1
|
Zhao X, Duan B, Zhou L. Progress of Psf1 and prospects in the tumor: A review. Medicine (Baltimore) 2022; 101:e31811. [PMID: 36482653 PMCID: PMC9726354 DOI: 10.1097/md.0000000000031811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Partner of Sld5-1(Psf1) is a member of Gins complex, which was discovered in 2003. It consists of the predominantly α-helical A-domain and the massively β-stranded B-domain. Some researches indicate that Psf1 plays a prominent part in DNA replication through cell cycle regulation, and plays a key role in early embryo development and tissue regeneration. The overexpression of Psf1 in active proliferating cells is closely correlated with the occurrence of tumors. On the side, tumor cells with high Psf1 expression showed high heterogeneity and poor clinical prognosis. In this review, we will review the research progress of Psf1 in cell cycle regulation, immature cell proliferation and oncology.
Collapse
Affiliation(s)
- Xuekai Zhao
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Botao Duan
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
| | - Lei Zhou
- Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, Binzhou, China
- * Correspondence: Lei Zhou, Department of Hepatobiliary Surgery, Binzhou Medical University Hospital, No. 661, Huanghe 2nd Road, Binzhou, Shandong 256603, China (e-mail: )
| |
Collapse
|
2
|
Li W, Yi J, Agbu P, Zhou Z, Kelley RL, Kallgren S, Jia S, He X. Replication stress affects the fidelity of nucleosome-mediated epigenetic inheritance. PLoS Genet 2017; 13:e1006900. [PMID: 28749973 PMCID: PMC5549764 DOI: 10.1371/journal.pgen.1006900] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 08/08/2017] [Accepted: 06/29/2017] [Indexed: 02/06/2023] Open
Abstract
The fidelity of epigenetic inheritance or, the precision by which epigenetic information is passed along, is an essential parameter for measuring the effectiveness of the process. How the precision of the process is achieved or modulated, however, remains largely elusive. We have performed quantitative measurement of epigenetic fidelity, using position effect variegation (PEV) in Schizosaccharomyces pombe as readout, to explore whether replication perturbation affects nucleosome-mediated epigenetic inheritance. We show that replication stresses, due to either hydroxyurea treatment or various forms of genetic lesions of the replication machinery, reduce the inheritance accuracy of CENP-A/Cnp1 nucleosome positioning within centromere. Mechanistically, we demonstrate that excessive formation of single-stranded DNA, a common molecular abnormality under these conditions, might have correlation with the reduction in fidelity of centromeric chromatin duplication. Furthermore, we show that replication stress broadly changes chromatin structure at various loci in the genome, such as telomere heterochromatin expanding and mating type locus heterochromatin spreading out of the boundaries. Interestingly, the levels of inheritable expanding at sub-telomeric heterochromatin regions are highly variable among independent cell populations. Finally, we show that HU treatment of the multi-cellular organisms C. elegans and D. melanogaster affects epigenetically programmed development and PEV, illustrating the evolutionary conservation of the phenomenon. Replication stress, in addition to its demonstrated role in genetic instability, promotes variable epigenetic instability throughout the epigenome. In this study, we found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Using Position Effect Variegation (PEV) in centromere as an indicator of chromatin epigenetic stability, we quantified the precision of nucleosomal inheritance and found replication stresses reduce the fidelity of nucleosome-mediated epigenetic inheritance. Further analysis of genome-wide heterochromatin distribution showed that replication stresses affect chromatin structure by expanding of heterochromatin with locus specificity. Mechanistically, we provide evidence suggesting that excessive formation of single-stranded DNA might have correlation with the reduction in fidelity of centromeric chromatin duplication. Finally, we demonstrated replication stress perturb the development process by reducing the fidelity of chromatin organization duplication in fruit fly and worm, illustrating the broadness and the evolutionary conservation of the phenomenon. Together, our results shed light on the importance of replication stresses cause epigenetic instability in addition to genetic stability.
Collapse
Affiliation(s)
- Wenzhu Li
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jia Yi
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pamela Agbu
- Department of Biochemistry and Molecular Biology
| | - Zheng Zhou
- Department of Biochemistry and Molecular Biology
| | - Richard L. Kelley
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States of America
| | - Scott Kallgren
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Songtao Jia
- Department of Biological Sciences, Columbia University, New York, NY, United States of America
| | - Xiangwei He
- Life Sciences Institute and Innovation Center for Cell Signaling Network, Zhejiang University, Hangzhou, Zhejiang, China
- * E-mail:
| |
Collapse
|
3
|
Overexpression of PSF1 is correlated with poor prognosis in hepatocellular carcinoma patients. Int J Biol Markers 2015; 30:e56-64. [PMID: 25198552 DOI: 10.5301/jbm.5000105] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/25/2014] [Indexed: 11/20/2022]
Abstract
BACKGROUND PSF1 is a subunit of the GINS complex which is essential for establishment of DNA replication forks, and the progression of the replisome. Previous studies have shown a close relationship between PSF1 and cell cycle in the proliferation of immature cells as well as tumors. The purpose of this study was to measure PSF1 expression in hepatocellular carcinoma (HCC) tissues, and determine the effects of down-regulation of PSF1 expression on growth of cancer cells, the cell cycle, apoptosis and cell invasiveness. METHODS Samples from 137 HCC tissues, 67 from adjacent nontumor tissue and 15 from normal liver were studied using immunochemistry. The HepG2 cell line was used for knockdown experiments studied by RT-PCR, real-time PCR, apoptosis and invasiveness assays. RESULTS PSF1 was overexpressed in HCC tissues compared with normal liver tissues. High PSF1 expression correlated with a more aggressive phenotype as well as worse prognosis in HCC patients. Knockdown of PSF1 expression using small interfering RNA (siRNA) slowed the growth of cancer cell by suppressing the cell cycle progression as well as increasing apoptosis, especially early apoptosis. In addition, the invasiveness of HepG2 cells was also reduced by down-regulation of PSF1. CONCLUSIONS These results suggest that the inhibition of PSF1 might provide new therapeutic approaches for HCC.
Collapse
|
4
|
Knockdown of PSF1 expression inhibits cell proliferation in lung cancer cells in vitro. Tumour Biol 2014; 36:2163-8. [PMID: 25398693 DOI: 10.1007/s13277-014-2826-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 11/06/2014] [Indexed: 02/06/2023] Open
Abstract
Partner of sld five 1 (PSF1) is a member of the heterotetrameric complex termed GINS. Previous studies have shown that PSF1 is unregulated in several cancer and associated with tumor malignant characters. However, the effects of PSF1 in lung cancer are still unclear. The goal of this study was to investigate the effects of PSF1 on the proliferation capacities of lung cancer. To start with, expression of PSF1 in 22 human lung cancer samples and adjacent non-tumor samples were detected by real-time RT-PCR and Western blotting. Our results showed that PSF1 was overexpressed in lung cancer samples compared to adjacent non-tumor samples. To achieve better insights of PSF1 functions in lung cancer cells, we used PSF1-specific small interfering RNA (siRNA) successfully inhibit the expression of PSF1 in messenger RNA (mRNA) and protein levels. In addition, we used lung cancer cell lines with different p53 gene background (p53 null and p53 wild-type). The results showed that knockdown of PSF1 inhibited cell proliferation and caused cell cycle arrest of lung cancer cells in a p53-independent manner. Our data indicated that PSF1 is functionally involved in lung cancer cell proliferation and is a potential target for lung cancer therapy.
Collapse
|
5
|
Grabowska E, Wronska U, Denkiewicz M, Jaszczur M, Respondek A, Alabrudzinska M, Suski C, Makiela-Dzbenska K, Jonczyk P, Fijalkowska IJ. Proper functioning of the GINS complex is important for the fidelity of DNA replication in yeast. Mol Microbiol 2014; 92:659-80. [PMID: 24628792 DOI: 10.1111/mmi.12580] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/26/2022]
Abstract
The role of replicative DNA polymerases in ensuring genome stability is intensively studied, but the role of other components of the replisome is still not fully understood. One of such component is the GINS complex (comprising the Psf1, Psf2, Psf3 and Sld5 subunits), which participates in both initiation and elongation of DNA replication. Until now, the understanding of the physiological role of GINS mostly originated from biochemical studies. In this article, we present genetic evidence for an essential role of GINS in the maintenance of replication fidelity in Saccharomyces cerevisiae. In our studies we employed the psf1-1 allele (Takayama et al., 2003) and a novel psf1-100 allele isolated in our laboratory. Analysis of the levels and specificity of mutations in the psf1 strains indicates that the destabilization of the GINS complex or its impaired interaction with DNA polymerase epsilon increases the level of spontaneous mutagenesis and the participation of the error-prone DNA polymerase zeta. Additionally, a synergistic mutator effect was found for the defects in Psf1p and in the proofreading activity of Pol epsilon, suggesting that proper functioning of GINS is crucial for facilitating error-free processing of terminal mismatches created by Pol epsilon.
Collapse
Affiliation(s)
- Ewa Grabowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
|
7
|
Silva BMA, Prados-Rosales R, Espadas-Moreno J, Wolf JM, Luque-Garcia JL, Gonçalves T, Casadevall A. Characterization of Alternaria infectoria extracellular vesicles. Med Mycol 2013; 52:202-10. [PMID: 24576997 DOI: 10.1093/mmy/myt003] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Many fungi use membrane vesicles to transport complex molecules across their cell walls. Like mammalian exosomes, fungal vesicles contain lipids, proteins, and polysaccharides, many of which are associated with virulence. Here we identify and characterize extracellular vesicles (EVs) in Alternaria infectoria, a ubiquitous, environmental filamentous fungus that is also an opportunistic human pathogen. Examination of the A. infectoria EVs revealed a morphology similar to that of vesicles described in other fungal species. Of note, proteomic analysis detected a reduced number of vesicle-associated proteins. There were two prevalent categories among the 20 identified proteins, including the polysaccharide metabolism group, probably related to plant host invasion or biosynthesis/degradation of cell wall components, and the nuclear proteins, especially DNA repair enzymes. We also found enzymes related to pigment synthesis, adhesion to the host cell, and trafficking of vesicles/organelles/molecules. This is the first time EV secretions have been identified in a filamentous fungus. We believe that these vesicles might have a role in virulence.
Collapse
Affiliation(s)
- Branca M A Silva
- Center for Neuroscience and Cell Biology, University of Coimbra, Portugal
| | | | | | | | | | | | | |
Collapse
|
8
|
Sahashi R, Matsuda R, Suyari O, Kawai M, Yoshida H, Cotterill S, Yamaguchi M. Functional analysis of Drosophila DNA polymerase ε p58 subunit. Am J Cancer Res 2013; 3:478-489. [PMID: 24224125 PMCID: PMC3816967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Accepted: 10/20/2013] [Indexed: 06/02/2023] Open
Abstract
DNA polymerase ε (polε) plays a central role in DNA replication in eukaryotic cells, and has been suggested to the main synthetic polymerase on the leading strand. It is a hetero-tetrameric enzyme, comprising a large catalytic subunit (the A subunit ~250 kDa), a B subunit of ~60 kDa in most species (~80 kDa in budding yeast) and two smaller subunits (each ~20 kDa). In Drosophila, two subunits of polε (dpolε) have been identified. One is the 255 kDa catalytic subunit (dpolεp255), and the other is the 58 kDa subunit (dpolεp58). The functions of the B subunit have been mainly studied in budding yeast and mammalian cell culture, few studies have been performed in the context of an intact multicellular organism and therefore its functions in this context remain poorly understood. To address this we examined the in vivo role of dpolεp58 in Drosophila. A homozygous dpolεp58 mutant is pupal lethal, and the imaginal discs are less developed in the third instar larvae. In the eye discs of this mutant S phases, as measured by BrdU incorporation assays, were significantly reduced. In addition staining with an anti-phospho histone H3 (PH3) antibody, (a marker of M phase), was increased in the posterior region of eye discs, where usually cells stop replicating and start differentiation. These results indicate that dpolεp58 is essential for Drosophila development and plays an important role in progression of S phase in mitotic cell cycles. We also observed that the size of nuclei in salivary gland cells were decreased in dpolεp58 mutant, indicating that dpolεp58 also plays a role in endoreplication. Furthermore we detect a putative functional interaction between dpolε and ORC2 in discs suggesting that polε plays a role in the initiation of DNA replication in Drosophila.
Collapse
Affiliation(s)
- Ritsuko Sahashi
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Risa Matsuda
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Current address: Environmental Research Laboratory of Public Health, Kankyo Eisei Yakuhin Co. Ltd.3-6-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
| | - Osamu Suyari
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Mieko Kawai
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| | - Sue Cotterill
- Department Basic Medical Sciences, St Georges University LondonCranmer Terrace, London SW17 0RE, UK
| | - Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
- Insect Biomedical Research Center, Kyoto Institute of TechnologySakyo-ku, Kyoto 606-8585, Japan
| |
Collapse
|
9
|
Dewar JM, Walter JC. Chromosome biology: conflict management for replication and transcription. Curr Biol 2013; 23:R200-2. [PMID: 23473562 DOI: 10.1016/j.cub.2013.01.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A recent study has uncovered a new mechanism that attenuates DNA replication during periods of heightened gene expression to avoid collisions between replication and transcription.
Collapse
Affiliation(s)
- James M Dewar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, USA
| | | |
Collapse
|
10
|
Handa T, Kanke M, Takahashi TS, Nakagawa T, Masukata H. DNA polymerization-independent functions of DNA polymerase epsilon in assembly and progression of the replisome in fission yeast. Mol Biol Cell 2012; 23:3240-53. [PMID: 22718908 PMCID: PMC3418317 DOI: 10.1091/mbc.e12-05-0339] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
DNA Pol ε synthesizes the leading strands, following the CMG (Cdc45/Mcm2-7/GINS) helicase, although the N-terminal polymerase domain of the catalytic subunit, Cdc20 in fission yeast, is dispensable for viability. We show that the C-terminal domain of Cdc20 plays the noncatalytic essential roles in both the assembly and progression of CMG helicase. DNA polymerase epsilon (Pol ε) synthesizes the leading strands, following the CMG (Cdc45, Mcm2-7, and GINS [Go-Ichi-Nii-San]) helicase that translocates on the leading-strand template at eukaryotic replication forks. Although Pol ε is essential for the viability of fission and budding yeasts, the N-terminal polymerase domain of the catalytic subunit, Cdc20/Pol2, is dispensable for viability, leaving the following question: what is the essential role(s) of Pol ε? In this study, we investigated the essential roles of Pol ε using a temperature-sensitive mutant and a recently developed protein-depletion (off-aid) system in fission yeast. In cdc20-ct1 cells carrying mutations in the C-terminal domain of Cdc20, the CMG components, RPA, Pol α, and Pol δ were loaded onto replication origins, but Cdc45 did not translocate from the origins, suggesting that Pol ε is required for CMG helicase progression. In contrast, depletion of Cdc20 abolished the loading of GINS and Cdc45 onto origins, indicating that Pol ε is essential for assembly of the CMG complex. These results demonstrate that Pol ε plays essential roles in both the assembly and progression of CMG helicase.
Collapse
Affiliation(s)
- Tetsuya Handa
- Graduate School of Science, Osaka University, Osaka, Japan
| | | | | | | | | |
Collapse
|
11
|
Suyari O, Kawai M, Ida H, Yoshida H, Sakaguchi K, Yamaguchi M. Differential requirement for the N-terminal catalytic domain of the DNA polymerase ε p255 subunit in the mitotic cell cycle and the endocycle. Gene 2012; 495:104-14. [PMID: 22245183 DOI: 10.1016/j.gene.2011.12.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Revised: 12/20/2011] [Accepted: 12/26/2011] [Indexed: 11/26/2022]
Abstract
In Drosophila, the 255kDa catalytic subunit (dpolεp255) and the 58kDa subunit of DNA polymerase ε (dpolεp58) have been identified. The N-terminus of dpolεp255 carries well-conserved six DNA polymerase subdomains and five 3'→5' exonuclease motifs as observed with Polε in other species. We here examined roles of dpolεp255 during Drosophila development using transgenic fly lines expressing double stranded RNA (dsRNA). Expression of dpolεp255 dsRNA in eye discs induced a small eye phenotype and inhibited DNA synthesis, indicating a role in the G1-S transition and/or S-phase progression of the mitotic cycle. Similarly, expression of dpolεp255 dsRNA in the salivary glands resulted in small size and endoreplication defects, demonstrating a critical role in endocycle progression. In the eye disc, defects induced by knockdown of dpolεp255 were rescued by overexpression of the C-terminal region of dpolεp255, indicating that the function of this non-catalytic domain is conserved between yeast and Drosophila. However, this was not the case for the salivary gland, suggesting that the catalytic N-terminal region is crucial for endoreplication and its defect cannot be complemented by other DNA polymerases. In addition, several genetic interactants with dpolεp255 including genes related to DNA replication such as RFC, DNA primase, DNA polη, Mcm10 and Psf2 and chromatin remodeling such as Iswi were also identified.
Collapse
Affiliation(s)
- Osamu Suyari
- Department of Applied Biology, Kyoto Institute of Technology, Sakyo-ku, Kyoto 606-8585, Japan
| | | | | | | | | | | |
Collapse
|
12
|
Abstract
Eukaryotic chromosomal DNA replication is controlled by a highly ordered series of steps involving multiple proteins at replication origins. The eukaryotic GINS complex is essential for the establishment of DNA replication forks and replisome progression. GINS is one of the core components of the eukaryotic replicative helicase, the CMG (Cdc45-MCM-GINS) complex, which unwinds duplex DNA ahead of the moving replication fork. Eukaryotic GINS also links with other key proteins at the fork to maintain an active replisome progression complex. Archaeal GINS homologues play a central role in chromosome replication by associating with other replisome components. This chapter focuses on the molecular events related with DNA replication initiation, and summarizes our current understanding of the function, structure and evolution of the GINS complex in eukaryotes and archaea.
Collapse
Affiliation(s)
- Katsuhiko Kamada
- Chromosome Dynamics Laboratory, RIKEN Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan,
| |
Collapse
|
13
|
Nakahara I, Miyamoto M, Shibata T, Akashi-Tanaka S, Kinoshita T, Mogushi K, Oda K, Ueno M, Takakura N, Mizushima H, Tanaka H, Ohta T. Up-regulation of PSF1 promotes the growth of breast cancer cells. Genes Cells 2010; 15:1015-24. [PMID: 20825491 DOI: 10.1111/j.1365-2443.2010.01442.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PSF1 is a subunit of the GINS complex that functions along with the MCM2-7 complex and Cdc45 in eukaryotic DNA replication. Although mammalian PSF1 is predominantly expressed in highly proliferating cells and organs, little is known about the roles of PSF1 in mature cells or cancer cells. We found that PSF1 was expressed at relatively high levels in breast tumor cells, but at low levels in normal breast cells. Knockdown of PSF1 expression using small interfering RNA (siRNA) slowed the growth of breast cancer cell lines by delaying DNA replication but did not affect proliferation of normal human mammary epithelial cells. Reduced PSF1 expression also inhibited anchorage-independent growth in breast cancer cell lines. These results suggest that PSF1 over-expression is specifically involved in breast cancer cell growth. Therefore, PSF1 inhibition might provide new therapeutic approaches for breast cancer.
Collapse
Affiliation(s)
- Izumi Nakahara
- Center for Medical Genomics, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Masai H, Matsumoto S, You Z, Yoshizawa-Sugata N, Oda M. Eukaryotic chromosome DNA replication: where, when, and how? Annu Rev Biochem 2010; 79:89-130. [PMID: 20373915 DOI: 10.1146/annurev.biochem.052308.103205] [Citation(s) in RCA: 377] [Impact Index Per Article: 25.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA replication is central to cell proliferation. Studies in the past six decades since the proposal of a semiconservative mode of DNA replication have confirmed the high degree of conservation of the basic machinery of DNA replication from prokaryotes to eukaryotes. However, the need for replication of a substantially longer segment of DNA in coordination with various internal and external signals in eukaryotic cells has led to more complex and versatile regulatory strategies. The replication program in higher eukaryotes is under a dynamic and plastic regulation within a single cell, or within the cell population, or during development. We review here various regulatory mechanisms that control the replication program in eukaryotes and discuss future directions in this dynamic field.
Collapse
Affiliation(s)
- Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan.
| | | | | | | | | |
Collapse
|
15
|
Structure and function of the GINS complex, a key component of the eukaryotic replisome. Biochem J 2010; 425:489-500. [PMID: 20070258 DOI: 10.1042/bj20091531] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High-fidelity chromosomal DNA replication is fundamental to all forms of cellular life and requires the complex interplay of a wide variety of essential and non-essential protein factors in a spatially and temporally co-ordinated manner. In eukaryotes, the GINS complex (from the Japanese go-ichi-ni-san meaning 5-1-2-3, after the four related subunits of the complex Sld5, Psf1, Psf2 and Psf3) was recently identified as a novel factor essential for both the initiation and elongation stages of the replication process. Biochemical analysis has placed GINS at the heart of the eukaryotic replication apparatus as a component of the CMG [Cdc45-MCM (minichromosome maintenance) helicase-GINS] complex that most likely serves as the replicative helicase, unwinding duplex DNA ahead of the moving replication fork. GINS homologues are found in the archaea and have been shown to interact directly with the MCM helicase and with primase, suggesting a central role for the complex in archaeal chromosome replication also. The present review summarizes current knowledge of the structure, function and evolution of the GINS complex in eukaryotes and archaea, discusses possible functions of the GINS complex and highlights recent results that point to possible regulation of GINS function in response to DNA damage.
Collapse
|
16
|
Pavlov YI, Shcherbakova PV. DNA polymerases at the eukaryotic fork-20 years later. Mutat Res 2009; 685:45-53. [PMID: 19682465 DOI: 10.1016/j.mrfmmm.2009.08.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Accepted: 08/05/2009] [Indexed: 10/20/2022]
Abstract
Function of the eukaryotic genome depends on efficient and accurate replication of anti-parallel DNA strands. Eukaryotic DNA polymerases have different properties adapted to perform a wide spectrum of DNA transactions. Here we focus on major players in the bulk replication, DNA polymerases of the B-family. We review the organization of the replication fork in eukaryotes in a historical perspective, analyze contemporary models and propose a new integrative model of the fork.
Collapse
Affiliation(s)
- Youri I Pavlov
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE 68198-6805, USA.
| | | |
Collapse
|
17
|
Gambus A, van Deursen F, Polychronopoulos D, Foltman M, Jones RC, Edmondson RD, Calzada A, Labib K. A key role for Ctf4 in coupling the MCM2-7 helicase to DNA polymerase alpha within the eukaryotic replisome. EMBO J 2009; 28:2992-3004. [PMID: 19661920 DOI: 10.1038/emboj.2009.226] [Citation(s) in RCA: 203] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 07/15/2009] [Indexed: 01/14/2023] Open
Abstract
The eukaryotic replisome is a crucial determinant of genome stability, but its structure is still poorly understood. We found previously that many regulatory proteins assemble around the MCM2-7 helicase at yeast replication forks to form the replisome progression complex (RPC), which might link MCM2-7 to other replisome components. Here, we show that the RPC associates with DNA polymerase alpha that primes each Okazaki fragment during lagging strand synthesis. Our data indicate that a complex of the GINS and Ctf4 components of the RPC is crucial to couple MCM2-7 to DNA polymerase alpha. Others have found recently that the Mrc1 subunit of RPCs binds DNA polymerase epsilon, which synthesises the leading strand at DNA replication forks. We show that cells lacking both Ctf4 and Mrc1 experience chronic activation of the DNA damage checkpoint during chromosome replication and do not complete the cell cycle. These findings indicate that coupling MCM2-7 to replicative polymerases is an important feature of the regulation of chromosome replication in eukaryotes, and highlight a key role for Ctf4 in this process.
Collapse
Affiliation(s)
- Agnieszka Gambus
- Cancer Research UK, Paterson Institute for Cancer Research, University of Manchester, Manchester, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Current awareness on yeast. Yeast 2009. [DOI: 10.1002/yea.1623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|