1
|
Schepers J, Carter Z, Kritsiligkou P, Grant CM. Methionine Sulfoxide Reductases Suppress the Formation of the [ PSI+] Prion and Protein Aggregation in Yeast. Antioxidants (Basel) 2023; 12:antiox12020401. [PMID: 36829961 PMCID: PMC9952077 DOI: 10.3390/antiox12020401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Prions are self-propagating, misfolded forms of proteins associated with various neurodegenerative diseases in mammals and heritable traits in yeast. How prions form spontaneously into infectious amyloid-like structures without underlying genetic changes is poorly understood. Previous studies have suggested that methionine oxidation may underlie the switch from a soluble protein to the prion form. In this current study, we have examined the role of methionine sulfoxide reductases (MXRs) in protecting against de novo formation of the yeast [PSI+] prion, which is the amyloid form of the Sup35 translation termination factor. We show that [PSI+] formation is increased during normal and oxidative stress conditions in mutants lacking either one of the yeast MXRs (Mxr1, Mxr2), which protect against methionine oxidation by reducing the two epimers of methionine-S-sulfoxide. We have identified a methionine residue (Met124) in Sup35 that is important for prion formation, confirming that direct Sup35 oxidation causes [PSI+] prion formation. [PSI+] formation was less pronounced in mutants simultaneously lacking both MXR isoenzymes, and we show that the morphology and biophysical properties of protein aggregates are altered in this mutant. Taken together, our data indicate that methionine oxidation triggers spontaneous [PSI+] prion formation, which can be alleviated by methionine sulfoxide reductases.
Collapse
Affiliation(s)
- Jana Schepers
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55099 Mainz, Germany
| | - Zorana Carter
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Paraskevi Kritsiligkou
- Division of Redox Regulation, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Chris M. Grant
- Division of Molecular and Cellular Function, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
- Correspondence:
| |
Collapse
|
2
|
Naeimi WR, Serio TR. Beyond Amyloid Fibers: Accumulation, Biological Relevance, and Regulation of Higher-Order Prion Architectures. Viruses 2022; 14:v14081635. [PMID: 35893700 PMCID: PMC9332770 DOI: 10.3390/v14081635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/19/2022] Open
Abstract
The formation of amyloid fibers is associated with a diverse range of disease and phenotypic states. These amyloid fibers often assemble into multi-protofibril, high-order architectures in vivo and in vitro. Prion propagation in yeast, an amyloid-based process, represents an attractive model to explore the link between these aggregation states and the biological consequences of amyloid dynamics. Here, we integrate the current state of knowledge, highlight opportunities for further insight, and draw parallels to more complex systems in vitro. Evidence suggests that high-order fibril architectures are present ex vivo from disease relevant environments and under permissive conditions in vivo in yeast, including but not limited to those leading to prion formation or instability. The biological significance of these latter amyloid architectures or how they may be regulated is, however, complicated by inconsistent experimental conditions and analytical methods, although the Hsp70 chaperone Ssa1/2 is likely involved. Transition between assembly states could form a mechanistic basis to explain some confounding observations surrounding prion regulation but is limited by a lack of unified methodology to biophysically compare these assembly states. Future exciting experimental entryways may offer opportunities for further insight.
Collapse
|
3
|
Dorweiler JE, Lyke DR, Lemoine NP, Guereca S, Buchholz HE, Legan ER, Radtke CM, Manogaran AL. Implications of the Actin Cytoskeleton on the Multi-Step Process of [PSI+] Prion Formation. Viruses 2022; 14:v14071581. [PMID: 35891561 PMCID: PMC9321047 DOI: 10.3390/v14071581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 11/23/2022] Open
Abstract
Yeast prions are self-perpetuating misfolded proteins that are infectious. In yeast, [PSI+] is the prion form of the Sup35 protein. While the study of [PSI+] has revealed important cellular mechanisms that contribute to prion propagation, the underlying cellular factors that influence prion formation are not well understood. Prion formation has been described as a multi-step process involving both the initial nucleation and growth of aggregates, followed by the subsequent transmission of prion particles to daughter cells. Prior evidence suggests that actin plays a role in this multi-step process, but actin’s precise role is unclear. Here, we investigate how actin influences the cell’s ability to manage newly formed visible aggregates and how actin influences the transmission of newly formed aggregates to future generations. At early steps, using 3D time-lapse microscopy, several actin mutants, and Markov modeling, we find that the movement of newly formed aggregates is random and actin independent. At later steps, our prion induction studies provide evidence that the transmission of newly formed prion particles to daughter cells is limited by the actin cytoskeletal network. We suspect that this limitation is because actin is used to possibly retain prion particles in the mother cell.
Collapse
Affiliation(s)
- Jane E. Dorweiler
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Douglas R. Lyke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Nathan P. Lemoine
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
- Department of Zoology, Milwaukee Public Museum, Milwaukee, WI 53233, USA
| | - Samantha Guereca
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Hannah E. Buchholz
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Emily R. Legan
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Claire M. Radtke
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
| | - Anita L. Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA; (J.E.D.); (D.R.L.); (N.P.L.); (S.G.); (H.E.B.); (E.R.L.); (C.M.R.)
- Correspondence:
| |
Collapse
|
4
|
Extracellular Vesicles-Encapsulated Yeast Prions and What They Can Tell Us about the Physical Nature of Propagons. Int J Mol Sci 2020; 22:ijms22010090. [PMID: 33374854 PMCID: PMC7794690 DOI: 10.3390/ijms22010090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/14/2020] [Accepted: 12/20/2020] [Indexed: 12/25/2022] Open
Abstract
The yeast Saccharomyces cerevisiae hosts an ensemble of protein-based heritable traits, most of which result from the conversion of structurally and functionally diverse cytoplasmic proteins into prion forms. Among these, [PSI+], [URE3] and [PIN+] are the most well-documented prions and arise from the assembly of Sup35p, Ure2p and Rnq1p, respectively, into insoluble fibrillar assemblies. Yeast prions propagate by molecular chaperone-mediated fragmentation of these aggregates, which generates small self-templating seeds, or propagons. The exact molecular nature of propagons and how they are faithfully transmitted from mother to daughter cells despite spatial protein quality control are not fully understood. In [PSI+] cells, Sup35p forms detergent-resistant assemblies detectable on agarose gels under semi-denaturant conditions and cytosolic fluorescent puncta when the protein is fused to green fluorescent protein (GFP); yet, these macroscopic manifestations of [PSI+] do not fully correlate with the infectivity measured during growth by the mean of protein infection assays. We also discovered that significant amounts of infectious Sup35p particles are exported via extracellular (EV) and periplasmic (PV) vesicles in a growth phase and glucose-dependent manner. In the present review, I discuss how these vesicles may be a source of actual propagons and a suitable vehicle for their transmission to the bud.
Collapse
|
5
|
Aggregation and Prion-Inducing Properties of the G-Protein Gamma Subunit Ste18 are Regulated by Membrane Association. Int J Mol Sci 2020; 21:ijms21145038. [PMID: 32708832 PMCID: PMC7403958 DOI: 10.3390/ijms21145038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Yeast prions and mnemons are respectively transmissible and non-transmissible self-perpetuating protein assemblies, frequently based on cross-β ordered detergent-resistant aggregates (amyloids). Prions cause devastating diseases in mammals and control heritable traits in yeast. It was shown that the de novo formation of the prion form [PSI+] of yeast release factor Sup35 is facilitated by aggregates of other proteins. Here we explore the mechanism of the promotion of [PSI+] formation by Ste18, an evolutionarily conserved gamma subunit of a G-protein coupled receptor, a key player in responses to extracellular stimuli. Ste18 forms detergent-resistant aggregates, some of which are colocalized with de novo generated Sup35 aggregates. Membrane association of Ste18 is required for both Ste18 aggregation and [PSI+] induction, while functional interactions involved in signal transduction are not essential for these processes. This emphasizes the significance of a specific location for the nucleation of protein aggregation. In contrast to typical prions, Ste18 aggregates do not show a pattern of heritability. Our finding that Ste18 levels are regulated by the ubiquitin-proteasome system, in conjunction with the previously reported increase in Ste18 levels upon the exposure to mating pheromone, suggests that the concentration-dependent Ste18 aggregation may mediate a mnemon-like response to physiological stimuli.
Collapse
|
6
|
Kabani M, Pilard M, Melki R. Glucose availability dictates the export of the soluble and prion forms of Sup35p via periplasmic or extracellular vesicles. Mol Microbiol 2020; 114:322-332. [PMID: 32339313 DOI: 10.1111/mmi.14515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/25/2020] [Accepted: 04/06/2020] [Indexed: 11/28/2022]
Abstract
The yeast [PSI+ ] prion originates from the self-perpetuating transmissible aggregates of the translation termination factor Sup35p. We previously showed that infectious Sup35p particles are exported outside the cells via extracellular vesicles (EV). This finding suggested a function for EV in the vertical and horizontal transmission of yeast prions. Here we report a significant export of Sup35p within periplasmic vesicles (PV) upon glucose starvation. We show that PV are up to three orders of magnitude more abundant than EV. However, PV and EV are different in terms of size and protein content, and their export is oppositely regulated by glucose availability in the growth medium. Overall, our work suggests that the export of prion particles to both the periplasm and the extracellular space needs to be considered to address the physiological consequences of vesicle-mediated yeast prions trafficking.
Collapse
Affiliation(s)
- Mehdi Kabani
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Marion Pilard
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| | - Ronald Melki
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives, Centre National de la Recherche Scientifique (CNRS), Fontenay-aux-Roses, France
| |
Collapse
|
7
|
Chernoff YO, Grizel AV, Rubel AA, Zelinsky AA, Chandramowlishwaran P, Chernova TA. Application of yeast to studying amyloid and prion diseases. ADVANCES IN GENETICS 2020; 105:293-380. [PMID: 32560789 PMCID: PMC7527210 DOI: 10.1016/bs.adgen.2020.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Amyloids are fibrous cross-β protein aggregates that are capable of proliferation via nucleated polymerization. Amyloid conformation likely represents an ancient protein fold and is linked to various biological or pathological manifestations. Self-perpetuating amyloid-based protein conformers provide a molecular basis for transmissible (infectious or heritable) protein isoforms, termed prions. Amyloids and prions, as well as other types of misfolded aggregated proteins are associated with a variety of devastating mammalian and human diseases, such as Alzheimer's, Parkinson's and Huntington's diseases, transmissible spongiform encephalopathies (TSEs), amyotrophic lateral sclerosis (ALS) and transthyretinopathies. In yeast and fungi, amyloid-based prions control phenotypically detectable heritable traits. Simplicity of cultivation requirements and availability of powerful genetic approaches makes yeast Saccharomyces cerevisiae an excellent model system for studying molecular and cellular mechanisms governing amyloid formation and propagation. Genetic techniques allowing for the expression of mammalian or human amyloidogenic and prionogenic proteins in yeast enable researchers to capitalize on yeast advantages for characterization of the properties of disease-related proteins. Chimeric constructs employing mammalian and human aggregation-prone proteins or domains, fused to fluorophores or to endogenous yeast proteins allow for cytological or phenotypic detection of disease-related protein aggregation in yeast cells. Yeast systems are amenable to high-throughput screening for antagonists of amyloid formation, propagation and/or toxicity. This review summarizes up to date achievements of yeast assays in application to studying mammalian and human disease-related aggregating proteins, and discusses both limitations and further perspectives of yeast-based strategies.
Collapse
Affiliation(s)
- Yury O Chernoff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States; Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia.
| | - Anastasia V Grizel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | - Aleksandr A Rubel
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia; Department of Genetics and Biotechnology, St. Petersburg State University, St. Petersburg, Russia; Sirius University of Science and Technology, Sochi, Russia
| | - Andrew A Zelinsky
- Laboratory of Amyloid Biology, St. Petersburg State University, St. Petersburg, Russia
| | | | - Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
Wang K, Melki R, Kabani M. Growth phase‐dependent changes in the size and infectivity of SDS‐resistant Sup35p assemblies associated with the [
PSI
+
] prion in yeast. Mol Microbiol 2019; 112:932-943. [DOI: 10.1111/mmi.14329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Affiliation(s)
| | - Ronald Melki
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives Centre National de la Recherche Scientifique (CNRS) Paris Fontenay‐aux‐RosesF‐92265France
| | - Mehdi Kabani
- Institut de Biologie François Jacob, Molecular Imaging Research Center (MIRCen), Commissariat à l'Energie Atomique et aux Energies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Laboratoire des Maladies Neurodégénératives Centre National de la Recherche Scientifique (CNRS) Paris Fontenay‐aux‐RosesF‐92265France
| |
Collapse
|
9
|
Rothe S, Prakash A, Tyedmers J. The Insoluble Protein Deposit (IPOD) in Yeast. Front Mol Neurosci 2018; 11:237. [PMID: 30050408 PMCID: PMC6052365 DOI: 10.3389/fnmol.2018.00237] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 06/18/2018] [Indexed: 11/13/2022] Open
Abstract
The appearance of protein aggregates is a hallmark of several pathologies including many neurodegenerative diseases. Mounting evidence suggests that the accumulation of misfolded proteins into inclusions is a secondary line of defense when the extent of protein misfolding exceeds the capacity of the Protein Quality Control System, which mediates refolding or degradation of misfolded species. Such exhaustion can occur during severe proteotoxic stress, the excessive occurrence of aggregation prone protein species, e.g., amyloids, or during ageing. However, the machinery that mediates recognition, recruitment and deposition of different types of misfolded proteins into specific deposition sites is only poorly understood. Since emerging principles of aggregate deposition appear evolutionarily conserved, yeast represents a powerful model to study basic mechanisms of recognition of different types of misfolded proteins, their recruitment to the respective deposition site and the molecular organization at the corresponding site. Yeast possesses at least three different aggregate deposition sites, one of which is a major deposition site for amyloid aggregates termed Insoluble PrOtein Deposit (IPOD). Due to the link between neurodegenerative disease and accumulation of amyloid aggregates, the IPOD is of particular interest when we aim to identify the molecular mechanisms that cells have evolved to counteract toxicity associated with the occurrence of amyloid aggregates. Here, we will review what is known about IPOD composition and the mechanisms of recognition and recruitment of amyloid aggregates to this site in yeast. Finally, we will briefly discuss the possible physiological role of aggregate deposition at the IPOD.
Collapse
Affiliation(s)
- Stephanie Rothe
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Abaya Prakash
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| | - Jens Tyedmers
- Department of Medicine I and Clinical Chemistry, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
10
|
Wisniewski BT, Sharma J, Legan ER, Paulson E, Merrill SJ, Manogaran AL. Toxicity and infectivity: insights from de novo prion formation. Curr Genet 2018; 64:117-123. [PMID: 28856415 PMCID: PMC5777878 DOI: 10.1007/s00294-017-0736-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 02/07/2023]
Abstract
Prions are infectious misfolded proteins that assemble into oligomers and large aggregates, and are associated with neurodegeneration. It is believed that the oligomers contribute to cytotoxicity, although genetic and environmental factors have also been shown to have additional roles. The study of the yeast prion [PSI +] has provided valuable insights into how prions form and why they are toxic. Our recent work suggests that SDS-resistant oligomers arise and remodel early during the prion formation process, and lysates containing these newly formed oligomers are infectious. Previous work shows that toxicity is associated with prion formation and this toxicity is exacerbated by deletion of the VPS5 gene. Here, we show that newly made oligomer formation and infectivity of vps5∆ lysates are similar to wild-type strains. However using green fluorescent protein fusions, we observe that the assembly of fluorescent cytoplasmic aggregates during prion formation is different in vps5∆ strains. Instead of large immobile aggregates, vps5∆ strains have an additional population of small mobile foci. We speculate that changes in the cellular milieu in vps5∆ strains may reduce the cell's ability to efficiently recruit and sequester newly formed prion particles into central deposition sites, resulting in toxicity.
Collapse
Affiliation(s)
- Brett T Wisniewski
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Jaya Sharma
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily R Legan
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201-1881, USA.
| |
Collapse
|
11
|
Wickner RB, Kryndushkin D, Shewmaker F, McGlinchey R, Edskes HK. Study of Amyloids Using Yeast. Methods Mol Biol 2018; 1779:313-339. [PMID: 29886541 PMCID: PMC7337124 DOI: 10.1007/978-1-4939-7816-8_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
Affiliation(s)
- Reed B. Wickner
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Dmitry Kryndushkin
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830,Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Frank Shewmaker
- Dept. of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814
| | - Ryan McGlinchey
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| | - Herman K. Edskes
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes Digestive and Kidney Diseases, National Insititutes of Health, Bethesda, MD 20892-0830
| |
Collapse
|
12
|
Disrupting the cortical actin cytoskeleton points to two distinct mechanisms of yeast [PSI+] prion formation. PLoS Genet 2017; 13:e1006708. [PMID: 28369054 PMCID: PMC5393896 DOI: 10.1371/journal.pgen.1006708] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 04/17/2017] [Accepted: 03/20/2017] [Indexed: 02/04/2023] Open
Abstract
Mammalian and fungal prions arise de novo; however, the mechanism is poorly understood in molecular terms. One strong possibility is that oxidative damage to the non-prion form of a protein may be an important trigger influencing the formation of its heritable prion conformation. We have examined the oxidative stress-induced formation of the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We used tandem affinity purification (TAP) and mass spectrometry to identify the proteins which associate with Sup35 in a tsa1 tsa2 antioxidant mutant to address the mechanism by which Sup35 forms the [PSI+] prion during oxidative stress conditions. This analysis identified several components of the cortical actin cytoskeleton including the Abp1 actin nucleation promoting factor, and we show that deletion of the ABP1 gene abrogates oxidant-induced [PSI+] prion formation. The frequency of spontaneous [PSI+] prion formation can be increased by overexpression of Sup35 since the excess Sup35 increases the probability of forming prion seeds. In contrast to oxidant-induced [PSI+] prion formation, overexpression-induced [PSI+] prion formation was only modestly affected in an abp1 mutant. Furthermore, treating yeast cells with latrunculin A to disrupt the formation of actin cables and patches abrogated oxidant-induced, but not overexpression-induced [PSI+] prion formation, suggesting a mechanistic difference in prion formation. [PIN+], the prion form of Rnq1, localizes to the IPOD (insoluble protein deposit) and is thought to influence the aggregation of other proteins. We show Sup35 becomes oxidized and aggregates during oxidative stress conditions, but does not co-localize with Rnq1 in an abp1 mutant which may account for the reduced frequency of [PSI+] prion formation. Prions are infectious agents which are composed of misfolded proteins and have been implicated in progressive neurodegenerative diseases such as Creutzfeldt Jakob Disease (CJD). Most prion diseases occur sporadically and are then propagated in a protein-only mechanism via induced protein misfolding. Little is currently known regarding how normally soluble proteins spontaneously form their prion forms. Previous studies have implicated oxidative damage of the non-prion form of some proteins as an important trigger for the formation of their heritable prion conformation. Using a yeast prion model we found that the cortical actin cytoskeleton is required for the transition of an oxidized protein to its heritable infectious conformation. In mutants which disrupt the cortical actin cytoskeleton, the oxidized protein aggregates, but does not localize to its normal amyloid deposition site, termed the IPOD. The IPOD serves as a site where prion proteins undergo fragmentation and seeding and we show that preventing actin-mediated localization to this site prevents both spontaneous and oxidant-induced prion formation.
Collapse
|
13
|
Sharma J, Wisniewski BT, Paulson E, Obaoye JO, Merrill SJ, Manogaran AL. De novo [PSI +] prion formation involves multiple pathways to form infectious oligomers. Sci Rep 2017; 7:76. [PMID: 28250435 PMCID: PMC5427932 DOI: 10.1038/s41598-017-00135-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 02/09/2017] [Indexed: 11/09/2022] Open
Abstract
Prion and other neurodegenerative diseases are associated with misfolded protein assemblies called amyloid. Research has begun to uncover common mechanisms underlying transmission of amyloids, yet how amyloids form in vivo is still unclear. Here, we take advantage of the yeast prion, [PSI +], to uncover the early steps of amyloid formation in vivo. [PSI +] is the prion form of the Sup35 protein. While [PSI +] formation is quite rare, the prion can be greatly induced by overexpression of the prion domain of the Sup35 protein. This de novo induction of [PSI +] shows the appearance of fluorescent cytoplasmic rings when the prion domain is fused with GFP. Our current work shows that de novo induction is more complex than previously thought. Using 4D live cell imaging, we observed that fluorescent structures are formed by four different pathways to yield [PSI +] cells. Biochemical analysis of de novo induced cultures indicates that newly formed SDS resistant oligomers change in size over time and lysates made from de novo induced cultures are able to convert [psi -] cells to [PSI +] cells. Taken together, our findings suggest that newly formed prion oligomers are infectious.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Brett T Wisniewski
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Emily Paulson
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Joanna O Obaoye
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | - Stephen J Merrill
- Department of Mathematics, Statistics and Computer Science, Marquette University, Milwaukee, WI, 53201, USA
| | - Anita L Manogaran
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA.
| |
Collapse
|
14
|
Du Z, Goncharoff DK, Cheng X, Li L. Analysis of [SWI + ] formation and propagation events. Mol Microbiol 2017; 104:105-124. [PMID: 28035761 DOI: 10.1111/mmi.13616] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/26/2016] [Indexed: 01/01/2023]
Abstract
The budding yeast, Saccharomyces cerevisiae, harbors several prions that are transmitted as altered, heritable protein conformations. [SWI+ ] is one such prion whose determinant is Swi1, a subunit of the evolutionarily conserved chromatin-remodeling complex SWI/SNF. Despite the importance of Swi1, the molecular events that lead to [SWI+ ] prionogenesis remain poorly understood. In this study, we have constructed floccullin-promoter-based URA3 reporters for [SWI+ ] identification. Using these reporters, we show that the spontaneous formation frequency of [SWI+ ] is significantly higher than that of [PSI+ ] (prion form of Sup35). We also show that preexisting [PSI+ ] or [PIN+ ] (prion form of Rnq1), or overproduction of Swi1 prion-domain (PrD) can considerably promote Swi1 prionogenesis. Moreover, our data suggest a strain-specific effect of overproduction of Sse1 - a nucleotide exchange factor of the molecular chaperone Hsp70, and its interaction with another molecular chaperone Hsp104 on [SWI+ ] maintenance. Additionally, we show that Swi1 aggregates are initially ring/ribbon-like then become dot-like in mature [SWI+ ] cells. In the presence of [PSI+ ] or [PIN+ ], Swi1 ring/ribbon-like aggregates predominantly colocalize with the Sup35 or Rnq1 aggregates; without a preexisting prion, however, such colocalizations are rarely seen during Swi1-PrD overproduction-promoted Swi1 prionogenesis. We have thus demonstrated a complex interacting mechanism of yeast prionogenesis.
Collapse
Affiliation(s)
- Zhiqiang Du
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Dustin Kenneth Goncharoff
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Xudong Cheng
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| | - Liming Li
- Department of Biochemistry and Molecular Genetics, the Feinberg School of Medicine, Northwestern University, 320 E Superior St, Searle 7-650, Chicago, IL, 60611, USA
| |
Collapse
|
15
|
Moosavi B, Mousavi B, Yang GF. Actin, Membrane Trafficking and the Control of Prion Induction, Propagation and Transmission in Yeast. Traffic 2015; 17:5-20. [PMID: 26503767 DOI: 10.1111/tra.12344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 10/23/2015] [Accepted: 10/23/2015] [Indexed: 12/16/2022]
Abstract
The model eukaryotic yeast Saccharomyces cerevisiae has proven a useful model system in which prion biogenesis and elimination are studied. Several yeast prions exist in budding yeast and a number of studies now suggest that these alternate protein conformations may play important roles in the cell. During the last few years cellular factors affecting prion induction, propagation and elimination have been identified. Amongst these, proteins involved in the regulation of the actin cytoskeleton and dynamic membrane processes such as endocytosis have been found to play a critical role not only in facilitating de novo prion formation but also in prion propagation. Here we briefly review prion formation and maintenance with special attention given to the cellular processes that require the functionality of the actin cytoskeleton.
Collapse
Affiliation(s)
- Behrooz Moosavi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| | - Bibimaryam Mousavi
- Laboratory of Organometallics, Catalysis and Ordered Materials, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, P.R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, 430079, P.R. China
| |
Collapse
|
16
|
Speldewinde SH, Doronina VA, Grant CM. Autophagy protects against de novo formation of the [PSI+] prion in yeast. Mol Biol Cell 2015; 26:4541-51. [PMID: 26490118 PMCID: PMC4678013 DOI: 10.1091/mbc.e15-08-0548] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 10/14/2015] [Indexed: 11/11/2022] Open
Abstract
The molecular basis by which prions arise spontaneously is poorly understood. The present data point toward oxidative protein damage as one of the triggers of de novo prion formation. Autophagy functions to clear oxidatively damaged proteins before their conversion to the prion form. Prions are self-propagating, infectious proteins that underlie several neurodegenerative diseases. The molecular basis underlying their sporadic formation is poorly understood. We show that autophagy protects against de novo formation of [PSI+], which is the prion form of the yeast Sup35 translation termination factor. Autophagy is a cellular degradation system, and preventing autophagy by mutating its core components elevates the frequency of spontaneous [PSI+] formation. Conversely, increasing autophagic flux by treating cells with the polyamine spermidine suppresses prion formation in mutants that normally show a high frequency of de novo prion formation. Autophagy also protects against the de novo formation of another prion, namely the Rnq1/[PIN+] prion, which is not related in sequence to the Sup35/[PSI+] prion. We show that growth under anaerobic conditions in the absence of molecular oxygen abrogates Sup35 protein damage and suppresses the high frequency of [PSI+] formation in an autophagy mutant. Autophagy therefore normally functions to remove oxidatively damaged Sup35, which accumulates in cells grown under aerobic conditions, but in the absence of autophagy, damaged/misfolded Sup35 undergoes structural transitions favoring its conversion to the propagatable [PSI+] form.
Collapse
Affiliation(s)
- Shaun H Speldewinde
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Victoria A Doronina
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Chris M Grant
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
17
|
Du Z, Valtierra S, Li L. An insight into the complex prion-prion interaction network in the budding yeast Saccharomyces cerevisiae. Prion 2015; 8:387-92. [PMID: 25517561 PMCID: PMC4601363 DOI: 10.4161/19336896.2014.992274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a valuable model system for studying prion-prion interactions as it contains multiple prion proteins. A recent study from our laboratory showed that the existence of Swi1 prion ([SWI+]) and overproduction of Swi1 can have strong impacts on the formation of 2 other extensively studied yeast prions, [PSI+] and [PIN+] ([RNQ+]) (Genetics, Vol. 197, 685–700). We showed that a single yeast cell is capable of harboring at least 3 heterologous prion elements and these prions can influence each other's appearance positively and/or negatively. We also showed that during the de novo [PSI+] formation process upon Sup35 overproduction, the aggregation patterns of a preexisting inducer ([RNQ+] or [SWI+]) can undergo significant remodeling from stably transmitted dot-shaped aggregates to aggregates that co-localize with the newly formed Sup35 aggregates that are ring/ribbon/rod- shaped. Such co-localization disappears once the newly formed [PSI+] prion stabilizes. Our finding provides strong evidence supporting the “cross-seeding” model for prion-prion interactions and confirms earlier reports that the interactions among different prions and their prion proteins mostly occur at the initiation stages of prionogenesis. Our results also highlight a complex prion interaction network in yeast. We believe that elucidating the mechanism underlying the yeast prion-prion interaction network will not only provide insight into the process of prion de novo generation and propagation in yeast but also shed light on the mechanisms that govern protein misfolding, aggregation, and amyloidogenesis in higher eukaryotes.
Collapse
Affiliation(s)
- Zhiqiang Du
- a Department of Biochemistry and Molecular Genetics , the Feinberg School of Medicine ; Northwestern University ; Chicago , IL USA
| | | | | |
Collapse
|
18
|
Stephan J, Fioriti L, Lamba N, Colnaghi L, Karl K, Derkatch I, Kandel E. The CPEB3 Protein Is a Functional Prion that Interacts with the Actin Cytoskeleton. Cell Rep 2015; 11:1772-85. [DOI: 10.1016/j.celrep.2015.04.060] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/10/2015] [Accepted: 04/28/2015] [Indexed: 11/24/2022] Open
|
19
|
Doronina VA, Staniforth GL, Speldewinde SH, Tuite MF, Grant CM. Oxidative stress conditions increase the frequency of de novo formation of the yeast [PSI+] prion. Mol Microbiol 2015; 96:163-74. [PMID: 25601439 PMCID: PMC4407919 DOI: 10.1111/mmi.12930] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 01/09/2023]
Abstract
Prions are self‐perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals and heritable traits in yeast. The molecular basis of how yeast and mammalian prions form spontaneously into infectious amyloid‐like structures is poorly understood. We have explored the hypothesis that oxidative stress is a general trigger for prion formation using the yeast [PSI+] prion, which is the altered conformation of the Sup35 translation termination factor. We show that the frequency of [PSI+] prion formation is elevated under conditions of oxidative stress and in mutants lacking key antioxidants. We detect increased oxidation of Sup35 methionine residues in antioxidant mutants and show that overexpression of methionine sulphoxide reductase abrogates both the oxidation of Sup35 and its conversion to the [PSI+] prion. [PSI+] prion formation is particularly elevated in a mutant lacking the Sod1 Cu,Zn‐superoxide dismutase. We have used fluorescence microscopy to show that the de novo appearance of [PSI+] is both rapid and increased in frequency in this mutant. Finally, electron microscopy analysis of native Sup35 reveals that similar fibrillar structures are formed in both the wild‐type and antioxidant mutants. Together, our data indicate that oxidative stress is a general trigger of [PSI+] formation, which can be alleviated by antioxidant defenses.
Collapse
Affiliation(s)
- Victoria A Doronina
- Faculty of Life Sciences, University of Manchester, The Michael Smith Building, Oxford Road, Manchester, M13 9PT, UK
| | | | | | | | | |
Collapse
|
20
|
Arslan F, Hong JY, Kanneganti V, Park SK, Liebman SW. Heterologous aggregates promote de novo prion appearance via more than one mechanism. PLoS Genet 2015; 11:e1004814. [PMID: 25568955 PMCID: PMC4287349 DOI: 10.1371/journal.pgen.1004814] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 10/09/2014] [Indexed: 12/12/2022] Open
Abstract
Prions are self-perpetuating conformational variants of particular proteins. In yeast, prions cause heritable phenotypic traits. Most known yeast prions contain a glutamine (Q)/asparagine (N)-rich region in their prion domains. [PSI+], the prion form of Sup35, appears de novo at dramatically enhanced rates following transient overproduction of Sup35 in the presence of [PIN+], the prion form of Rnq1. Here, we establish the temporal de novo appearance of Sup35 aggregates during such overexpression in relation to other cellular proteins. Fluorescently-labeled Sup35 initially forms one or a few dots when overexpressed in [PIN+] cells. One of the dots is perivacuolar, colocalizes with the aggregated Rnq1 dot and grows into peripheral rings/lines, some of which also colocalize with Rnq1. Sup35 dots that are not near the vacuole do not always colocalize with Rnq1 and disappear by the time rings start to grow. Bimolecular fluorescence complementation failed to detect any interaction between Sup35-VN and Rnq1-VC in [PSI+][PIN+] cells. In contrast, all Sup35 aggregates, whether newly induced or in established [PSI+], completely colocalize with the molecular chaperones Hsp104, Sis1, Ssa1 and eukaryotic release factor Sup45. In the absence of [PIN+], overexpressed aggregating proteins such as the Q/N-rich Pin4C or the non-Q/N-rich Mod5 can also promote the de novo appearance of [PSI+]. Similar to Rnq1, overexpressed Pin4C transiently colocalizes with newly appearing Sup35 aggregates. However, no interaction was detected between Mod5 and Sup35 during [PSI+] induction in the absence of [PIN+]. While the colocalization of Sup35 and aggregates of Rnq1 or Pin4C are consistent with the model that the heterologous aggregates cross-seed the de novo appearance of [PSI+], the lack of interaction between Mod5 and Sup35 leaves open the possibility of other mechanisms. We also show that Hsp104 is required in the de novo appearance of [PSI+] aggregates in a [PIN+]-independent pathway. Certain proteins can misfold into β-sheet-rich, self-seeding aggregates. Such proteins appear to be associated with neurodegenerative diseases such as prion, Alzheimer's and Parkinson's. Yeast prions also misfold into self-seeding aggregates and provide a good model to study how these rogue polymers first appear. De novo prion appearance can be made very frequent in yeast by transient overexpression of the prion protein in the presence of heterologous prions or prion-like aggregates. Here, we show that the aggregates of one such newly induced prion are initially formed in a dot-like structure near the vacuole. These dots then grow into rings at the periphery of the cell prior to becoming smaller rings surrounding the vacuole and maturing into the characteristic heritable prion tiny dots found throughout the cytoplasm. We found considerable colocalization of two heterologous prion/prion-like aggregates with the newly appearing prion protein aggregates, which is consistent with the prevalent model that existing prion aggregates can cross-seed the de novo aggregation of a heterologous prion protein. However, we failed to find any physical interaction between another heterologous aggregating protein and the newly appearing prion aggregates it stimulated to appear, which is inconsistent with cross-seeding.
Collapse
Affiliation(s)
- Fatih Arslan
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Joo Y. Hong
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Vydehi Kanneganti
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Sei-Kyoung Park
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada, United States of America
- * E-mail:
| |
Collapse
|
21
|
Nizhnikov AA, Antonets KS, Inge-Vechtomov SG, Derkatch IL. Modulation of efficiency of translation termination in Saccharomyces cerevisiae. Prion 2014; 8:247-60. [PMID: 25486049 DOI: 10.4161/pri.29851] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Nonsense suppression is a readthrough of premature termination codons. It typically occurs either due to the recognition of stop codons by tRNAs with mutant anticodons, or due to a decrease in the fidelity of translation termination. In the latter case, suppressors usually promote the readthrough of different types of nonsense codons and are thus called omnipotent nonsense suppressors. Omnipotent nonsense suppressors were identified in yeast Saccharomyces cerevisiae in 1960s, and most of subsequent studies were performed in this model organism. Initially, omnipotent suppressors were localized by genetic analysis to different protein- and RNA-encoding genes, mostly the components of translational machinery. Later, nonsense suppression was found to be caused not only by genomic mutations, but also by epigenetic elements, prions. Prions are self-perpetuating protein conformations usually manifested by infectious protein aggregates. Modulation of translational accuracy by prions reflects changes in the activity of their structural proteins involved in different aspects of protein synthesis. Overall, nonsense suppression can be seen as a "phenotypic mirror" of events affecting the accuracy of the translational machine. However, the range of proteins participating in the modulation of translation termination fidelity is not fully elucidated. Recently, the list has been expanded significantly by findings that revealed a number of weak genetic and epigenetic nonsense suppressors, the effect of which can be detected only in specific genetic backgrounds. This review summarizes the data on the nonsense suppressors decreasing the fidelity of translation termination in S. cerevisiae, and discusses the functional significance of the modulation of translational accuracy.
Collapse
Affiliation(s)
- Anton A Nizhnikov
- a Department of Genetics and Biotechnology ; St. Petersburg State University ; St. Petersburg , Russia
| | | | | | | |
Collapse
|
22
|
Li X, Rayman JB, Kandel ER, Derkatch IL. Functional role of Tia1/Pub1 and Sup35 prion domains: directing protein synthesis machinery to the tubulin cytoskeleton. Mol Cell 2014; 55:305-18. [PMID: 24981173 DOI: 10.1016/j.molcel.2014.05.027] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 02/19/2014] [Accepted: 05/16/2014] [Indexed: 12/22/2022]
Abstract
Tia1/Pub1 is a stress granule component carrying a Q/N-rich prion domain. We provide direct evidence that Tia1 forms a prion in yeast. Moreover, Tia1/Pub1 acts cooperatively with release factor Sup35/eRF3 to establish a two-protein self-propagating state. This two-protein prion driven by the Q/N-rich prion domains of Sup35 and Tia1/Pub1 can be visualized as distinctive line structures along tubulin cytoskeleton. Furthermore, we find that tubulin-associated complex containing Pub1 and Sup35 oligomers normally exists in yeast, and its assembly depends on prion domains of Pub1 and Sup35. This Sup35/Pub1 complex, which also contains TUB1 mRNA and components of translation machinery, is important for the integrity of the tubulin cytoskeleton: PUB1 disruption and Sup35 depletion from the complex lead to cytoskeletal defects. We propose that the complex is implicated in protein synthesis at the site of microtubule assembly. Thus our study identifies the role for prion domains in the assembly of multiprotein complexes.
Collapse
Affiliation(s)
- Xiang Li
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 645 Kolb Research Annex, 1051 Riverside Drive, New York, NY 10032, USA
| | - Joseph B Rayman
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 645 Kolb Research Annex, 1051 Riverside Drive, New York, NY 10032, USA
| | - Eric R Kandel
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 645 Kolb Research Annex, 1051 Riverside Drive, New York, NY 10032, USA; Department of Psychiatry, College of Physicians and Surgeons of Columbia University, New York State Psychiatric Institute, New York, NY 10032, USA; Kavli Institute for Brain Science, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA; Howard Hughes Medical Institute, College of Physicians and Surgeons of Columbia University, New York, NY 10032, USA.
| | - Irina L Derkatch
- Department of Neuroscience, College of Physicians and Surgeons of Columbia University, 645 Kolb Research Annex, 1051 Riverside Drive, New York, NY 10032, USA.
| |
Collapse
|
23
|
Abstract
Multiple prion elements, which are transmitted as heritable protein conformations and often linked to distinct phenotypes, have been identified in the budding yeast, Saccharomyces cerevisiae. It has been shown that overproduction of a prion protein Swi1 can promote the de novo conversion of another yeast prion [PSI(+)] when Sup35 is co-overproduced. However, the mechanism underlying this Pin(+) ([PSI(+)] inducible) activity is not clear. Moreover, how the Swi1 prion ([SWI(+)]) interacts with other yeast prions is unknown. Here, we demonstrate that the Pin(+) activity associated with Swi1 overproduction is independent of Rnq1 expression or [PIN(+)] conversion. We also show that [SWI(+)] enhances the appearance of [PSI(+)] and [PIN(+)]. However, [SWI(+)] significantly compromises the Pin(+) activity of [PIN(+)] when they coexist. We further demonstrate that a single yeast cell can harbor three prions, [PSI(+)], [PIN(+)], and [SWI(+)], simultaneously. However, under this condition, [SWI(+)] is significantly destabilized. While the propensity to aggregate underlies prionogenesis, Swi1 and Rnq1 aggregates resulting from overproduction are usually nonheritable. Conversely, prion protein aggregates formed in nonoverexpressing conditions or induced by preexisting prion(s) are more prionogenic. For [PSI(+)] and [PIN(+)] de novo formation, heterologous "facilitators," such as preexisting [SWI(+)] aggregates, colocalize only with the newly formed ring-/rod-shaped Sup35 or Rnq1 aggregates, but not with the dot-shaped mature prion aggregates. Their colocalization frequency is coordinated with their prion inducibility, indicating that prion-prion interactions mainly occur at the early initiation stage. Our results provide supportive evidence for the cross-seeding model of prionogenesis and highlight a complex interaction network among prions in yeast.
Collapse
|
24
|
Chernova TA, Wilkinson KD, Chernoff YO. Physiological and environmental control of yeast prions. FEMS Microbiol Rev 2013; 38:326-44. [PMID: 24236638 DOI: 10.1111/1574-6976.12053] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 11/08/2013] [Accepted: 11/10/2013] [Indexed: 11/30/2022] Open
Abstract
Prions are self-perpetuating protein isoforms that cause fatal and incurable neurodegenerative disease in mammals. Recent evidence indicates that a majority of human proteins involved in amyloid and neural inclusion disorders possess at least some prion properties. In lower eukaryotes, such as yeast, prions act as epigenetic elements, which increase phenotypic diversity by altering a range of cellular processes. While some yeast prions are clearly pathogenic, it is also postulated that prion formation could be beneficial in variable environmental conditions. Yeast and mammalian prions have similar molecular properties. Crucial cellular factors and conditions influencing prion formation and propagation were uncovered in the yeast models. Stress-related chaperones, protein quality control deposits, degradation pathways, and cytoskeletal networks control prion formation and propagation in yeast. Environmental stresses trigger prion formation and loss, supposedly acting via influencing intracellular concentrations of the prion-inducing proteins, and/or by localizing prionogenic proteins to the prion induction sites via heterologous ancillary helpers. Physiological and environmental modulation of yeast prions points to new opportunities for pharmacological intervention and/or prophylactic measures targeting general cellular systems rather than the properties of individual amyloids and prions.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
25
|
Exploring the basis of [PIN(+)] variant differences in [PSI(+)] induction. J Mol Biol 2013; 425:3046-59. [PMID: 23770111 DOI: 10.1016/j.jmb.2013.06.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 05/07/2013] [Accepted: 06/07/2013] [Indexed: 01/12/2023]
Abstract
Certain soluble proteins can form amyloid-like prion aggregates. Indeed, the same protein can make different types of aggregates, called variants. Each variant is heritable because it attracts soluble homologous protein to join its aggregate, which is then broken into seeds (propagons) and transmitted to daughter cells. [PSI(+)] and [PIN(+)] are respectively prion forms of Sup35 and Rnq1. Curiously, [PIN(+)] enhances the de novo induction of [PSI(+)]. Different [PIN(+)] variants do this to dramatically different extents. Here, we investigate the mechanism underlying this effect. Consistent with a heterologous prion cross-seeding model, different [PIN(+)] variants preferentially promoted the appearance of different variants of [PSI(+)]. However, we did not detect this specificity in vitro. Also, [PIN(+)] variant cross-seeding efficiencies were not proportional to the level of Rnq1 coimmunocaptured with Sup35 or to the number of [PIN(+)] propagons characteristic for that variant. This leads us to propose that [PIN(+)] variants differ in the cross-seeding quality of their seeds, following the Sup35/[PIN(+)] binding step.
Collapse
|
26
|
Kryndushkin D, Ihrke G, Piermartiri TC, Shewmaker F. A yeast model of optineurin proteinopathy reveals a unique aggregation pattern associated with cellular toxicity. Mol Microbiol 2012; 86:1531-47. [DOI: 10.1111/mmi.12075] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Dmitry Kryndushkin
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| | - Gudrun Ihrke
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| | - Tetsade C. Piermartiri
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| | - Frank Shewmaker
- Department of Pharmacology; Uniformed Services University of the Health Sciences; Bethesda; MD; 20814; USA
| |
Collapse
|
27
|
Winkler J, Tyedmers J, Bukau B, Mogk A. Hsp70 targets Hsp100 chaperones to substrates for protein disaggregation and prion fragmentation. ACTA ACUST UNITED AC 2012; 198:387-404. [PMID: 22869599 PMCID: PMC3413357 DOI: 10.1083/jcb.201201074] [Citation(s) in RCA: 177] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The Hsp70 system recruits ClpB/Hsp104 to the surface of stress-induced protein aggregates and prion fibrils. Hsp100 and Hsp70 chaperones in bacteria, yeast, and plants cooperate to reactivate aggregated proteins. Disaggregation relies on Hsp70 function and on ATP-dependent threading of aggregated polypeptides through the pore of the Hsp100 AAA+ hexamer. In yeast, both chaperones also promote propagation of prions by fibril fragmentation, but their functional interplay is controversial. Here, we demonstrate that Hsp70 chaperones were essential for species-specific targeting of their Hsp100 partner chaperones ClpB and Hsp104, respectively, to heat-induced protein aggregates in vivo. Hsp70 inactivation in yeast also abrogated Hsp104 targeting to almost all prions tested and reduced fibril mobility, which indicates that fibril fragmentation by Hsp104 requires Hsp70. The Sup35 prion was unique in allowing Hsp70-independent association of Hsp104 via its N-terminal domain, which, however, was nonproductive. Hsp104 overproduction even outcompeted Hsp70 for Sup35 prion binding, which explains why this condition prevented Sup35 fragmentation and caused prion curing. Our findings indicate a conserved mechanism of Hsp70–Hsp100 cooperation at the surface of protein aggregates and prion fibrils.
Collapse
Affiliation(s)
- Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, Heidelberg D-69120, Germany
| | | | | | | |
Collapse
|
28
|
Sharma J, Liebman SW. [PSI(+) ] prion variant establishment in yeast. Mol Microbiol 2012; 86:866-81. [PMID: 22998111 DOI: 10.1111/mmi.12024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
Abstract
Differences in the clinical pathology of mammalian prion diseases reflect distinct heritable conformations of aggregated PrP proteins, called prion strains. Here, using the yeast [PSI(+) ] prion, we examine the de novo establishment of prion strains (called variants in yeast). The [PSI(+) ] prion protein, Sup35, is efficiently induced to take on numerous prion variant conformations following transient overexpression of Sup35 in the presence of another prion, e.g. [PIN(+) ]. One hypothesis is that the first [PSI(+) ] prion seed to arise in a cell causes propagation of only that seed's variant, but that different variants could be initiated in different cells. However, we now show that even within a single cell, Sup35 retains the potential to fold into more than one variant type. When individual cells segregating different [PSI(+) ] variants were followed in pedigrees, establishment of a single variant phenotype generally occurred in daughters, granddaughters or great-granddaughters - but in 5% of the pedigrees cells continued to segregate multiple variants indefinitely. The data are consistent with the idea that many newly formed prions go through a maturation phase before they reach a single specific variant conformation. These findings may be relevant to mammalian PrP prion strain establishment and adaptation.
Collapse
Affiliation(s)
- Jaya Sharma
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | |
Collapse
|
29
|
Saibil HR, Seybert A, Habermann A, Winkler J, Eltsov M, Perkovic M, Castaño-Diez D, Scheffer MP, Haselmann U, Chlanda P, Lindquist S, Tyedmers J, Frangakis AS. Heritable yeast prions have a highly organized three-dimensional architecture with interfiber structures. Proc Natl Acad Sci U S A 2012; 109:14906-14911. [PMID: 22927413 PMCID: PMC3443181 DOI: 10.1073/pnas.1211976109] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024] Open
Abstract
Yeast prions constitute a "protein-only" mechanism of inheritance that is widely deployed by wild yeast to create diverse phenotypes. One of the best-characterized prions, [PSI(+)], is governed by a conformational change in the prion domain of Sup35, a translation-termination factor. When this domain switches from its normal soluble form to an insoluble amyloid, the ensuing change in protein synthesis creates new traits. Two factors make these traits heritable: (i) the amyloid conformation is self-templating; and (ii) the protein-remodeling factor heat-shock protein (Hsp)104 (acting together with Hsp70 chaperones) partitions the template to daughter cells with high fidelity. Prions formed by several other yeast proteins create their own phenotypes but share the same mechanistic basis of inheritance. Except for the amyloid fibril itself, the cellular architecture underlying these protein-based elements of inheritance is unknown. To study the 3D arrangement of prion assemblies in their cellular context, we examined yeast [PSI(+)] prions in the native, hydrated state in situ, taking advantage of recently developed methods for cryosectioning of vitrified cells. Cryo-electron tomography of the vitrified sections revealed the prion assemblies as aligned bundles of regularly spaced fibrils in the cytoplasm with no bounding structures. Although the fibers were widely spaced, other cellular complexes, such as ribosomes, were excluded from the fibril arrays. Subtomogram image averaging, made possible by the organized nature of the assemblies, uncovered the presence of an additional array of densities between the fibers. We suggest these structures constitute a self-organizing mechanism that coordinates fiber deposition and the regulation of prion inheritance.
Collapse
Affiliation(s)
- Helen R. Saibil
- Crystallography and Institute for Structural and Molecular Biology, Birkbeck College, London WC1E 7HX, United Kingdom
| | - Anja Seybert
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Anja Habermann
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Juliane Winkler
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Mikhail Eltsov
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Mario Perkovic
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
| | - Daniel Castaño-Diez
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Margot P. Scheffer
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Uta Haselmann
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Petr Chlanda
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| | - Susan Lindquist
- Whitehead Institute and Howard Hughes Medical Institute (HHMI), Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg and German Cancer Research Center, DKFZ-ZMBH Alliance, Universität Heidelberg, D-69120 Heidelberg, Germany
| | - Achilleas S. Frangakis
- Institut für Biophysik and Frankfurt Institute for Molecular Life Sciences (FMLS), Johann Wolfgang Goethe Universität, D-60438 Frankfurt, Germany
- European Molecular Biology Laboratory (EMBL), D-69117 Heidelberg, Germany; and
| |
Collapse
|
30
|
Verma M, Sharma A, Naidu S, Bhadra AK, Kukreti R, Taneja V. Curcumin prevents formation of polyglutamine aggregates by inhibiting Vps36, a component of the ESCRT-II complex. PLoS One 2012; 7:e42923. [PMID: 22880132 PMCID: PMC3413662 DOI: 10.1371/journal.pone.0042923] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 07/13/2012] [Indexed: 01/07/2023] Open
Abstract
Small molecules with antioxidative properties have been implicated in amyloid disorders. Curcumin is the active ingredient present in turmeric and known for several biological and medicinal effects. Adequate evidence substantiates the importance of curcumin in Alzheimer's disease and recent evidence suggests its role in Prion and Parkinson's disease. However, contradictory effects have been suggested for Huntington's disease. This difference provided a compelling reason to investigate the effect of curcumin on glutamine-rich (Q-rich) and non-glutamine-rich (non Q-rich) amyloid aggregates in the well established yeast model system. Curcumin significantly inhibited the formation of htt72Q-GFP (a Q-rich) and Het-s-GFP (a non Q-rich) aggregates in yeast. We show that curcumin prevents htt72Q-GFP aggregation by down regulating Vps36, a component of the ESCRT-II (Endosomal sorting complex required for transport). Moreover, curcumin disrupted the htt72Q-GFP aggregates that were pre-formed in yeast and cured the yeast prion, [PSI(+)].
Collapse
Affiliation(s)
- Meenakshi Verma
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | - Abhishek Sharma
- Faculty of Chemistry and Biochemistry, Ruhr Universitat, Bochum, Germany
| | - Swarna Naidu
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| | - Ankan Kumar Bhadra
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, S.A.S. Nagar, Punjab, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine, Institute of Genomics and Integrative Biology (CSIR), Mall Road, Delhi, India
| | - Vibha Taneja
- Department of Research, Sir Ganga Ram Hospital, Delhi, India
| |
Collapse
|
31
|
Abstract
The concept of a prion as an infectious self-propagating protein isoform was initially proposed to explain certain mammalian diseases. It is now clear that yeast also has heritable elements transmitted via protein. Indeed, the "protein only" model of prion transmission was first proven using a yeast prion. Typically, known prions are ordered cross-β aggregates (amyloids). Recently, there has been an explosion in the number of recognized prions in yeast. Yeast continues to lead the way in understanding cellular control of prion propagation, prion structure, mechanisms of de novo prion formation, specificity of prion transmission, and the biological roles of prions. This review summarizes what has been learned from yeast prions.
Collapse
Affiliation(s)
- Susan W Liebman
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, Nevada 89557, USA.
| | | |
Collapse
|
32
|
Tyedmers J. Patterns of [PSI (+) ] aggregation allow insights into cellular organization of yeast prion aggregates. Prion 2012; 6:191-200. [PMID: 22449721 DOI: 10.4161/pri.18986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The yeast prion phenomenon is very widespread and mounting evidence suggests that it has an impact on cellular regulatory mechanisms related to phenotypic responses to changing environments. Studying the aggregation patterns of prion amyloids during different stages of the prion life cycle is a first key step to understand major principles of how and where cells generate, organize and turn-over prion aggregates. The induction of the [PSI (+) ] state involves the actin cytoskeleton and quality control compartments such as the Insoluble Protein Deposit (IPOD). An initially unstable transitional induction state can be visualized by overexpression of the prion determinant and displays characteristic large ring- and ribbon-shaped aggregates consisting of poorly fragmented bundles of very long prion fibrils. In the mature prion state, the aggregation pattern is characterized by highly fragmented, shorter prion fibrils that form aggregates, which can be visualized through tagging with fluorescent proteins. The number of aggregates formed varies, ranging from a single large aggregate at the IPOD to multiple smaller ones, depending on several parameters discussed. Aggregate units below the resolution of light microscopy that are detectable by fluorescence correlation spectroscopy are in equilibrium with larger aggregates in this stage and can mediate faithful inheritance of the prion state. Loss of the prion state is often characterized by reduced fragmentation of prion fibrils and fewer, larger aggregates.
Collapse
Affiliation(s)
- Jens Tyedmers
- Center for Molecular Biology of the University of Heidelberg (ZMBH, Heidelberg, Germany.
| |
Collapse
|
33
|
Cofactor molecules maintain infectious conformation and restrict strain properties in purified prions. Proc Natl Acad Sci U S A 2012; 109:E1938-46. [PMID: 22711839 DOI: 10.1073/pnas.1206999109] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Prions containing misfolded prion protein (PrP(Sc)) can be formed with cofactor molecules using the technique of serial protein misfolding cyclic amplification. However, it remains unknown whether cofactors materially participate in maintaining prion conformation and infectious properties. Here we show that withdrawal of cofactor molecules during serial propagation of purified recombinant prions caused adaptation of PrP(Sc) structure accompanied by a reduction in specific infectivity of >10(5)-fold, to undetectable levels, despite the ability of adapted "protein-only" PrP(Sc) molecules to self-propagate in vitro. We also report that changing only the cofactor component of a minimal reaction substrate mixture during serial propagation induced major changes in the strain properties of an infectious recombinant prion. Moreover, propagation with only one functional cofactor (phosphatidylethanolamine) induced the conversion of three distinct strains into a single strain with unique infectious properties and PrP(Sc) structure. Taken together, these results indicate that cofactor molecules can regulate the defining features of mammalian prions: PrP(Sc) conformation, infectivity, and strain properties. These findings suggest that cofactor molecules likely are integral components of infectious prions.
Collapse
|
34
|
Treusch S, Lindquist S. An intrinsically disordered yeast prion arrests the cell cycle by sequestering a spindle pole body component. ACTA ACUST UNITED AC 2012; 197:369-79. [PMID: 22529103 PMCID: PMC3341155 DOI: 10.1083/jcb.201108146] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intrinsically disordered proteins play causative roles in many human diseases. Their overexpression is toxic in many organisms, but the causes of toxicity are opaque. In this paper, we exploit yeast technologies to determine the root of toxicity for one such protein, the yeast prion Rnq1. This protein is profoundly toxic when overexpressed but only in cells carrying the endogenous Rnq1 protein in its [RNQ(+)] prion (amyloid) conformation. Surprisingly, toxicity was not caused by general proteotoxic stress. Rather, it involved a highly specific mitotic arrest mediated by the Mad2 cell cycle checkpoint. Monopolar spindles accumulated as a result of defective duplication of the yeast centrosome (spindle pole body [SPB]). This arose from selective Rnq1-mediated sequestration of the core SPB component Spc42 in the insoluble protein deposit (IPOD). Rnq1 does not normally participate in spindle pole dynamics, but it does assemble at the IPOD when aggregated. Our work illustrates how the promiscuous interactions of an intrinsically disordered protein can produce highly specific cellular toxicities through illicit, yet highly specific, interactions with the proteome.
Collapse
Affiliation(s)
- Sebastian Treusch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | | |
Collapse
|
35
|
Chernova TA, Romanyuk AV, Karpova TS, Shanks JR, Ali M, Moffatt N, Howie RL, O'Dell A, McNally JG, Liebman SW, Chernoff YO, Wilkinson KD. Prion induction by the short-lived, stress-induced protein Lsb2 is regulated by ubiquitination and association with the actin cytoskeleton. Mol Cell 2012; 43:242-52. [PMID: 21777813 DOI: 10.1016/j.molcel.2011.07.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 03/23/2011] [Accepted: 07/05/2011] [Indexed: 02/05/2023]
Abstract
Yeast prions are self-perpetuating, QN-rich amyloids that control heritable traits and serve as a model for mammalian amyloidoses. De novo prion formation by overproduced prion protein is facilitated by other aggregated QN-rich protein(s) and is influenced by alterations of protein homeostasis. Here we explore the mechanism by which the Las17-binding protein Lsb2 (Pin3) promotes conversion of the translation termination factor Sup35 into its prion form, [PSI(+)]. We show that Lsb2 localizes with some Sup35 aggregates and that Lsb2 is a short-lived protein whose levels are controlled via the ubiquitin-proteasome system and are dramatically increased by stress. Loss of Lsb2 decreases stability of [PSI(+)] after brief heat shock. Mutations interfering with Lsb2 ubiquitination increase prion induction, while a mutation eliminating association of Lsb2 with the actin cytoskeleton blocks its aggregation and prion-inducing ability. These findings directly implicate the UPS and actin cytoskeleton in regulating prions via a stress-inducible QN-rich protein.
Collapse
Affiliation(s)
- Tatiana A Chernova
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Abstract
We detail some of the genetic, biochemical, and physical methods useful in studying amyloids in yeast, particularly the yeast prions. These methods include cytoduction (cytoplasmic mixing), infection of cells with prion amyloids, use of green fluorescent protein fusions with amyloid-forming proteins for cytology, protein purification and amyloid formation, and electron microscopy of filaments.
Collapse
|
37
|
Benkemoun L, Ness F, Sabaté R, Ceschin J, Breton A, Clavé C, Saupe SJ. Two structurally similar fungal prions efficiently cross-seed in vivo but form distinct polymers when coexpressed. Mol Microbiol 2011; 82:1392-405. [PMID: 22050595 DOI: 10.1111/j.1365-2958.2011.07893.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
HET-s is a prion protein of the filamentous fungus Podospora anserina. An orthologue of this protein, called FgHET-s has been identified in Fusarium graminearum. The region of the FgHET-s protein corresponding to the prion forming domain of HET-s, forms amyloid fibrils in vitro. These fibrils seed HET-s(218-289) fibril formation in vitro and vice versa. The amyloid fold of HET-s(218-289) and FgHET-s(218-289) are remarkably similar although they share only 38% identity. The present work corresponds to the functional characterization of the FgHET-s(218-289) region as a prion forming domain in vivo. We show that FgHET-s(218-289) is capable of prion propagation in P. anserina and is able to substitute for the HET-s PFD in the full-length HET-s protein. In accordance with the in vitro cross-seeding experiments, we detect no species barrier between P. anserina and F. graminearum PFDs. We use the yeast Saccharomyces cerevisiae as a host to compare the prion performances of the two orthologous PFDs. We find that FgHET-s(218-289) leads to higher spontaneous prion formation rates and mitotic prion stability than HET-s(218-289). Then we analysed the outcome of HET-s(218-289)/FgHET-s(218-289) coexpression. In spite of the cross-seeding ability of HET-s(218-289) and FgHET-s(218-289), in vivo, homotypic polymerization is favoured over mixed fibril formation.
Collapse
Affiliation(s)
- Laura Benkemoun
- Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS - Université de Bordeaux 2, 1 rue Camille St Saens, 33077 Bordeaux cedex, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Localization of HET-S to the cell periphery, not to [Het-s] aggregates, is associated with [Het-s]-HET-S toxicity. Mol Cell Biol 2011; 32:139-53. [PMID: 22037764 DOI: 10.1128/mcb.06125-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Prion diseases are associated with accumulation of the amyloid form of the prion protein, but the mechanisms of toxicity are unknown. Amyloid toxicity is also associated with fungal prions. In Podospora anserina, the simultaneous presence of [Het-s] prion and its allelic protein HET-S causes cell death in a self-/nonself-discrimination process. Here, using the prion form of a fragment of HET-s ([PrD(157)(+)]), we show that [Het-s]-HET-S toxicity can be faithfully recapitulated in yeast. Overexpression of Hsp40 chaperone, Sis1, rescues this toxicity by curing cells of [PrD(157)(+)]. We find no evidence for toxic [PrD(157)(+)] conformers in the presence of HET-S. Instead, [PrD(157)(+)] appears to seed HET-S to accumulate at the cell periphery and to form aggregates distinct from visible [PrD(157)(+)] aggregates. Furthermore, HET-S mutants that cause HET-S to be sequestered into [PrD(157)(+)] prion aggregates are not toxic. The localization of HET-S at the cell periphery and its association with cell death was also observed in the native host Podospora anserina. Thus, upon interaction with [Het-s], HET-S localizes to the cell periphery, and this relocalization, rather than the formation of mixed HET-s/HET-S aggregates, is associated with toxicity.
Collapse
|
39
|
Manogaran AL, Hong JY, Hufana J, Tyedmers J, Lindquist S, Liebman SW. Prion formation and polyglutamine aggregation are controlled by two classes of genes. PLoS Genet 2011; 7:e1001386. [PMID: 21625618 PMCID: PMC3098188 DOI: 10.1371/journal.pgen.1001386] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 04/14/2011] [Indexed: 11/20/2022] Open
Abstract
Prions are self-perpetuating aggregated proteins that are not limited to mammalian systems but also exist in lower eukaryotes including yeast. While much work has focused around chaperones involved in prion maintenance, including Hsp104, little is known about factors involved in the appearance of prions. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by transient overexpression of SUP35 in the presence of the prion form of the Rnq1 protein, [PIN+]. When fused to GFP and overexpressed in [ps−] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings bud off [PSI+] daughters. We investigated the effects of over 400 gene deletions on this de novo induction of [PSI+]. Two classes of gene deletions were identified. Class I deletions (bug1Δ, bem1Δ, arf1Δ, and hog1Δ) reduced the efficiency of [PSI+] induction, but formed rings normally. Class II deletions (las17Δ, vps5Δ, and sac6Δ) inhibited both [PSI+] induction and ring formation. Furthermore, class II deletions reduced, while class I deletions enhanced, toxicity associated with the expanded glutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. This suggests that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps. Certain proteins that exist in functional unaggregated conformers can also form self-perpetuating infectious aggregates called prions. Here we investigate factors involved in the initial switch to the prion form. De novo appearance of the [PSI+] prion, which is the aggregated form of the Sup35 protein, is dramatically enhanced by overexpression of the SUP35 gene in the presence of the prion form of the Rnq1 protein, [PIN+]. When tagged with green fluorescent protein and transiently overexpressed in [psi−] [PIN+] cells, Sup35 forms fluorescent rings, and cells with these rings give rise to daughter cells that are [PSI+]. Here, we investigate factors required for this induction of [PSI+]. Analyses of over 400 gene deletions revealed two classes that reduce [PSI+] induction: one class forms fluorescent rings normally, and the other does not. Interestingly, the former class enhanced, while the latter class reduced, toxicity associated with the expanded polyglutamine repeats of the huntingtin protein exon 1 that causes Huntington's disease. These results suggest that prion formation and polyglutamine aggregation involve a multi-phase process that can be inhibited at different steps.
Collapse
Affiliation(s)
- Anita L. Manogaran
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, United States of America
| | - Joo Y. Hong
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Joan Hufana
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Jens Tyedmers
- Zentrum fuer Molekulare Biologie Heidelberg, DKFZ-ZMBH-Alliance, Universitaet Heidelberg, Heidelberg, Germany
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Susan Lindquist
- Whitehead Institute for Biomedical Research and Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Susan W. Liebman
- Department of Biological Sciences, Laboratory for Molecular Biology, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
40
|
Saupe SJ. The [Het-s] prion of Podospora anserina and its role in heterokaryon incompatibility. Semin Cell Dev Biol 2011; 22:460-8. [PMID: 21334447 DOI: 10.1016/j.semcdb.2011.02.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Accepted: 02/10/2011] [Indexed: 11/29/2022]
Abstract
[Het-s] is a prion from the filamentous fungus Podospora anserina and corresponds to a self-perpetuating amyloid aggregate of the HET-s protein. This prion protein is involved in a fungal self/non-self discrimination process termed heterokaryon incompatibility corresponding to a cell death reaction occurring upon fusion of genetically unlike strains. Two antagonistic allelic variants of this protein exist: HET-s, the prion form of which corresponds to [Het-s] and HET-S, incapable of prion formation. Fusion of a [Het-s] and HET-S strain triggers the incompatibility reaction, so that interaction of HET-S with the [Het-s] prion leads to cell death. HET-s and HET-S are highly homologous two domain proteins with a N-terminal globular domain termed HeLo and a C-terminal unstructured prion forming domain (PFD). The structure of the prion form of the HET-s PFD has been solved by solid state NMR and corresponds to a very well ordered β-solenoid fold with a triangular hydrophobic core. The ability to form this β-solenoid fold is retained in a distant homolog of HET-s from another fungal species. A model for the mechanism of [Het-s]/HET-S incompatibility has been proposed. It is believe that when interacting with the [Het-s] prion seed, the HET-S C-terminal region adopts the β-solenoid fold. This would act as a conformational switch to induce refolding and activation of the HeLo domain which then would exert its toxicity by a yet unknown mechanism.
Collapse
Affiliation(s)
- Sven J Saupe
- Non-self recognition in fungi, Institut de Biochimie et de Génétique Cellulaire, UMR 5095, CNRS-Université de Bordeaux 2, 1 rue Camille St Saens, Bordeaux cedex, France.
| |
Collapse
|
41
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|