1
|
Partscht P, Schiebel E. The diverging role of CDC14B: from mitotic exit in yeast to cell fate control in humans. EMBO J 2023; 42:e114364. [PMID: 37493185 PMCID: PMC10425841 DOI: 10.15252/embj.2023114364] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/22/2023] [Accepted: 07/07/2023] [Indexed: 07/27/2023] Open
Abstract
CDC14, originally identified as crucial mediator of mitotic exit in budding yeast, belongs to the family of dual-specificity phosphatases (DUSPs) that are present in most eukaryotes. Contradicting data have sparked a contentious discussion whether a cell cycle role is conserved in the human paralogs CDC14A and CDC14B but possibly masked due to redundancy. Subsequent studies on CDC14A and CDC14B double knockouts in human and mouse demonstrated that CDC14 activity is dispensable for mitotic progression in higher eukaryotes and instead suggested functional specialization. In this review, we provide a comprehensive overview of our current understanding of how faithful cell division is linked to phosphorylation and dephosphorylation and compare functional similarities and divergences between the mitotic phosphatases CDC14, PP2A, and PP1 from yeast and higher eukaryotes. Furthermore, we review the latest discoveries on CDC14B, which identify this nuclear phosphatase as a key regulator of gene expression and reveal its role in neuronal development. Finally, we discuss CDC14B functions in meiosis and possible implications in other developmental processes.
Collapse
Affiliation(s)
- Patrick Partscht
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| | - Elmar Schiebel
- Zentrum für Molekulare BiologieUniversität Heidelberg, DKFZ‐ZMBH AllianzHeidelbergGermany
| |
Collapse
|
2
|
Wang Q, Bode AM, Zhang T. Targeting CDK1 in cancer: mechanisms and implications. NPJ Precis Oncol 2023; 7:58. [PMID: 37311884 DOI: 10.1038/s41698-023-00407-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/25/2023] [Indexed: 06/15/2023] Open
Abstract
Cyclin dependent kinases (CDKs) are serine/threonine kinases that are proposed as promising candidate targets for cancer treatment. These proteins complexed with cyclins play a critical role in cell cycle progression. Most CDKs demonstrate substantially higher expression in cancer tissues compared with normal tissues and, according to the TCGA database, correlate with survival rate in multiple cancer types. Deregulation of CDK1 has been shown to be closely associated with tumorigenesis. CDK1 activation plays a critical role in a wide range of cancer types; and CDK1 phosphorylation of its many substrates greatly influences their function in tumorigenesis. Enrichment of CDK1 interacting proteins with Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis was conducted to demonstrate that the associated proteins participate in multiple oncogenic pathways. This abundance of evidence clearly supports CDK1 as a promising target for cancer therapy. A number of small molecules targeting CDK1 or multiple CDKs have been developed and evaluated in preclinical studies. Notably, some of these small molecules have also been subjected to human clinical trials. This review evaluates the mechanisms and implications of targeting CDK1 in tumorigenesis and cancer therapy.
Collapse
Affiliation(s)
- Qiushi Wang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA
| | - Ann M Bode
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| | - Tianshun Zhang
- The Hormel Institute, University of Minnesota, 801 16th Ave NE, Austin, MN, 55912, USA.
| |
Collapse
|
3
|
The CWI Pathway: A Versatile Toolbox to Arrest Cell-Cycle Progression. J Fungi (Basel) 2021; 7:jof7121041. [PMID: 34947023 PMCID: PMC8704918 DOI: 10.3390/jof7121041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 02/02/2023] Open
Abstract
Cell-signaling pathways are essential for cells to respond and adapt to changes in their environmental conditions. The cell-wall integrity (CWI) pathway of Saccharomyces cerevisiae is activated by environmental stresses, compounds, and morphogenetic processes that compromise the cell wall, orchestrating the appropriate cellular response to cope with these adverse conditions. During cell-cycle progression, the CWI pathway is activated in periods of polarized growth, such as budding or cytokinesis, regulating cell-wall biosynthesis and the actin cytoskeleton. Importantly, accumulated evidence has indicated a reciprocal regulation of the cell-cycle regulatory system by the CWI pathway. In this paper, we describe how the CWI pathway regulates the main cell-cycle transitions in response to cell-surface perturbance to delay cell-cycle progression. In particular, it affects the Start transcriptional program and the initiation of DNA replication at the G1/S transition, and entry and progression through mitosis. We also describe the involvement of the CWI pathway in the response to genotoxic stress and its connection with the DNA integrity checkpoint, the mechanism that ensures the correct transmission of genetic material and cell survival. Thus, the CWI pathway emerges as a master brake that stops cell-cycle progression when cells are coping with distinct unfavorable conditions.
Collapse
|
4
|
Galli M, Diani L, Quadri R, Nespoli A, Galati E, Panigada D, Plevani P, Muzi-Falconi M. Haspin Modulates the G2/M Transition Delay in Response to Polarization Failures in Budding Yeast. Front Cell Dev Biol 2021; 8:625717. [PMID: 33585466 PMCID: PMC7876276 DOI: 10.3389/fcell.2020.625717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 01/25/2023] Open
Abstract
Symmetry breaking by cellular polarization is an exquisite requirement for the cell-cycle of Saccharomyces cerevisiae cells, as it allows bud emergence and growth. This process is based on the formation of polarity clusters at the incipient bud site, first, and the bud tip later in the cell-cycle, that overall promote bud emission and growth. Given the extreme relevance of this process, a surveillance mechanism, known as the morphogenesis checkpoint, has evolved to coordinate the formation of the bud and cell cycle progression, delaying mitosis in the presence of morphogenetic problems. The atypical protein kinase haspin is responsible for histone H3-T3 phosphorylation and, in yeast, for resolution of polarity clusters in mitosis. Here, we report a novel role for haspin in the regulation of the morphogenesis checkpoint in response to polarity insults. Particularly, we show that cells lacking the haspin ortholog Alk1 fail to achieve sustained checkpoint activation and enter mitosis even in the absence of a bud. In alk1Δ cells, we report a reduced phosphorylation of Cdc28-Y19, which stems from a premature activation of the Mih1 phosphatase. Overall, the data presented in this work define yeast haspin as a novel regulator of the morphogenesis checkpoint in Saccharomyces cerevisiae, where it monitors polarity establishment and it couples bud emergence to the G2/M cell cycle transition.
Collapse
Affiliation(s)
- Martina Galli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Laura Diani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Roberto Quadri
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Alessandro Nespoli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Elena Galati
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Davide Panigada
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Paolo Plevani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Marco Muzi-Falconi
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Víglaš J, Olejníková P. Signalling mechanisms involved in stress response to antifungal drugs. Res Microbiol 2020; 172:103786. [PMID: 33038529 DOI: 10.1016/j.resmic.2020.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/24/2020] [Accepted: 10/01/2020] [Indexed: 01/28/2023]
Abstract
The emergence of antifungal resistance is a serious threat in the treatment of mycoses. The primary susceptible fungal cells may evolve a resistance after longer exposure to antifungal agents. The exposure itself causes stress condition, to which the fungus needs to adapt. This review provides detailed description of evolutionary conserved molecular mechanisms contributing to the adaptation response to stress caused by antifungal agents as well as their interconnection. The knowledge may help us to find new ways to delay the emergence of drug resistance as the same mechanisms are used regardless of what antifungal compound causes stress.
Collapse
Affiliation(s)
- Ján Víglaš
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| | - Petra Olejníková
- Institute of Biochemistry and Microbiology, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinského 9, 81237, Bratislava, Slovakia.
| |
Collapse
|
6
|
Ariño J, Velázquez D, Casamayor A. Ser/Thr protein phosphatases in fungi: structure, regulation and function. MICROBIAL CELL 2019; 6:217-256. [PMID: 31114794 PMCID: PMC6506691 DOI: 10.15698/mic2019.05.677] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reversible phospho-dephosphorylation of proteins is a major mechanism for the control of cellular functions. By large, Ser and Thr are the most frequently residues phosphorylated in eukar-yotes. Removal of phosphate from these amino acids is catalyzed by a large family of well-conserved enzymes, collectively called Ser/Thr protein phosphatases. The activity of these enzymes has an enormous impact on cellular functioning. In this work we pre-sent the members of this family in S. cerevisiae and other fungal species, and review the most recent findings concerning their regu-lation and the roles they play in the most diverse aspects of cell biology.
Collapse
Affiliation(s)
- Joaquín Ariño
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Diego Velázquez
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Antonio Casamayor
- Departament de Bioquímica i Biologia Molecular and Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|
7
|
Baro B, Játiva S, Calabria I, Vinaixa J, Bech-Serra JJ, de LaTorre C, Rodrigues J, Hernáez ML, Gil C, Barceló-Batllori S, Larsen MR, Queralt E. SILAC-based phosphoproteomics reveals new PP2A-Cdc55-regulated processes in budding yeast. Gigascience 2018; 7:4982941. [PMID: 29688323 PMCID: PMC5967524 DOI: 10.1093/gigascience/giy047] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 04/18/2018] [Indexed: 01/12/2023] Open
Abstract
Background Protein phosphatase 2A (PP2A) is a family of conserved serine/threonine phosphatases involved in several essential aspects of cell growth and proliferation. PP2ACdc55 phosphatase has been extensively related to cell cycle events in budding yeast; however, few PP2ACdc55 substrates have been identified. Here, we performed a quantitative mass spectrometry approach to reveal new substrates of PP2ACdc55 phosphatase and new PP2A-related processes in mitotic arrested cells. Results We identified 62 statistically significant PP2ACdc55 substrates involved mainly in actin-cytoskeleton organization. In addition, we validated new PP2ACdc55 substrates such as Slk19 and Lte1, involved in early and late anaphase pathways, and Zeo1, a component of the cell wall integrity pathway. Finally, we constructed docking models of Cdc55 and its substrate Mob1. We found that the predominant interface on Cdc55 is mediated by a protruding loop consisting of residues 84–90, thus highlighting the relevance of these aminoacids for substrate interaction. Conclusions We used phosphoproteomics of Cdc55-deficient cells to uncover new PP2ACdc55 substrates and functions in mitosis. As expected, several hyperphosphorylated proteins corresponded to Cdk1-dependent substrates, although other kinases’ consensus motifs were also enriched in our dataset, suggesting that PP2ACdc55 counteracts and regulates other kinases distinct from Cdk1. Indeed, Pkc1 emerged as a novel node of PP2ACdc55 regulation, highlighting a major role of PP2ACdc55 in actin cytoskeleton and cytokinesis, gene ontology terms significantly enriched in the PP2ACdc55-dependent phosphoproteome.
Collapse
Affiliation(s)
- Barbara Baro
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Soraya Játiva
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Inés Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Judith Vinaixa
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Joan-Josep Bech-Serra
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Carolina de LaTorre
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - João Rodrigues
- Structural Biology Department, School of Medicine, Stanford, California, USA
| | - María Luisa Hernáez
- Proteomics Unit, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Proteomics Unit, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Barceló-Batllori
- IDIBELL Proteomics Unit, Institut d'Investigacions Biomèdica de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Martin R Larsen
- Department of Biochemistry and Molecular Biology, Odense M, Denmark
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program, Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
8
|
Gihana GM, Musser TR, Thompson O, Lacefield S. Prolonged cyclin-dependent kinase inhibition results in septin perturbations during return to growth and mitosis. J Cell Biol 2018; 217:2429-2443. [PMID: 29743192 PMCID: PMC6028541 DOI: 10.1083/jcb.201708153] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 03/01/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
By investigating how yeast cells coordinate polarity and division in a special type of cell division called return to growth, Gihana et al. discover that although checkpoints are normally beneficial, prolonged activation of the morphogenesis checkpoint is instead detrimental to the cell. We investigated how Saccharomyces cerevisiae coordinate polarization, budding, and anaphase during a unique developmental program called return to growth (RTG) in which cells in meiosis return to mitosis upon nutrient shift. Cells reentering mitosis from prophase I deviate from the normal cell cycle by budding in G2 instead of G1. We found that cells do not maintain the bipolar budding pattern, a characteristic of diploid cells. Furthermore, strict temporal regulation of M-phase cyclin-dependent kinase (CDK; M-CDK) is important for polarity establishment and morphogenesis. Cells with premature M-CDK activity caused by loss of checkpoint kinase Swe1 failed to polarize and underwent anaphase without budding. Mutants with increased Swe1-dependent M-CDK inhibition showed additional or more penetrant phenotypes in RTG than mitosis, including elongated buds, multiple buds, spindle mispositioning, and septin perturbation. Surprisingly, the enhanced and additional phenotypes were not exclusive to RTG but also occurred with prolonged Swe1-dependent CDK inhibition in mitosis. Our analysis reveals that prolonged activation of the Swe1-dependent checkpoint can be detrimental instead of beneficial.
Collapse
Affiliation(s)
| | | | - Oscar Thompson
- Department of Biology, Indiana University, Bloomington, IN
| | - Soni Lacefield
- Department of Biology, Indiana University, Bloomington, IN
| |
Collapse
|
9
|
Lucena R, Alcaide-Gavilán M, Anastasia SD, Kellogg DR. Wee1 and Cdc25 are controlled by conserved PP2A-dependent mechanisms in fission yeast. Cell Cycle 2017; 16:428-435. [PMID: 28103117 DOI: 10.1080/15384101.2017.1281476] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Wee1 and Cdc25 are conserved regulators of mitosis. Wee1 is a kinase that delays mitosis via inhibitory phosphorylation of Cdk1, while Cdc25 is a phosphatase that promotes mitosis by removing the inhibitory phosphorylation. Although Wee1 and Cdc25 are conserved proteins, it has remained unclear whether their functions and regulation are conserved across diverse species. Here, we analyzed regulation of Wee1 and Cdc25 in fission yeast. Both proteins undergo dramatic cell cycle-dependent changes in phosphorylation that are dependent upon PP2A associated with the regulatory subunit Pab1. The mechanisms that control Wee1 and Cdc25 in fission yeast appear to share similarities to those in budding yeast and vertebrates, which suggests that there may be common mechanisms that control mitotic entry in all eukaryotic cells.
Collapse
Affiliation(s)
- Rafael Lucena
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| | - Maria Alcaide-Gavilán
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| | - Steph D Anastasia
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| | - Douglas R Kellogg
- a Department of Molecular, Cell, and Developmental Biology , University of California , Santa Cruz, Santa Cruz , CA , USA
| |
Collapse
|
10
|
Thai V, Dephoure N, Weiss A, Ferguson J, Leitao R, Gygi SP, Kellogg DR. Protein Kinase C Controls Binding of Igo/ENSA Proteins to Protein Phosphatase 2A in Budding Yeast. J Biol Chem 2017; 292:4925-4941. [PMID: 28100785 DOI: 10.1074/jbc.m116.753004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 01/09/2017] [Indexed: 11/06/2022] Open
Abstract
Protein phosphatase 2A (PP2A) plays important roles in controlling mitosis in all eukaryotic cells. The form of PP2A that controls mitosis is associated with a conserved regulatory subunit that is called B55 in vertebrates and Cdc55 in budding yeast. The activity of this form of PP2A can be inhibited by binding of conserved Igo/ENSA proteins. Although the mechanisms that activate Igo/ENSA to bind and inhibit PP2A are well understood, little is known about how Igo/Ensa are inactivated. Here, we have analyzed regulation of Igo/ENSA in the context of a checkpoint pathway that links mitotic entry to membrane growth in budding yeast. Protein kinase C (Pkc1) relays signals in the pathway by activating PP2ACdc55 We discovered that constitutively active Pkc1 can drive cells through a mitotic checkpoint arrest, which suggests that Pkc1-dependent activation of PP2ACdc55 plays a critical role in checkpoint signaling. We therefore used mass spectrometry to determine how Pkc1 modifies the PP2ACdc55 complex. This revealed that Pkc1 induces changes in the phosphorylation of multiple subunits of the complex, as well as dissociation of Igo/ENSA. Pkc1 directly phosphorylates Cdc55 and Igo/ENSA, and phosphorylation site mapping and mutagenesis indicate that phosphorylation of Cdc55 contributes to Igo/ENSA dissociation. Association of Igo2 with PP2ACdc55 is regulated during the cell cycle, yet mutation of Pkc1-dependent phosphorylation sites on Cdc55 and Igo2 did not cause defects in mitotic progression. Together, the data suggest that Pkc1 controls PP2ACdc55 by multiple overlapping mechanisms.
Collapse
Affiliation(s)
- Vu Thai
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Noah Dephoure
- the Department of Biochemistry, Weill Cornell Medical College, New York, New York 10021, and
| | - Amit Weiss
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Jacqueline Ferguson
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Ricardo Leitao
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064
| | - Steven P Gygi
- the Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Douglas R Kellogg
- From the Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064,
| |
Collapse
|
11
|
Tatjer L, González A, Serra-Cardona A, Barceló A, Casamayor A, Ariño J. The Saccharomyces cerevisiae Ptc1 protein phosphatase attenuates G2-M cell cycle blockage caused by activation of the cell wall integrity pathway. Mol Microbiol 2016; 101:671-87. [PMID: 27169355 DOI: 10.1111/mmi.13416] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 01/24/2023]
Abstract
Lack of the yeast Ptc1 Ser/Thr protein phosphatase results in numerous phenotypic defects. A parallel search for high-copy number suppressors of three of these phenotypes (sensitivity to Calcofluor White, rapamycin and alkaline pH), allowed the isolation of 25 suppressor genes, which could be assigned to three main functional categories: maintenance of cell wall integrity (CWI), vacuolar function and protein sorting, and cell cycle regulation. The characterization of these genetic interactions strengthens the relevant role of Ptc1 in downregulating the Slt2-mediated CWI pathway. We show that under stress conditions activating the CWI pathway the ptc1 mutant displays hyperphosphorylated Cdc28 kinase and that these cells accumulate with duplicated DNA content, indicative of a G2-M arrest. Clb2-associated Cdc28 activity was also reduced in ptc1 cells. These alterations are attenuated by mutation of the MKK1 gene, encoding a MAP kinase kinase upstream Slt2. Therefore, our data show that Ptc1 is required for proper G2-M cell cycle transition after activation of the CWI pathway.
Collapse
Affiliation(s)
- Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Asier González
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Albert Serra-Cardona
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Anna Barceló
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Antonio Casamayor
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès 08193, Barcelona, Spain
| |
Collapse
|
12
|
Jonasson EM, Rossio V, Hatakeyama R, Abe M, Ohya Y, Yoshida S. Zds1/Zds2-PP2ACdc55 complex specifies signaling output from Rho1 GTPase. J Cell Biol 2016; 212:51-61. [PMID: 26728856 PMCID: PMC4700482 DOI: 10.1083/jcb.201508119] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Zds1/Zds2–PP2ACdc55 forms a complex with Rho1 GTPase and specifies Rho1 signaling outcome by regulating Rho1 GAPs in budding yeast. Budding yeast Rho1 guanosine triphosphatase (GTPase) plays an essential role in polarized cell growth by regulating cell wall glucan synthesis and actin organization. Upon cell wall damage, Rho1 blocks polarized cell growth and repairs the wounds by activating the cell wall integrity (CWI) Pkc1–mitogen-activated protein kinase (MAPK) pathway. A fundamental question is how active Rho1 promotes distinct signaling outputs under different conditions. Here we identified the Zds1/Zds2–protein phosphatase 2ACdc55 (PP2ACdc55) complex as a novel Rho1 effector that regulates Rho1 signaling specificity. Zds1/Zds2–PP2ACdc55 promotes polarized growth and cell wall synthesis by inhibiting Rho1 GTPase-activating protein (GAP) Lrg1 but inhibits CWI pathway by stabilizing another Rho1 GAP, Sac7, suggesting that active Rho1 is biased toward cell growth over stress response. Conversely, upon cell wall damage, Pkc1–Mpk1 activity inhibits cortical PP2ACdc55, ensuring that Rho1 preferentially activates the CWI pathway for cell wall repair. We propose that PP2ACdc55 specifies Rho1 signaling output and that reciprocal antagonism between Rho1–PP2ACdc55 and Rho1–Pkc1 explains how only one signaling pathway is robustly activated at a time.
Collapse
Affiliation(s)
- Erin M Jonasson
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Riko Hatakeyama
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454
| | - Mitsuhiro Abe
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Yoshikazu Ohya
- Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-8561, Japan
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, Waltham, MA 02454 Gunma University Initiative for Advanced Research and Institute for Molecular and Cellular Regulation, Gunma University, Maebashi 371-8512, Japan
| |
Collapse
|
13
|
Rossio V, Kazatskaya A, Hirabayashi M, Yoshida S. Comparative genetic analysis of PP2A-Cdc55 regulators in budding yeast. Cell Cycle 2014; 13:2073-83. [PMID: 24800822 DOI: 10.4161/cc.29064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cdc55, a regulatory B subunit of the protein phosphatase 2A (PP2A) complex, plays various functions during mitosis. Sequestration of Cdc55 from the nucleus by Zds1 and Zds2 is important for robust activation of mitotic Cdk1 and mitotic progression in budding yeast. However, Zds1-family proteins are found only in fungi but not in higher eukaryotes. In animal cells, highly conserved ENSA/ARPP-19 family proteins bind and inhibit PP2A-B55 activity for mitotic entry. In this study, we compared the relative contribution of Zds1/Zds2 and ENSA-family proteins Igo1/Igo2 on Cdc55 functions in budding yeast mitosis. We confirmed that Igo1/Igo2 can inhibit Cdc55 in early mitosis, but their contribution to Cdc55 regulation is relatively minor compared with the role of Zds1/Zds2. In contrast to Zds1, which primarily localized to the sites of cell polarity and in the cytoplasm, Igo1 is localized in the nucleus, suggesting that Igo1/Igo2 inhibit Cdc55 in a manner distinct from Zds1/Zds2. Our analysis confirmed an evolutionarily conserved function of ENSA-family proteins in inhibiting PP2A-Cdc55, and we propose that Zds1-dependent sequestration of PP2A-Cdc55 from the nucleus is uniquely evolved to facilitate closed mitosis in fungal species.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Anna Kazatskaya
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Mayo Hirabayashi
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; Waltham, MA USA
| |
Collapse
|
14
|
Enciso G, Kellogg DR, Vargas A. Compact modeling of allosteric multisite proteins: application to a cell size checkpoint. PLoS Comput Biol 2014; 10:e1003443. [PMID: 24516371 PMCID: PMC3916233 DOI: 10.1371/journal.pcbi.1003443] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
We explore a framework to model the dose response of allosteric multisite phosphorylation proteins using a single auxiliary variable. This reduction can closely replicate the steady state behavior of detailed multisite systems such as the Monod-Wyman-Changeux allosteric model or rule-based models. Optimal ultrasensitivity is obtained when the activation of an allosteric protein by its individual sites is concerted and redundant. The reduction makes this framework useful for modeling and analyzing biochemical systems in practical applications, where several multisite proteins may interact simultaneously. As an application we analyze a newly discovered checkpoint signaling pathway in budding yeast, which has been proposed to measure cell growth by monitoring signals generated at sites of plasma membrane growth. We show that the known components of this pathway can form a robust hysteretic switch. In particular, this system incorporates a signal proportional to bud growth or size, a mechanism to read the signal, and an all-or-none response triggered only when the signal reaches a threshold indicating that sufficient growth has occurred.
Collapse
Affiliation(s)
- Germán Enciso
- Department of Mathematics, Department of Developmental and Cell Biology, University of California Irvine, Irvine, California, United States of America
| | - Douglas R. Kellogg
- Department of Molecular, Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Arturo Vargas
- Computational and Applied Mathematics Department, Rice University, Houston, Texas, United States of America
| |
Collapse
|
15
|
Abstract
Cell cycle progression is largely controlled by reversible protein phosphorylation mediated by cyclically activated kinases and phosphatases. It has long been known that cyclin B-Cdk1 activation triggers mitotic entry, and the enzymatic network controlling its activation and inactivation has been well characterized. Much more recently protein phosphatase 2A (PP2A) together with its B55 regulatory subunit has been recognized as the major activity dephosphorylating Cdk1 targets. Moreover, PP2A-B55 activity is high in late M phase and interphase, but low at mitotic entry. A series of discoveries in the fly and frog model systems have uncovered the molecular mechanism mediating this regulation. The Greatwall (Gwl) kinase activates endosulfines, which become specific inhibitors of PP2A-B55. Cdk1-dependent activation of Gwl at mitotic entry leads to PP2A-B55 downregulation, which synergizes with Cdk1 activation to promote the phosphorylated states of several mitotic substrates. Much less is known on the mechanisms inactivating Gwl and endosulfines at mitotic exit. Recent reports show the importance of spatiotemporal regulation of Gwl, endosulfines, and PP2A-B55 for cell cycle progression. The various systems and cell types differ in their dependence on the Gwl-PP2A axis for cell cycle progression. Moreover, this pathway also regulates gene expression in yeast, and this function could be conserved in metazoans.
Collapse
Affiliation(s)
- Peng Wang
- Department of Biochemistry, Institut de recherche en immunologie et en cancérologie, Université de Montréal, Édouard-Montpetit Blvd., Montréal, QC, Canada, H3T 1J4
| | | | | |
Collapse
|
16
|
Baro B, Rodriguez-Rodriguez JA, Calabria I, Hernáez ML, Gil C, Queralt E. Dual Regulation of the mitotic exit network (MEN) by PP2A-Cdc55 phosphatase. PLoS Genet 2013; 9:e1003966. [PMID: 24339788 PMCID: PMC3854864 DOI: 10.1371/journal.pgen.1003966] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 10/04/2013] [Indexed: 12/17/2022] Open
Abstract
Exit from mitosis in budding yeast is triggered by activation of the key mitotic phosphatase Cdc14. At anaphase onset, the protease separase and Zds1 promote the downregulation of PP2ACdc55 phosphatase, which facilitates Cdk1-dependent phosphorylation of Net1 and provides the first wave of Cdc14 activity. Once Cdk1 activity starts to decline, the mitotic exit network (MEN) is activated to achieve full Cdc14 activation. Here we describe how the PP2ACdc55 phosphatase could act as a functional link between FEAR and MEN due to its action on Bfa1 and Mob1. We demonstrate that PP2ACdc55 regulates MEN activation by facilitating Cdc5- and Cdk1-dependent phosphorylation of Bfa1 and Mob1, respectively. Downregulation of PP2ACdc55 initiates MEN activity up to Cdc15 by Bfa1 inactivation. Surprisingly, the premature Bfa1 inactivation observed does not entail premature MEN activation, since an additional Cdk1-Clb2 inhibitory signal acting towards Dbf2-Mob1 activity restrains MEN activity until anaphase. In conclusion, we propose a clear picture of how PP2ACdc55 functions affect the regulation of various MEN components, contributing to mitotic exit. Cell cycle studies over the years have tried to elucidate the molecular mechanisms behind cell division, one of the most highly regulated of all cell processes, which ensures life in all organisms. Protein phosphorylation emerged as a key regulatory mechanism in the cell cycle. The highly conserved family of cyclin-dependent kinases, the Cdks, are considered the main component of the cell cycle control system. However, it has become clear that opposing phosphatases also play a key role in determining the phosphorylation state of the proteins. Cells enter mitosis when mitotic Cdk activity increases, having its pick of activity during metaphase. To exit mitosis, cells must coordinate chromosome segregation with Cdk inactivation processes involving the activation of protein phosphatases. Here we show that the phosphatase PP2A regulates the mitotic exit network (MEN) by counteracting the phosphorylation of Bfa1 and Mob1. Our findings provide new insights into the mechanism by which PP2A-Cdc55 functions affect the regulation of various MEN components that contribute to mitotic exit. The core signalling elements of the MEN, SIN and Hippo pathways are highly conserved. Therefore, studies of MEN regulation will contribute to our understanding of MEN-related pathways in other organisms.
Collapse
Affiliation(s)
- Barbara Baro
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jose-Antonio Rodriguez-Rodriguez
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - María Luisa Hernáez
- Unidad de Proteómica, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Concha Gil
- Unidad de Proteómica, Parque Científico de Madrid, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Ethel Queralt
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- * E-mail:
| |
Collapse
|
17
|
Lianga N, Williams EC, Kennedy EK, Doré C, Pilon S, Girard SL, Deneault JS, Rudner AD. A Wee1 checkpoint inhibits anaphase onset. ACTA ACUST UNITED AC 2013; 201:843-62. [PMID: 23751495 PMCID: PMC3678162 DOI: 10.1083/jcb.201212038] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The budding yeast Wee1 kinase Swe1 restrains the metaphase-to-anaphase transition by preventing the Cdk1-dependent phosphorylation and activation of APCCdc20. Cdk1 drives both mitotic entry and the metaphase-to-anaphase transition. Past work has shown that Wee1 inhibition of Cdk1 blocks mitotic entry. Here we show that the budding yeast Wee1 kinase, Swe1, also restrains the metaphase-to-anaphase transition by preventing Cdk1 phosphorylation and activation of the mitotic form of the anaphase-promoting complex/cyclosome (APCCdc20). Deletion of SWE1 or its opposing phosphatase MIH1 (the budding yeast cdc25+) altered the timing of anaphase onset, and activation of the Swe1-dependent morphogenesis checkpoint or overexpression of Swe1 blocked cells in metaphase with reduced APC activity in vivo and in vitro. The morphogenesis checkpoint also depended on Cdc55, a regulatory subunit of protein phosphatase 2A (PP2A). cdc55Δ checkpoint defects were rescued by mutating 12 Cdk1 phosphorylation sites on the APC, demonstrating that the APC is a target of this checkpoint. These data suggest a model in which stepwise activation of Cdk1 and inhibition of PP2ACdc55 triggers anaphase onset.
Collapse
Affiliation(s)
- Noel Lianga
- Ottawa Institute of Systems Biology and Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Rossio V, Michimoto T, Sasaki T, Ohbayashi I, Kikuchi Y, Yoshida S. Nuclear PP2A-Cdc55 prevents APC-Cdc20 activation during the spindle assembly checkpoint. J Cell Sci 2013; 126:4396-405. [PMID: 23886942 DOI: 10.1242/jcs.127365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cdc55, a regulatory B-subunit of protein phosphatase 2A (PP2A) complex, is essential for the spindle assembly checkpoint (SAC) in budding yeast, but the regulation and molecular targets of PP2A-Cdc55 have not been clearly defined or are controversial. Here, we show that an important target of Cdc55 in the SAC is the anaphase-promoting complex (APC) coupled with Cdc20 and that APC-Cdc20 is kept inactive by dephosphorylation by nuclear PP2A-Cdc55 when spindle is damaged. By isolating a new class of Cdc55 mutants specifically defective in the SAC and by artificially manipulating nucleocytoplasmic distribution of Cdc55, we further show that nuclear Cdc55 is essential for the SAC. Because the Cdc55-binding proteins Zds1 and Zds2 inhibit both nuclear accumulation of Cdc55 and SAC activity, we propose that spatial control of PP2A by Zds1 family proteins is important for tight control of SAC and mitotic progression.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center, Brandeis University, 415 South Street, Waltham, MA 02454, USA
| | | | | | | | | | | |
Collapse
|
19
|
Juanes MA, Khoueiry R, Kupka T, Castro A, Mudrak I, Ogris E, Lorca T, Piatti S. Budding yeast greatwall and endosulfines control activity and spatial regulation of PP2A(Cdc55) for timely mitotic progression. PLoS Genet 2013; 9:e1003575. [PMID: 23861665 PMCID: PMC3701715 DOI: 10.1371/journal.pgen.1003575] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 05/02/2013] [Indexed: 12/29/2022] Open
Abstract
Entry into mitosis is triggered by cyclinB/Cdk1, whose activity is abruptly raised by a positive feedback loop. The Greatwall kinase phosphorylates proteins of the endosulfine family and allows them to bind and inhibit the main Cdk1-counteracting PP2A-B55 phosphatase, thereby promoting mitotic entry. In contrast to most eukaryotic systems, Cdc14 is the main Cdk1-antagonizing phosphatase in budding yeast, while the PP2ACdc55 phosphatase promotes, instead of preventing, mitotic entry by participating to the positive feedback loop of Cdk1 activation. Here we show that budding yeast endosulfines (Igo1 and Igo2) bind to PP2ACdc55 in a cell cycle-regulated manner upon Greatwall (Rim15)-dependent phosphorylation. Phosphorylated Igo1 inhibits PP2ACdc55 activity in vitro and induces mitotic entry in Xenopus egg extracts, indicating that it bears a conserved PP2A-binding and -inhibitory activity. Surprisingly, deletion of IGO1 and IGO2 in yeast cells leads to a decrease in PP2A phosphatase activity, suggesting that endosulfines act also as positive regulators of PP2A in yeast. Consistently, RIM15 and IGO1/2 promote, like PP2ACdc55, timely entry into mitosis under temperature-stress, owing to the accumulation of Tyr-phosphorylated Cdk1. In addition, they contribute to the nuclear export of PP2ACdc55, which has recently been proposed to promote mitotic entry. Altogether, our data indicate that Igo proteins participate in the positive feedback loop for Cdk1 activation. We conclude that Greatwall, endosulfines, and PP2A are part of a regulatory module that has been conserved during evolution irrespective of PP2A function in the control of mitosis. However, this conserved module is adapted to account for differences in the regulation of mitotic entry in different organisms. In all eukaryotic cells chromosome partition during mitosis requires a number of processes, including the formation of the mitotic spindle, i.e. the machinery that drives chromosome segregation to the daughter cells. Mitotic entry requires a delicate balance between protein phosphorylation, driven by cyclin-dependent kinases (CDKs), and protein dephosphorylation, carried out by specific phosphatases that counteract CDK activity. A critical threshold in CDK activity is indeed required for mitotic entry. In the past few years the Greatwall kinase has also been implicated in mitotic entry through phosphorylation of proteins of the endosulfine family, which in turn inhibit the activity of the PP2A phosphatase that would otherwise dephosphorylate CDK targets. Whether Greatwall and endosulfines have a mitotic function in budding yeast, where PP2A promotes, rather than inhibits, mitotic entry has not been established. Here we show that the Greatwall-endosulfine-PP2A regulatory module is conserved also in budding yeast and that endosulfines from different species are interchangeable for their mitotic function. However, in budding yeast cells endosulfines contribute to full activation and proper localization of PP2A, suggesting that they act as both inhibitors and activators of PP2A. Our data emphasize how the same regulatory module is adapted to meet specific mitotic features in different organisms.
Collapse
Affiliation(s)
| | - Rita Khoueiry
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Thomas Kupka
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Anna Castro
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Ingrid Mudrak
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Egon Ogris
- Max F. Perutz Laboratories, Medical University of Vienna, Vienna, Austria
| | - Thierry Lorca
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
| | - Simonetta Piatti
- Centre de Recherche en Biochimie Macromoléculaire, Montpellier, France
- * E-mail:
| |
Collapse
|
20
|
Abstract
Productive cell proliferation involves efficient and accurate splitting of the dividing cell into two separate entities. This orderly process reflects coordination of diverse cytological events by regulatory systems that drive the cell from mitosis into G1. In the budding yeast Saccharomyces cerevisiae, separation of mother and daughter cells involves coordinated actomyosin ring contraction and septum synthesis, followed by septum destruction. These events occur in precise and rapid sequence once chromosomes are segregated and are linked with spindle organization and mitotic progress by intricate cell cycle control machinery. Additionally, critical paarts of the mother/daughter separation process are asymmetric, reflecting a form of fate specification that occurs in every cell division. This chapter describes central events of budding yeast cell separation, as well as the control pathways that integrate them and link them with the cell cycle.
Collapse
|
21
|
Yasutis KM, Kozminski KG. Cell cycle checkpoint regulators reach a zillion. Cell Cycle 2013; 12:1501-9. [PMID: 23598718 DOI: 10.4161/cc.24637] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Entry into mitosis is regulated by a checkpoint at the boundary between the G2 and M phases of the cell cycle (G2/M). In many organisms, this checkpoint surveys DNA damage and cell size and is controlled by both the activation of mitotic cyclin-dependent kinases (Cdks) and the inhibition of an opposing phosphatase, protein phosphatase 2A (PP2A). Misregulation of mitotic entry can often lead to oncogenesis or cell death. Recent research has focused on discovering the signaling pathways that feed into the core checkpoint control mechanisms dependent on Cdk and PP2A. Herein, we review the conserved mechanisms of the G2/M transition, including recently discovered upstream signaling pathways that link cell growth and DNA replication to cell cycle progression. Critical consideration of the human, frog and yeast models of mitotic entry frame unresolved and emerging questions in this field, providing a prediction of signaling molecules and pathways yet to be discovered.
Collapse
|
22
|
Yano K, Uesono Y, Yoshida S, Kikuchi A, Kashiwazaki J, Mabuchi I, Kikuchi Y. Mih1/Cdc25 is negatively regulated by Pkc1 inSaccharomyces cerevisiae. Genes Cells 2013; 18:425-41. [DOI: 10.1111/gtc.12047] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 02/13/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Kouitiro Yano
- Department of Biological Sciences, Graduate School of Science; The University of Tokyo; 7-3-1 Hongo; Bunkyo-ku; Tokyo; 113-0033; Japan
| | - Yukifumi Uesono
- Department of Biological Sciences, Graduate School of Science; The University of Tokyo; 7-3-1 Hongo; Bunkyo-ku; Tokyo; 113-0033; Japan
| | - Satoshi Yoshida
- Department of Biology and Rosenstiel Basic Biomedical Sciences Research Center; Brandeis University; 415 South Street; Waltham; MA; 02454; USA
| | - Akihiko Kikuchi
- School of Medicine; Nagoya University; Tsurumai; Shouwa-ku; Nagoya; Aichi; 466-8550; Japan
| | - Jun Kashiwazaki
- Department of Life Science, Faculty of Science; Gakushuin University; 1-5-1 Mejiro; Toshima-ku; Tokyo; 171-8588; Japan
| | - Issei Mabuchi
- Department of Life Science, Faculty of Science; Gakushuin University; 1-5-1 Mejiro; Toshima-ku; Tokyo; 171-8588; Japan
| | | |
Collapse
|
23
|
Yeast protein phosphatase 2A-Cdc55 regulates the transcriptional response to hyperosmolarity stress by regulating Msn2 and Msn4 chromatin recruitment. Mol Cell Biol 2012; 33:1057-72. [PMID: 23275436 DOI: 10.1128/mcb.00834-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified Cdc55, a regulatory B subunit of protein phosphatase 2A (PP2A), as an essential activating factor for stress gene transcription in Saccharomyces cerevisiae. The presence of PP2A-Cdc55 is required for full activation of the environmental stress response mediated by the transcription factors Msn2 and Msn4. We show that PP2A-Cdc55 contributes to sustained nuclear accumulation of Msn2 and Msn4 during hyperosmolarity stress. PP2A-Cdc55 also enhances Msn2-dependent transactivation, required for extended chromatin recruitment of the transcription factor. We analyzed a possible direct regulatory role for PP2A-Cdc55 on the phosphorylation status of Msn2. Detailed mass spectrometric and genetic analysis of Msn2 showed that stress exposure causes immediate transient dephosphorylation of Msn2 which is not dependent on PP2A-Cdc55 activity. Furthermore, the Hog1 mitogen-activated protein kinase pathway activity is not influenced by PP2A-Cdc55. We therefore propose that the PP2A-Cdc55 phosphatase is not involved in cytosolic stress signal perception but is involved in a specific intranuclear mechanism to regulate Msn2 and Msn4 nuclear accumulation and chromatin association under stress conditions.
Collapse
|
24
|
Ovejero S, Ayala P, Bueno A, Sacristán MP. Human Cdc14A regulates Wee1 stability by counteracting CDK-mediated phosphorylation. Mol Biol Cell 2012; 23:4515-25. [PMID: 23051732 PMCID: PMC3510014 DOI: 10.1091/mbc.e12-04-0260] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 09/27/2012] [Accepted: 10/01/2012] [Indexed: 01/21/2023] Open
Abstract
The activity of Cdk1-cyclin B1 mitotic complexes is regulated by the balance between the counteracting activities of Wee1/Myt1 kinases and Cdc25 phosphatases. These kinases and phosphatases must be strictly regulated to ensure proper mitotic timing. One masterpiece of this regulatory network is Cdk1, which promotes Cdc25 activity and suppresses inhibitory Wee1/Myt1 kinases through direct phosphorylation. The Cdk1-dependent phosphorylation of Wee1 primes phosphorylation by additional kinases such as Plk1, triggering Wee1 degradation at the onset of mitosis. Here we report that Cdc14A plays an important role in the regulation of Wee1 stability. Depletion of Cdc14A results in a significant reduction in Wee1 protein levels. Cdc14A binds to Wee1 at its amino-terminal domain and reverses CDK-mediated Wee1 phosphorylation. In particular, we found that Cdc14A inhibits Wee1 degradation through the dephosphorylation of Ser-123 and Ser-139 residues. Thus the lack of phosphorylation of these two residues prevents the interaction with Plk1 and the consequent efficient Wee1 degradation at the onset of mitosis. These data support the hypothesis that Cdc14A counteracts Cdk1-cyclin B1 activity through Wee1 dephosphorylation.
Collapse
Affiliation(s)
- Sara Ovejero
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - Patricia Ayala
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - Avelino Bueno
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| | - María P. Sacristán
- Instituto de Biología Molecular y Celular del Cáncer and Departamento de Microbiología y Genética, Universidad de Salamanca/Consejo Superior de Investigaciones Científicas, 37007 Salamanca, Spain
| |
Collapse
|
25
|
McCusker D, Kellogg DR. Plasma membrane growth during the cell cycle: unsolved mysteries and recent progress. Curr Opin Cell Biol 2012; 24:845-51. [PMID: 23141634 DOI: 10.1016/j.ceb.2012.10.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 10/11/2012] [Accepted: 10/15/2012] [Indexed: 11/28/2022]
Abstract
Growth of the plasma membrane is as fundamental to cell reproduction as DNA replication, chromosome segregation and ribosome biogenesis, yet little is known about the underlying mechanisms. Membrane growth during the cell cycle requires mechanisms that control the initiation, location, and extent of membrane growth, as well as mechanisms that coordinate membrane growth with cell cycle progression. Recent experiments have established links between membrane growth and core cell cycle regulators. Further analysis of these links will yield insights into conserved and fundamental mechanisms of cell growth. A better understanding of the post-Golgi pathways by which membrane growth occurs will be essential for future progress.
Collapse
Affiliation(s)
- Derek McCusker
- European Institute of Chemistry and Biology, 2 rue Robert Escarpit, 33607 Pessac, France
| | | |
Collapse
|
26
|
Yaakov G, Thorn K, Morgan DO. Separase biosensor reveals that cohesin cleavage timing depends on phosphatase PP2A(Cdc55) regulation. Dev Cell 2012; 23:124-36. [PMID: 22814605 PMCID: PMC3413326 DOI: 10.1016/j.devcel.2012.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 03/29/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
In anaphase, sister chromatids separate abruptly and are then segregated by the mitotic spindle. The protease separase triggers sister separation by cleaving the Scc1/Mcd1 subunit of the cohesin ring that holds sisters together. Polo-kinase phosphorylation of Scc1 promotes its cleavage, but the underlying regulatory circuits are unclear. We developed a separase biosensor in Saccharomyces cerevisiae that provides a quantitative indicator of cohesin cleavage in single cells. Separase is abruptly activated and cleaves most cohesin within 1 min, after which anaphase begins. Cohesin near centromeres and telomeres is cleaved at the same rate and time. Protein phosphatase PP2A(Cdc55) inhibits cohesin cleavage by counteracting polo-kinase phosphorylation of Scc1. In early anaphase, the previously described separase inhibition of PP2A(Cdc55) promotes cohesin cleavage. Thus, separase acts directly on Scc1 and also indirectly, through inhibition of PP2A(Cdc55), to stimulate cohesin cleavage, providing a feedforward loop that may contribute to a robust and timely anaphase.
Collapse
Affiliation(s)
- Gilad Yaakov
- Department of Physiology, University of California-San Francisco, CA 94158, USA
| | | | | |
Collapse
|
27
|
Anastasia SD, Nguyen DL, Thai V, Meloy M, MacDonough T, Kellogg DR. A link between mitotic entry and membrane growth suggests a novel model for cell size control. ACTA ACUST UNITED AC 2012; 197:89-104. [PMID: 22451696 PMCID: PMC3317797 DOI: 10.1083/jcb.201108108] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Addition of new membrane to the cell surface by membrane trafficking is necessary for cell growth. In this paper, we report that blocking membrane traffic causes a mitotic checkpoint arrest via Wee1-dependent inhibitory phosphorylation of Cdk1. Checkpoint signals are relayed by the Rho1 GTPase, protein kinase C (Pkc1), and a specific form of protein phosphatase 2A (PP2A(Cdc55)). Signaling via this pathway is dependent on membrane traffic and appears to increase gradually during polar bud growth. We hypothesize that delivery of vesicles to the site of bud growth generates a signal that is proportional to the extent of polarized membrane growth and that the strength of the signal is read by downstream components to determine when sufficient growth has occurred for initiation of mitosis. Growth-dependent signaling could explain how membrane growth is integrated with cell cycle progression. It could also control both cell size and morphogenesis, thereby reconciling divergent models for mitotic checkpoint function.
Collapse
Affiliation(s)
- Steph D Anastasia
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
28
|
Calabria I, Baro B, Rodriguez-Rodriguez JA, Russiñol N, Queralt E. Zds1 regulates PP2A(Cdc55) activity and Cdc14 activation during mitotic exit through its Zds_C motif. J Cell Sci 2012; 125:2875-84. [PMID: 22427694 PMCID: PMC3434804 DOI: 10.1242/jcs.097865] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
At anaphase onset, highly active mitotic cyclin-dependent kinase (Cdk) is inactivated to promote exit from mitosis and completion of cytokinesis. The budding yeast Cdc14p phosphatase is a key mitotic regulator that counteracts cyclin-dependent kinase (Cdk) activity during mitotic exit. Separase, together with Zds1p, promotes the downregulation of the protein phosphatase 2A in conjunction with its Cdc55p regulatory subunit (PP2A(Cdc55)) in early anaphase, enabling accumulation of phosphorylated forms of Net1p and release of Cdc14p from the nucleolus. Here we show that the C-terminal domain of Zds1p, called the Zds_C motif, is required for Zds1-induced release of Cdc14p, and the N-terminal domain of the protein might be involved in regulating this activity. More interestingly, Zds1p physically interacts with Cdc55p, and regulates its localization through the Zds_C motif. Nevertheless, expression of the Zds_C motif at endogenous levels cannot induce timely release of Cdc14p from the nucleolus, despite the proper (nucleolar) localization of Cdc55p. Our results suggest that the activity of PP2A(Cdc55) cannot be modulated solely through regulation of its localization, and that an additional regulatory step is probably required. These results suggest that Zds1p recruits PP2A(Cdc55) to the nucleolus and induces its inactivation by an unknown mechanism.
Collapse
Affiliation(s)
- Ines Calabria
- Cell Cycle Group, Cancer Epigenetics and Biology Program (PEBC), Institut d'Investigacions Biomèdica de Bellvitge (IDIBELL), Av. Gran Via de L'Hospitalet 199-203, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | | | | | | | | |
Collapse
|
29
|
Krasinska L, Domingo-Sananes MR, Kapuy O, Parisis N, Harker B, Moorhead G, Rossignol M, Novák B, Fisher D. Protein phosphatase 2A controls the order and dynamics of cell-cycle transitions. Mol Cell 2011; 44:437-50. [PMID: 22055189 DOI: 10.1016/j.molcel.2011.10.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 03/01/2011] [Accepted: 08/12/2011] [Indexed: 11/24/2022]
Abstract
Bistability of the Cdk1-Wee1-Cdc25 mitotic control network underlies the switch-like transitions between interphase and mitosis. Here, we show by mathematical modeling and experiments in Xenopus egg extracts that protein phosphatase 2A (PP2A), which can dephosphorylate Cdk1 substrates, is essential for this bistability. PP2A inhibition in early interphase abolishes the switch-like response of the system to Cdk1 activity, promoting mitotic onset even with very low levels of Cyclin, Cdk1, and Cdc25, while simultaneously inhibiting DNA replication. Furthermore, even if replication has already initiated, it cannot continue in mitosis. Exclusivity of S and M phases does not depend on bistability only, since partial PP2A inhibition prevents replication without inducing mitotic onset. In these conditions, interphase-level mitotic kinases inhibit Cyclin E-Cdk2 chromatin loading, blocking initiation complex formation. Therefore, by counteracting both Cdk1 activation and activity of mitotic kinases, PP2A ensures robust separation of S phase and mitosis and dynamic transitions between the two states.
Collapse
Affiliation(s)
- Liliana Krasinska
- Institute of Molecular Genetics, CNRS, UMR5535, University of Montpellier I and II, 34293 Montpellier, France
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Harvey SL, Enciso G, Dephoure N, Gygi SP, Gunawardena J, Kellogg DR. A phosphatase threshold sets the level of Cdk1 activity in early mitosis in budding yeast. Mol Biol Cell 2011; 22:3595-608. [PMID: 21849476 PMCID: PMC3183015 DOI: 10.1091/mbc.e11-04-0340] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 01/07/2023] Open
Abstract
Entry into mitosis is initiated by synthesis of cyclins, which bind and activate cyclin-dependent kinase 1 (Cdk1). Cyclin synthesis is gradual, yet activation of Cdk1 occurs in a stepwise manner: a low level of Cdk1 activity is initially generated that triggers early mitotic events, which is followed by full activation of Cdk1. Little is known about how stepwise activation of Cdk1 is achieved. A key regulator of Cdk1 is the Wee1 kinase, which phosphorylates and inhibits Cdk1. Wee1 and Cdk1 show mutual regulation: Cdk1 phosphorylates Wee1, which activates Wee1 to inhibit Cdk1. Further phosphorylation events inactivate Wee1. We discovered that a specific form of protein phosphatase 2A (PP2A(Cdc55)) opposes the initial phosphorylation of Wee1 by Cdk1. In vivo analysis, in vitro reconstitution, and mathematical modeling suggest that PP2A(Cdc55) sets a threshold that limits activation of Wee1, thereby allowing a low constant level of Cdk1 activity to escape Wee1 inhibition in early mitosis. These results define a new role for PP2A(Cdc55) and reveal a systems-level mechanism by which dynamically opposed kinase and phosphatase activities can modulate signal strength.
Collapse
Affiliation(s)
- Stacy L Harvey
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | | | |
Collapse
|
31
|
Li Z, Sun Z, Li D, Pan J, Zhu X. Identification of a Zds-like gene ZDS3 as a new mediator of stress resistance, capsule formation and virulence of the human pathogenic yeast Cryptococcus neoformans. FEMS Yeast Res 2011; 11:529-39. [PMID: 21726407 DOI: 10.1111/j.1567-1364.2011.00744.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The fungal Zds proteins are regulators of the serine/threonine phosphatase 2A (PP2A) and the protein kinase A. Here, we characterize a Zds-like gene ZDS3 that plays a broad range of roles in the basidiomycetous pathogenic yeast Cryptococcus neoformans. ZDS3 harbors the conserved activation domain ZDS_C of Zds proteins. By gene disruption, ZDS3 is shown to play roles in capsule production, cell wall integrity, growth at a high temperature, resistance to H(2)O(2) stress, osmotic pressures and glucose-dependent invasive growth on the agar. As a consequence, the disruption of ZDS3 resulted in complete loss of virulence in a mouse cryptococcosis model. The data suggest that ZDS3 is a novel mediator of the virulence of C. neoformans. Zds3 may serve as an antifungal drug target as no homologs are found in mammals.
Collapse
Affiliation(s)
- Zhongming Li
- State Key Program of Microbiology and Department of Microbiology, College of Life Sciences, Nankai University, Tianjin, China
| | | | | | | | | |
Collapse
|
32
|
Rossio V, Yoshida S. Spatial regulation of Cdc55-PP2A by Zds1/Zds2 controls mitotic entry and mitotic exit in budding yeast. ACTA ACUST UNITED AC 2011; 193:445-54. [PMID: 21536748 PMCID: PMC3087000 DOI: 10.1083/jcb.201101134] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Zds1/2 regulate mitotic progression by directing the nucleocytoplasmic distribution of Cdc55–PP2A. Budding yeast CDC55 encodes a regulatory B subunit of the PP2A (protein phosphatase 2A), which plays important roles in mitotic entry and mitotic exit. The spatial and temporal regulation of PP2A is poorly understood, although recent studies demonstrated that the conserved proteins Zds1 and Zds2 stoichiometrically bind to Cdc55–PP2A and regulate it in a complex manner. Zds1/Zds2 promote Cdc55–PP2A function for mitotic entry, whereas Zds1/Zds2 inhibit Cdc55–PP2A function during mitotic exit. In this paper, we propose that Zds1/Zds2 primarily control Cdc55 localization. Cortical and cytoplasmic localization of Cdc55 requires Zds1/Zds2, and Cdc55 accumulates in the nucleus in the absence of Zds1/Zds2. By genetically manipulating the nucleocytoplasmic distribution of Cdc55, we showed that Cdc55 promotes mitotic entry when in the cytoplasm. On the other hand, nuclear Cdc55 prevents mitotic exit. Our analysis defines the long-sought molecular function for the zillion different screens family proteins and reveals the importance of the regulation of PP2A localization for proper mitotic progression.
Collapse
Affiliation(s)
- Valentina Rossio
- Department of Biology, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
33
|
Yasutis K, Vignali M, Ryder M, Tameire F, Dighe SA, Fields S, Kozminski KG. Zds2p regulates Swe1p-dependent polarized cell growth in Saccharomyces cerevisiae via a novel Cdc55p interaction domain. Mol Biol Cell 2010; 21:4373-86. [PMID: 20980617 PMCID: PMC3002390 DOI: 10.1091/mbc.e10-04-0326] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Revised: 08/20/2010] [Accepted: 10/19/2010] [Indexed: 11/18/2022] Open
Abstract
Deletion of the paralogs ZDS1 and ZDS2 in the budding yeast Saccharomyces cerevisiae causes a mis-regulation of polarized cell growth. Here we show a function for these genes as regulators of the Swe1p (Wee1p) kinase-dependent G2/M checkpoint. We identified a conserved domain in the C-terminus of Zds2p consisting of amino acids 813-912 (hereafter referred to as ZH4 for Zds homology 4) that is required for regulation of Swe1p-dependent polarized bud growth. ZH4 is shown by protein affinity assays to be necessary and sufficient for interaction with Cdc55p, a regulatory subunit of protein phosphatase 2A (PP2A). We hypothesized that the Zds proteins are in a pathway that negatively regulates the Swe1p-dependent G2/M checkpoint via Cdc55p. Supporting this model, deletion of CDC55 rescues the aberrant bud morphology of a zds1Δzds2Δ strain. We also show that expression of ZDS1 or ZDS2 from a strong galactose-inducible promoter can induce mitosis even when the Swe1p-dependent G2/M checkpoint is activated by mis-organization of the actin cytoskeleton. This negative regulation requires the CDC55 gene. Together these data indicate that the Cdc55p/Zds2p module has a function in the regulation of the Swe1p-dependent G2/M checkpoint.
Collapse
Affiliation(s)
- Kimberly Yasutis
- *Departments of Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| | | | | | | | | | - Stanley Fields
- Departments of Genome Sciences and Medicine and
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195
| | - Keith G. Kozminski
- *Departments of Biology and
- Cell Biology and
- Cell and Developmental Biology Program, University of Virginia, Charlottesville, VA 22904; and
| |
Collapse
|