRNP.
Collapse
Affiliation(s)
- Zhe Chen
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bin Gui
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Guojia Xie
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Wanjin Li
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Shumeng Liu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Bosen Xu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Chongyang Wu
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jianguo Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xia Yi
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Xiaohan Yang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China
| | - Yongfeng Shang
- From the Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, China, .,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China, and.,the Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| |
Collapse
|
24
|
Sawyer IA, Hager GL, Dundr M. Specific genomic cues regulate Cajal body assembly. RNA Biol 2017; 14:791-803. [PMID: 27715441 PMCID: PMC5519236 DOI: 10.1080/15476286.2016.1243648] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/06/2016] [Accepted: 09/27/2016] [Indexed: 02/07/2023] Open
Abstract
The assembly of specialized sub-nuclear microenvironments known as nuclear bodies (NBs) is important for promoting efficient nuclear function. In particular, the Cajal body (CB), a prominent NB that facilitates spliceosomal snRNP biogenesis, assembles in response to genomic cues. Here, we detail the factors that regulate CB assembly and structural maintenance. These include the importance of transcription at nucleating gene loci, the grouping of these genes on human chromosomes 1, 6 and 17, as well as cell cycle and biochemical regulation of CB protein function. We also speculate on the correlation between CB formation and RNA splicing levels in neurons and cancer. The timing and location of these specific molecular events is critical to CB assembly and its contribution to genome function. However, further work is required to explore the emerging biophysical characteristics of CB assembly and the impact upon subsequent genome reorganization.
Collapse
Affiliation(s)
- Iain A. Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gordon L. Hager
- Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine & Science, Chicago Medical School, North Chicago, IL, USA
| |
Collapse
|
25
|
Massenet S, Bertrand E, Verheggen C. Assembly and trafficking of box C/D and H/ACA snoRNPs. RNA Biol 2017; 14:680-692. [PMID: 27715451 PMCID: PMC5519232 DOI: 10.1080/15476286.2016.1243646] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/09/2016] [Accepted: 09/27/2016] [Indexed: 12/23/2022] Open
Abstract
Box C/D and box H/ACA snoRNAs are abundant non-coding RNAs that localize in the nucleolus and mostly function as guides for nucleotide modifications. While a large pool of snoRNAs modifies rRNAs, an increasing number of snoRNAs could also potentially target mRNAs. ScaRNAs belong to a family of specific RNAs that localize in Cajal bodies and that are structurally similar to snoRNAs. Most scaRNAs are involved in snRNA modification, while telomerase RNA, which contains H/ACA motifs, functions in telomeric DNA synthesis. In this review, we describe how box C/D and H/ACA snoRNAs are processed and assembled with core proteins to form functional RNP particles. Their biogenesis involve several transport factors that first direct pre-snoRNPs to Cajal bodies, where some processing steps are believed to take place, and then to nucleoli. Assembly of core proteins involves the HSP90/R2TP chaperone-cochaperone system for both box C/D and H/ACA RNAs, but also several factors specific for each family. These assembly factors chaperone unassembled core proteins, regulate the formation and disassembly of pre-snoRNP intermediates, and control the activity of immature particles. The AAA+ ATPase RUVBL1 and RUVBL2 belong to the R2TP co-chaperones and play essential roles in snoRNP biogenesis, as well as in the formation of other macro-molecular complexes. Despite intensive research, their mechanisms of action are still incompletely understood.
Collapse
Affiliation(s)
- Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS, 9 Avenue de la forêt de Haye, 54505 Vandoeuvre-les-Nancy Cedex, France, Université de Lorraine, Campus Biologie –Santé, CS 50184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| | - Céline Verheggen
- Institut de Génétique Moléculaire de Montpellier, UMR 5535 CNRS, 1919 route de Mende, 34293 Montpellier cedex 5, France, Université de Montpellier, 163 rue Auguste Broussonnet, 34090 Montpellier, France
| |
Collapse
|
26
|
Staněk D, Fox AH. Nuclear bodies: news insights into structure and function. Curr Opin Cell Biol 2017; 46:94-101. [PMID: 28577509 DOI: 10.1016/j.ceb.2017.05.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 04/20/2017] [Accepted: 05/10/2017] [Indexed: 02/07/2023]
Abstract
The cell nucleus contains a number of different dynamic bodies that are variously composed of proteins and generally, but not always, specific RNA molecules. Recent studies have revealed new understanding about nuclear body formation and function in different aspects of nuclear metabolism. Here, we focus on findings describing the role of nuclear bodies in the biogenesis of specific ribonucleoprotein complexes, processing of key mRNAs, and subnuclear sequestration of protein factors. We highlight how nuclear bodies are involved in stress responses, innate immunity and tumorigenesis. We further review organization of nuclear bodies and principles that govern their assembly, highlighting the pivotal role of scaffolding noncoding RNAs, and liquid-liquid phase separation, which are transforming our picture of nuclear body formation.
Collapse
Affiliation(s)
- David Staněk
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Archa H Fox
- School of Human Sciences and Molecular Sciences, The University of Western Australia and Harry Perkins Institute of Medical Research, Centre for Medical Research, The University of Western Australia, Crawley, 6009 Western Australia, Australia.
| |
Collapse
|
27
|
Stroberg W, Schnell S. On the origin of non-membrane-bound organelles, and their physiological function. J Theor Biol 2017; 434:42-49. [PMID: 28392184 DOI: 10.1016/j.jtbi.2017.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 03/29/2017] [Accepted: 04/05/2017] [Indexed: 12/28/2022]
Abstract
The origin of cellular compartmentalization has long been viewed as paralleling the origin of life. Historically, membrane-bound organelles have been presented as the canonical examples of compartmentalization. However, recent interest in cellular compartments that lack encompassing membranes has forced biologists to reexamine the form and function of cellular organization. The intracellular environment is now known to be full of transient macromolecular structures that are essential to cellular function, especially in relation to RNA regulation. Here we discuss key findings regarding the physicochemical principles governing the formation and function of non-membrane-bound organelles. Particularly, we focus how the physiological function of non-membrane-bound organelles depends on their molecular structure. We also present a potential mechanism for the formation of non-membrane-bound organelles. We conclude with suggestions for future inquiry into the diversity of roles played by non-membrane bound organelles.
Collapse
Affiliation(s)
- Wylie Stroberg
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| | - Santiago Schnell
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Brehm Center for Diabetes Research, University of Michigan Medical School, Ann Arbor, MI 48105, USA.
| |
Collapse
|
28
|
Weber SC. Sequence-encoded material properties dictate the structure and function of nuclear bodies. Curr Opin Cell Biol 2017; 46:62-71. [PMID: 28343140 DOI: 10.1016/j.ceb.2017.03.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/13/2017] [Accepted: 03/07/2017] [Indexed: 12/21/2022]
Abstract
Concomitant with packaging the genome, the cell nucleus must also spatially organize the nucleoplasm. This complex mixture of proteins and nucleic acids partitions into a variety of phase-separated, membraneless organelles called nuclear bodies. Significant progress has been made in understanding the relationship between the material properties of nuclear bodies and their structural and functional consequences. Furthermore, the molecular basis of these condensed phases is beginning to emerge. Here, I review the latest work in this exciting field, highlighting recent advances and new challenges.
Collapse
Affiliation(s)
- Stephanie C Weber
- Department of Biology, McGill University, Montreal, QC H3A 1B1, Canada.
| |
Collapse
|
29
|
Heyn P, Salmonowicz H, Rodenfels J, Neugebauer KM. Activation of transcription enforces the formation of distinct nuclear bodies in zebrafish embryos. RNA Biol 2016; 14:752-760. [PMID: 27858508 DOI: 10.1080/15476286.2016.1255397] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nuclear bodies are cellular compartments that lack lipid bilayers and harbor specific RNAs and proteins. Recent proposals that nuclear bodies form through liquid-liquid phase separation leave the question of how different nuclear bodies maintain their distinct identities unanswered. Here we investigate Cajal bodies (CBs), histone locus bodies (HLBs) and nucleoli - involved in assembly of the splicing machinery, histone mRNA 3' end processing, and rRNA processing, respectively - in the embryos of the zebrafish, Danio rerio. We take advantage of the transcriptional silence of the 1-cell embryo and follow nuclear body appearance as zygotic transcription becomes activated. CBs are present from fertilization onwards, while HLB and nucleolar components formed foci several hours later when histone genes and rDNA became active. HLB formation was blocked by transcription inhibition, suggesting nascent histone transcripts recruit HLB components like U7 snRNP. Surprisingly, we found that U7 base-pairing with nascent histone transcripts was not required for localization to HLBs. Rather, the type of Sm ring assembled on U7 determined its targeting to HLBs or CBs; the spliceosomal Sm ring targeted snRNAs to CBs while the specialized U7 Sm-ring localized to HLBs, demonstrating the contribution of protein constituents to the distinction among nuclear bodies. Thus, nucleolar, HLB, and CB components can mix in early embryogenesis when transcription is naturally or artificially silenced. These data support a model in which transcription of specific gene loci nucleates nuclear body components with high specificity and fidelity to perform distinct regulatory functions.
Collapse
Affiliation(s)
- Patricia Heyn
- a Max Planck Institute of Molecular Cell Biology and Genetics , Dresden , Germany
| | - Hanna Salmonowicz
- a Max Planck Institute of Molecular Cell Biology and Genetics , Dresden , Germany
| | - Jonathan Rodenfels
- b Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| | - Karla M Neugebauer
- b Department of Molecular Biophysics & Biochemistry , Yale University , New Haven , CT , USA
| |
Collapse
|
30
|
Abstract
Spliceosomal snRNPs are complex particles that proceed through a fascinating maturation pathway. Several steps of this pathway are closely linked to nuclear non-membrane structures called Cajal bodies. In this review, I summarize the last 20 y of research in this field. I primarily focus on snRNP biogenesis, specifically on the steps that involve Cajal bodies. I also evaluate the contribution of the Cajal body in snRNP quality control and discuss the role of snRNPs in Cajal body formation.
Collapse
Affiliation(s)
- David Staněk
- a Institute of Molecular Genetics, Czech Academy of Sciences , Prague , Czech Republic
| |
Collapse
|
31
|
Abstract
Cajal is commonly regarded as the father of modern neuroscience in recognition of his fundamental work on the structure of the nervous system. But Cajal also made seminal contributions to the knowledge of nuclear structure in the early 1900s, including the discovery of the "accessory body" later renamed "Cajal body" (CB). This important nuclear structure has emerged as a center for the assembly of ribonucleoproteins (RNPs) required for splicing, ribosome biogenesis and telomere maintenance. The modern era of CB research started in the 1990s with the discovery of coilin, now known as a scaffold protein of CBs, and specific probes for small nuclear RNAs (snRNAs). In this review, we summarize what we have learned in the recent decades concerning CBs in post-mitotic neurons, thereby ruling out dynamic changes in CB functions during the cell cycle. We show that CBs are particularly prominent in neurons, where they frequently associate with the nucleolus. Neuronal CBs are transcription-dependent nuclear organelles. Indeed, their number dynamically accommodates to support the high neuronal demand for splicing and ribosome biogenesis required for sustaining metabolic and bioelectrical activity. Mature neurons have canonical CBs enriched in coilin, survival motor neuron protein and snRNPs. Disruption and loss of neuronal CBs associate with severe neuronal dysfunctions in several neurological disorders such as motor neuron diseases. In particular, CB depletion in motor neurons seems to reflect a perturbation of transcription and splicing in spinal muscular atrophy, the most common genetic cause of infant mortality.
Collapse
Affiliation(s)
- Miguel Lafarga
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Olga Tapia
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Ana M Romero
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| | - Maria T Berciano
- a Departamento de Anatomía y Biología Celular and "Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED)" , Universidad de Cantabria-IDIVAL , Santander , Spain
| |
Collapse
|
32
|
Courchaine EM, Lu A, Neugebauer KM. Droplet organelles? EMBO J 2016; 35:1603-12. [PMID: 27357569 DOI: 10.15252/embj.201593517] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/03/2016] [Indexed: 12/12/2022] Open
Abstract
Cells contain numerous, molecularly distinct cellular compartments that are not enclosed by lipid bilayers. These compartments are implicated in a wide range of cellular activities, and they have been variously described as bodies, granules, or organelles. Recent evidence suggests that a liquid-liquid phase separation (LLPS) process may drive their formation, possibly justifying the unifying term "droplet organelle". A veritable deluge of recent publications points to the importance of low-complexity proteins and RNA in determining the physical properties of phase-separated structures. Many of the proteins linked to such structures are implicated in human diseases, such as amyotrophic lateral sclerosis (ALS). We provide an overview of the organizational principles that characterize putative "droplet organelles" in healthy and diseased cells, connecting protein biochemistry with cell physiology.
Collapse
Affiliation(s)
- Edward M Courchaine
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Alice Lu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| |
Collapse
|
33
|
Tatomer DC, Terzo E, Curry KP, Salzler H, Sabath I, Zapotoczny G, McKay DJ, Dominski Z, Marzluff WF, Duronio RJ. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016; 213:557-70. [PMID: 27241916 PMCID: PMC4896052 DOI: 10.1083/jcb.201504043] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3' processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3' end processing with transcription termination.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Esteban Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kaitlin P Curry
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Harmony Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ivan Sabath
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
34
|
Sawyer IA, Dundr M. Nuclear bodies: Built to boost. J Cell Biol 2016; 213:509-11. [PMID: 27241912 PMCID: PMC4896059 DOI: 10.1083/jcb.201605049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 05/17/2016] [Indexed: 12/18/2022] Open
Abstract
The classic archetypal function of nuclear bodies is to accelerate specific reactions within their crowded space. In this issue, Tatomer et al. (2016. J. Cell Biol http://dx.doi.org/10.1083/jcb.201504043) provide the first direct evidence that the histone locus body acts to concentrate key factors required for the proper processing of histone pre-mRNAs.
Collapse
Affiliation(s)
- Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064 Laboratory of Receptor Biology and Gene Expression, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, IL 60064
| |
Collapse
|
35
|
Wang Q, Sawyer IA, Sung MH, Sturgill D, Shevtsov SP, Pegoraro G, Hakim O, Baek S, Hager GL, Dundr M. Cajal bodies are linked to genome conformation. Nat Commun 2016; 7:10966. [PMID: 26997247 PMCID: PMC4802181 DOI: 10.1038/ncomms10966] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 02/07/2016] [Indexed: 12/12/2022] Open
Abstract
The mechanisms underlying nuclear body (NB) formation and their contribution to genome function are unknown. Here we examined the non-random positioning of Cajal bodies (CBs), major NBs involved in spliceosomal snRNP assembly and their role in genome organization. CBs are predominantly located at the periphery of chromosome territories at a multi-chromosome interface. Genome-wide chromosome conformation capture analysis (4C-seq) using CB-interacting loci revealed that CB-associated regions are enriched with highly expressed histone genes and U small nuclear or nucleolar RNA (sn/snoRNA) loci that form intra- and inter-chromosomal clusters. In particular, we observed a number of CB-dependent gene-positioning events on chromosome 1. RNAi-mediated disassembly of CBs disrupts the CB-targeting gene clusters and suppresses the expression of U sn/snoRNA and histone genes. This loss of spliceosomal snRNP production results in increased splicing noise, even in CB-distal regions. Therefore, we conclude that CBs contribute to genome organization with global effects on gene expression and RNA splicing fidelity. Nuclear bodies can nucleate at sites of active transcription and are beneficial for efficient gene expression. Here, the authors show that Cajal bodies, a prominent type of nuclear body, contribute to genome organization with global effects on gene expression and RNA splicing fidelity.
Collapse
Affiliation(s)
- Qiuyan Wang
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA.,Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Iain A Sawyer
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA.,Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Myong-Hee Sung
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - David Sturgill
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Sergey P Shevtsov
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA
| | - Gianluca Pegoraro
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA.,High-Throughput Imaging Facility (HiTIF), Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Ofir Hakim
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, 20892 Maryland, USA
| | - Miroslav Dundr
- Department of Cell Biology, Rosalind Franklin University of Medicine and Science, Chicago Medical School, North Chicago, 60064 Ilinois, USA
| |
Collapse
|
36
|
Abstract
Initially identified as a marker of coiled bodies (now Cajal bodies or CBs), the protein coilin was discovered a quarter of century ago. Coilin is now known to scaffold the CB, but its structure and function are poorly understood. Nearly devoid of predicted structural motifs, coilin has numerous reported molecular interactions that must underlie its role in the formation and function of CBs. In this review, we summarize what we have learned in the past 25 years about coilin's structure, post-transcriptional modifications, and interactions with RNA and proteins. We show that genes with homology to human coilin are found in primitive metazoans and comment on differences among model organisms. Coilin's function in Cajal body formation and RNP metabolism will be discussed in the light of these developments.
Collapse
Affiliation(s)
- Martin Machyna
- a Department of Molecular Biophysics & Biochemistry ; Yale University ; New Haven , CT USA
| | | | | |
Collapse
|
37
|
Abstract
Messenger ribonucleoprotein (mRNP) granules are dynamic, self-assembling structures that harbor non-translating mRNAs bound by various proteins that regulate mRNA translation, localization, and turnover. Their importance in gene expression regulation is far reaching, ranging from precise spatial-temporal control of mRNAs that drive developmental programs in oocytes and embryos, to similarly exquisite control of mRNAs in neurons that underpin synaptic plasticity, and thus, memory formation. Analysis of mRNP granules in their various contexts has revealed common themes of assembly, disassembly, and modes of mRNA regulation, yet new studies continue to reveal unexpected and important findings, such as links between aberrant mRNP granule assembly and neurodegenerative disease. Continued study of these enigmatic structures thus promises fascinating new insights into cellular function, and may also suggest novel therapeutic strategies in various disease states.
Collapse
Affiliation(s)
- J Ross Buchan
- a Department of Molecular and Cellular Biology ; University of Arizona ; Tucson , AZ USA
| |
Collapse
|
38
|
Bizarro J, Dodré M, Huttin A, Charpentier B, Schlotter F, Branlant C, Verheggen C, Massenet S, Bertrand E. NUFIP and the HSP90/R2TP chaperone bind the SMN complex and facilitate assembly of U4-specific proteins. Nucleic Acids Res 2015; 43:8973-89. [PMID: 26275778 PMCID: PMC4605303 DOI: 10.1093/nar/gkv809] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 07/27/2015] [Indexed: 12/17/2022] Open
Abstract
The Sm proteins are loaded on snRNAs by the SMN complex, but how snRNP-specific proteins are assembled remains poorly characterized. U4 snRNP and box C/D snoRNPs have structural similarities. They both contain the 15.5K and proteins with NOP domains (PRP31 for U4, NOP56/58 for snoRNPs). Biogenesis of box C/D snoRNPs involves NUFIP and the HSP90/R2TP chaperone system and here, we explore the function of this machinery in U4 RNP assembly. We show that yeast Prp31 interacts with several components of the NUFIP/R2TP machinery, and that these interactions are separable from each other. In human cells, PRP31 mutants that fail to stably associate with U4 snRNA still interact with components of the NUFIP/R2TP system, indicating that these interactions precede binding of PRP31 to U4 snRNA. Knock-down of NUFIP leads to mislocalization of PRP31 and decreased association with U4. Moreover, NUFIP is associated with the SMN complex through direct interactions with Gemin3 and Gemin6. Altogether, our data suggest a model in which the NUFIP/R2TP system is connected with the SMN complex and facilitates assembly of U4 snRNP-specific proteins.
Collapse
Affiliation(s)
- Jonathan Bizarro
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Maxime Dodré
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Alexandra Huttin
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Bruno Charpentier
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Florence Schlotter
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Christiane Branlant
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Céline Verheggen
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| | - Séverine Massenet
- Ingénierie Moléculaire et Physiopathologie Articulaire, UMR 7365 CNRS-Université de Lorraine, Biopôle de l'Université de Lorraine, avenue de la forêt de Haye, BP 184, 54505 Vandoeuvre-les-Nancy Cedex, France
| | - Edouard Bertrand
- Equipe labélisée Ligue contre le Cancer, Institut de Génétique Moléculaire de Montpellier, IGMM-UMR 5535 du CNRS-Université de Montpellier, 1919, route de Mende, 34293 Montpellier Cedex 5, France
| |
Collapse
|
39
|
Chen JF, Ho H, Lichterman J, Lu YT, Zhang Y, Garcia MA, Chen SF, Liang AJ, Hodara E, Zhau HE, Hou S, Ahmed RS, Luthringer DJ, Huang J, Li KC, Chung LWK, Ke Z, Tseng HR, Posadas EM. Subclassification of prostate cancer circulating tumor cells by nuclear size reveals very small nuclear circulating tumor cells in patients with visceral metastases. Cancer 2015; 121:3240-51. [PMID: 25975562 DOI: 10.1002/cncr.29455] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Although enumeration of circulating tumor cells (CTCs) has shown some clinical value, the pool of CTCs contains a mixture of cells that contains additional information that can be extracted. The authors subclassified CTCs by shape features focusing on nuclear size and related this with clinical information. METHODS A total of 148 blood samples were obtained from 57 patients with prostate cancer across the spectrum of metastatic states: no metastasis, nonvisceral metastasis, and visceral metastasis. CTCs captured and enumerated on NanoVelcro Chips (CytoLumina, Los Angeles, Calif) were subjected to pathologic review including nuclear size. The distribution of nuclear size was analyzed using a Gaussian mixture model. Correlations were made between CTC subpopulations and metastatic status. RESULTS Statistical modeling of nuclear size distribution revealed 3 distinct subpopulations: large nuclear CTCs, small nuclear CTCs, and very small nuclear CTCs (vsnCTCs). Small nuclear CTCs and vsnCTC identified those patients with metastatic disease. However, vsnCTC counts alone were found to be elevated in patients with visceral metastases when compared with those without (0.36 ± 0.69 vs 1.95 ± 3.77 cells/mL blood; P<.001). Serial enumeration studies suggested the emergence of vsnCTCs occurred before the detection of visceral metastases. CONCLUSIONS There are morphologic subsets of CTCs that can be identified by fundamental pathologic approaches, such as nuclear size measurement. The results of this observational study strongly suggest that CTCs contain relevant information regarding disease status. In particular, the detection of vsnCTCs was found to be correlated with the presence of visceral metastases and should be formally explored as a putative blood-borne biomarker to identify patients at risk of developing this clinical evolution of prostate cancer.
Collapse
Affiliation(s)
- Jie-Fu Chen
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Hao Ho
- Department of Statistics, University of California at Los Angeles, Los Angeles, California.,Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Jake Lichterman
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yi-Tsung Lu
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Yang Zhang
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Mitch A Garcia
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Shang-Fu Chen
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - An-Jou Liang
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Elisabeth Hodara
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Haiyen E Zhau
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Shuang Hou
- Department of Molecular and Medical Pharmacology, University of California at Los Angeles, Los Angeles, California
| | - Rafi S Ahmed
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Daniel J Luthringer
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Jiaoti Huang
- Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, California
| | - Ker-Chau Li
- Department of Statistics, University of California at Los Angeles, Los Angeles, California.,Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Leland W K Chung
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Zunfu Ke
- Department of Pathology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Hsian-Rong Tseng
- Institute of Statistical Sciences, Academia Sinica, Taipei, Taiwan
| | - Edwin M Posadas
- Urologic Oncology Program and Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
40
|
Terzo EA, Lyons SM, Poulton JS, Temple BRS, Marzluff WF, Duronio RJ. Distinct self-interaction domains promote Multi Sex Combs accumulation in and formation of the Drosophila histone locus body. Mol Biol Cell 2015; 26:1559-74. [PMID: 25694448 PMCID: PMC4395134 DOI: 10.1091/mbc.e14-10-1445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/12/2015] [Indexed: 11/11/2022] Open
Abstract
The Drosophila Multi Sex Combs (Mxc) protein is necessary for the recruitment of histone mRNA biosynthetic factors to the histone locus body (HLB). Mxc contains multiple domains required for HLB assembly and histone mRNA biosynthesis. Two N-terminal domains of Mxc are essential for promoting HLB assembly via a self-interaction. Nuclear bodies (NBs) are structures that concentrate proteins, RNAs, and ribonucleoproteins that perform functions essential to gene expression. How NBs assemble is not well understood. We studied the Drosophila histone locus body (HLB), a NB that concentrates factors required for histone mRNA biosynthesis at the replication-dependent histone gene locus. We coupled biochemical analysis with confocal imaging of both fixed and live tissues to demonstrate that the Drosophila Multi Sex Combs (Mxc) protein contains multiple domains necessary for HLB assembly. An important feature of this assembly process is the self-interaction of Mxc via two conserved N-terminal domains: a LisH domain and a novel self-interaction facilitator (SIF) domain immediately downstream of the LisH domain. Molecular modeling suggests that the LisH and SIF domains directly interact, and mutation of either the LisH or the SIF domain severely impairs Mxc function in vivo, resulting in reduced histone mRNA accumulation. A region of Mxc between amino acids 721 and 1481 is also necessary for HLB assembly independent of the LisH and SIF domains. Finally, the C-terminal 195 amino acids of Mxc are required for recruiting FLASH, an essential histone mRNA-processing factor, to the HLB. We conclude that multiple domains of the Mxc protein promote HLB assembly in order to concentrate factors required for histone mRNA biosynthesis.
Collapse
Affiliation(s)
- Esteban A Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Shawn M Lyons
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - John S Poulton
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Brenda R S Temple
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
41
|
SART3-Dependent Accumulation of Incomplete Spliceosomal snRNPs in Cajal Bodies. Cell Rep 2015; 10:429-440. [PMID: 25600876 DOI: 10.1016/j.celrep.2014.12.030] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 09/18/2014] [Accepted: 12/13/2014] [Indexed: 12/16/2022] Open
Abstract
Cajal bodies (CBs) are evolutionarily conserved nuclear structures involved in the metabolism of spliceosomal small nuclear ribonucleoprotein particles (snRNPs). CBs are not present in all cell types, and the trigger for their formation is not yet known. Here, we depleted cells of factors required for the final steps of snRNP assembly and assayed for the presence of stalled intermediates in CBs. We show that depletion induces formation of CBs in cells that normally lack these nuclear compartments, suggesting that CB nucleation is triggered by an imbalance in snRNP assembly. Accumulation of stalled intermediates in CBs depends on the di-snRNP assembly factor SART3. SART3 is required for both the induction of CB formation as well as the tethering of incomplete snRNPs to coilin, the CB scaffolding protein. We propose a model wherein SART3 monitors tri-snRNP assembly and sequesters incomplete particles in CBs, thereby allowing cells to maintain a homeostatic balance of mature snRNPs in the nucleoplasm.
Collapse
|
42
|
Machyna M, Kehr S, Straube K, Kappei D, Buchholz F, Butter F, Ule J, Hertel J, Stadler PF, Neugebauer KM. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. Mol Cell 2014; 56:389-399. [PMID: 25514182 DOI: 10.1016/j.molcel.2014.10.004] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 08/25/2014] [Accepted: 10/02/2014] [Indexed: 12/21/2022]
Abstract
Coilin protein scaffolds Cajal bodies (CBs)-subnuclear compartments enriched in small nuclear RNAs (snRNAs)-and promotes efficient spliceosomal snRNP assembly. The molecular function of coilin, which is intrinsically disordered with no defined motifs, is poorly understood. We use UV crosslinking and immunoprecipitation (iCLIP) to determine whether mammalian coilin binds RNA in vivo and to identify targets. Robust detection of snRNA transcripts correlated with coilin ChIP-seq peaks on snRNA genes, indicating that coilin binding to nascent snRNAs is a site-specific CB nucleator. Surprisingly, several hundred small nucleolar RNAs (snoRNAs) were identified as coilin interactors, including numerous unannotated mouse and human snoRNAs. We show that all classes of snoRNAs concentrate in CBs. Moreover, snoRNAs lacking specific CB retention signals traffic through CBs en route to nucleoli, consistent with the role of CBs in small RNP assembly. Thus, coilin couples snRNA and snoRNA biogenesis, making CBs the cellular hub of small ncRNA metabolism.
Collapse
Affiliation(s)
- Martin Machyna
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Stephanie Kehr
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Korinna Straube
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA
| | - Dennis Kappei
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Frank Buchholz
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | - Falk Butter
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jana Hertel
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science and Interdisciplinary Center for Bioinformatics, University of Leipzig, Haertelstrasse 16-18, 04107 Leipzig, Germany
| | - Karla M Neugebauer
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany; Department of Molecular Biophysics & Biochemistry, Yale University, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
43
|
|
44
|
Hutten S, Chachami G, Winter U, Melchior F, Lamond AI. A role for the Cajal-body-associated SUMO isopeptidase USPL1 in snRNA transcription mediated by RNA polymerase II. J Cell Sci 2014; 127:1065-78. [PMID: 24413172 PMCID: PMC3937775 DOI: 10.1242/jcs.141788] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cajal bodies are nuclear structures that are involved in biogenesis of snRNPs and snoRNPs, maintenance of telomeres and processing of histone mRNA. Recently, the SUMO isopeptidase USPL1 was identified as a component of Cajal bodies that is essential for cellular growth and Cajal body integrity. However, a cellular function for USPL1 is so far unknown. Here, we use RNAi-mediated knockdown in human cells in combination with biochemical and fluorescence microscopy approaches to investigate the function of USPL1 and its link to Cajal bodies. We demonstrate that levels of snRNAs transcribed by RNA polymerase (RNAP) II are reduced upon knockdown of USPL1 and that downstream processes such as snRNP assembly and pre-mRNA splicing are compromised. Importantly, we find that USPL1 associates directly with U snRNA loci and that it interacts and colocalises with components of the Little Elongation Complex, which is involved in RNAPII-mediated snRNA transcription. Thus, our data indicate that USPL1 plays a key role in RNAPII-mediated snRNA transcription.
Collapse
Affiliation(s)
- Saskia Hutten
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee DD15EH, UK
| | | | | | | | | |
Collapse
|
45
|
Kim JS, Szleifer I. Crowding-induced formation and structural alteration of nuclear compartments: insights from computer simulations. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2014; 307:73-108. [PMID: 24380593 DOI: 10.1016/b978-0-12-800046-5.00004-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Our understanding of the structural and dynamical characteristics of nuclear structures such as chromosomes and nuclear bodies (NBs) has increased significantly in recent days owing to advances in biophysical and biochemical techniques. These techniques include the use of computer simulations, which have provided further physical insights complementary to findings from experiments. In this chapter, we review recent computer simulation studies on the structural alteration of chromosome subcompartments and the formation and maintenance of NBs in the highly crowded cell nucleus. It is found that because of macromolecular crowding, the degree of chromosome compaction changes significantly and the formation of NBs is facilitated. We further discuss the physical consequences of these phenomena, which may be of critical importance in understanding genome processes.
Collapse
Affiliation(s)
- Jun Soo Kim
- Department of Chemistry and Nano Science, Global Top5 Research Program, Ewha Womans University, Seoul, Republic of Korea.
| | - Igal Szleifer
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois, USA; Department of Chemistry, Northwestern University, Evanston, Illinois, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
46
|
Franco D, Klingauf M, Cecchini M, Falk V, Starck C, Poulikakos D, Ferrari A. On cell separation with topographically engineered surfaces. Biointerphases 2013; 8:34. [PMID: 24706142 DOI: 10.1186/1559-4106-8-34] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Topographical modifications of the surface influence several cell functions and can be exploited to modulate cellular activities such as adhesion, migration and proliferation. These complex interactions are cell-type specific, therefore engineered substrates featuring patterns of two or more different topographies may be used to obtain the selective separation of different cell lineages. This process has the potential to enhance the performance of biomedical devices promoting, for example, the local coverage with functional tissues while demoting the onset of inflammatory reactions. FINDINGS & CONCLUSIONS Here we present a computational tool, based on Monte Carlo simulation, which decouples the contribution of cell proliferation and migration and predicts the cell-separation performance of topographically engineered substrates. Additionally, we propose an optimization procedure to shape the topographically engineered areas of a substrate and obtain maximal cell separation.
Collapse
Affiliation(s)
- Davide Franco
- Department of Mechanical and Process Engineering, Laboratory of Thermodynamics in Emerging Technologies, ETH Zurich, Sonneggstrasse 3, CH, 8092, Zurich, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
47
|
Hebert MD. Signals controlling Cajal body assembly and function. Int J Biochem Cell Biol 2013; 45:1314-7. [PMID: 23583661 DOI: 10.1016/j.biocel.2013.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/28/2013] [Accepted: 03/29/2013] [Indexed: 10/27/2022]
Abstract
Cajal bodies (CBs) are subnuclear domains that participate in the biogenesis of small nuclear ribonucleoproteins (snRNPs) and telomerase. CBs are found in cells with high splicing demands, such as neuronal and cancer cells. The purpose of this review is to highlight what is known about the signals that impact the formation and activity of CBs. Particular attention is paid to phosphorylation as a major regulator of CB formation and composition, but a non-biochemical mediated pathway (mechanotransduction) that impacts CBs is also discussed. Amongst the CB components, recently published work on coilin (the CB marker protein) strongly suggests that this protein, and the CB by extension, is a global sensor that responds to environmental signals. Disruption of these signals, which would result in a decreased capacity to generate snRNPs and telomerase, is predicted to be beneficial in the treatment of cancer.
Collapse
Affiliation(s)
- Michael D Hebert
- Department of Biochemistry, The University of Mississippi Medical Center, Jackson, MS 39216 4505, USA.
| |
Collapse
|
48
|
Hooper C, Hilliker A. Packing them up and dusting them off: RNA helicases and mRNA storage. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:824-34. [PMID: 23528738 DOI: 10.1016/j.bbagrm.2013.03.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 03/16/2013] [Accepted: 03/18/2013] [Indexed: 12/31/2022]
Abstract
Cytoplasmic mRNA can be translated, translationally repressed, localized or degraded. Regulation of translation is an important step in control of gene expression and the cell can change whether and to what extent an mRNA is translated. If an mRNA is not translating, it will associate with translation repression factors; the mRNA can be stored in these non-translating states. The movement of mRNA into storage and back to translation is dictated by the recognition of the mRNA by trans factors. So, remodeling the factors that bind mRNA is critical for changing the fate of mRNA. RNA helicases, which have the ability to remodel RNA or RNA-protein complexes, are excellent candidates for facilitating such rearrangements. This review will focus on the RNA helicases implicated in translation repression and/or mRNA storage and how their study has illuminated mechanisms of mRNA regulation. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Christopher Hooper
- Department of Neonatology, Vanderbilt Children's Hospital, Nashville, TN, USA
| | | |
Collapse
|
49
|
Cho EJ, Kim JS. Crowding effects on the formation and maintenance of nuclear bodies: insights from molecular-dynamics simulations of simple spherical model particles. Biophys J 2013; 103:424-433. [PMID: 22947858 DOI: 10.1016/j.bpj.2012.07.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 06/28/2012] [Accepted: 07/05/2012] [Indexed: 12/01/2022] Open
Abstract
The physics of structure formation and maintenance of nuclear bodies (NBs), such as nucleoli, Cajal bodies, promyelocytic leukemia bodies, and speckles, in a crowded nuclear environment remains largely unknown. We investigate the role of macromolecular crowding in the formation and maintenance of NBs using computer simulations of a simple spherical model, called Lennard-Jones (LJ) particles. LJ particles form a one-phase, dilute fluid when the intermolecular interaction is weaker than a critical value, above which they phase separate and form a condensed domain. We find that when volume-exclusive crowders exist in significant concentrations, domain formation is induced even for weaker intermolecular interactions, and the effect is more pronounced with increasing crowder concentration. Simulation results show that a previous experimental finding that promyelocytic leukemia bodies disappear in the less-crowded condition and reassemble in the normal crowded condition can be interpreted as a consequence of the increased intermolecular interactions between NB proteins due to crowding. Based on further analysis of the simulation results, we discuss the acceleration of macromolecular associations that occur within NBs, and the delay of diffusive transport of macromolecules within and out of NBs when the crowder concentration increases. This study suggests that in a polydisperse nuclear environment that is enriched with a variety of macromolecules, macromolecular crowding not only plays an important role in the formation and maintenance of NBs, but also may perform some regulatory functions in response to alterations in the crowding conditions.
Collapse
Affiliation(s)
- Eun Jin Cho
- Department of Chemistry and Applied Chemistry, Hanyang University, Kyeonggi-do, Republic of Korea
| | - Jun Soo Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, Republic of Korea.
| |
Collapse
|
50
|
Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 4:17-34. [PMID: 23042601 DOI: 10.1002/wrna.1139] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cell nucleus contains dozens of subcompartments that separate biochemical processes into confined spaces. Cajal bodies (CBs) were discovered more than 100 years ago, but only extensive research in the past decades revealed the surprising complexity of molecular and cellular functions taking place in these structures. Many protein and RNA species are modified and assembled within CBs, which have emerged as a meeting place and factory for ribonucleoprotein (RNP) particles involved in splicing, ribosome biogenesis and telomere maintenance. Recently, a distinct structure near histone gene clusters--the Histone locus body (HLB)--was discovered. Involved in histone mRNA 3'-end formation, HLBs can share several components with CBs. Whether the appearance of distinct HLBs is simply a matter of altered affinity between these structures or of an alternate mode of CB assembly is unknown. However, both structures share basic assembly properties, in which transcription plays a decisive role in initiation. After this seeding event, additional components associate in random order. This appears to be a widespread mechanism for body assembly. CB assembly encompasses an additional layer of complexity, whereby a set of pre-existing substructures can be integrated into mature CBs. We propose this as a multi-seeding model of CB assembly.
Collapse
Affiliation(s)
- Martin Machyna
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | | | | |
Collapse
|