1
|
Yang Y, Guo L, Chen L, Gong B, Jia D, Sun Q. Nuclear transport proteins: structure, function, and disease relevance. Signal Transduct Target Ther 2023; 8:425. [PMID: 37945593 PMCID: PMC10636164 DOI: 10.1038/s41392-023-01649-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 11/12/2023] Open
Abstract
Proper subcellular localization is crucial for the functioning of biomacromolecules, including proteins and RNAs. Nuclear transport is a fundamental cellular process that regulates the localization of many macromolecules within the nuclear or cytoplasmic compartments. In humans, approximately 60 proteins are involved in nuclear transport, including nucleoporins that form membrane-embedded nuclear pore complexes, karyopherins that transport cargoes through these complexes, and Ran system proteins that ensure directed and rapid transport. Many of these nuclear transport proteins play additional and essential roles in mitosis, biomolecular condensation, and gene transcription. Dysregulation of nuclear transport is linked to major human diseases such as cancer, neurodegenerative diseases, and viral infections. Selinexor (KPT-330), an inhibitor targeting the nuclear export factor XPO1 (also known as CRM1), was approved in 2019 to treat two types of blood cancers, and dozens of clinical trials of are ongoing. This review summarizes approximately three decades of research data in this field but focuses on the structure and function of individual nuclear transport proteins from recent studies, providing a cutting-edge and holistic view on the role of nuclear transport proteins in health and disease. In-depth knowledge of this rapidly evolving field has the potential to bring new insights into fundamental biology, pathogenic mechanisms, and therapeutic approaches.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lu Guo
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Chen
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Bo Gong
- The Key Laboratory for Human Disease Gene Study of Sichuan Province and Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, West China Second University Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China.
| | - Qingxiang Sun
- Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
- Department of Pathology, State Key Laboratory of Biotherapy and Cancer Centre, West China Hospital, Sichuan University, and Collaborative Innovation Centre of Biotherapy, Chengdu, China.
| |
Collapse
|
2
|
Gonzalez A, Kim HJ, Freibaum BD, Fung HYJ, Brautigam CA, Taylor JP, Chook YM. A new Karyopherin-β2 binding PY-NLS epitope of HNRNPH2 linked to neurodevelopmental disorders. Structure 2023; 31:924-934.e4. [PMID: 37279758 PMCID: PMC10524338 DOI: 10.1016/j.str.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/08/2023]
Abstract
The HNRNPH2 proline-tyrosine nuclear localization signal (PY-NLS) is mutated in HNRNPH2-related X-linked neurodevelopmental disorder, causing the normally nuclear HNRNPH2 to accumulate in the cytoplasm. We solved the cryoelectron microscopy (cryo-EM) structure of Karyopherin-β2/Transportin-1 bound to the HNRNPH2 PY-NLS to understand importin-NLS recognition and disruption in disease. HNRNPH2 206RPGPY210 is a typical R-X2-4-P-Y motif comprising PY-NLS epitopes 2 and 3, followed by an additional Karyopherin-β2-binding epitope, we term epitope 4, at residues 211DRP213; no density is present for PY-NLS epitope 1. Disease variant mutations at epitopes 2-4 impair Karyopherin-β2 binding and cause aberrant cytoplasmic accumulation in cells, emphasizing the role of nuclear import defect in disease. Sequence/structure analysis suggests that strong PY-NLS epitopes 4 are rare and thus far limited to close paralogs of HNRNPH2, HNRNPH1, and HNRNPF. Epitope 4-binidng hotspot Karyopherin-β2 W373 corresponds to close paralog Karyopherin-β2b/Transportin-2 W370, a pathological variant site in neurodevelopmental abnormalities, suggesting that Karyopherin-β2b/Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities.
Collapse
Affiliation(s)
- Abner Gonzalez
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Brian D Freibaum
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chad A Brautigam
- Departments of Biophysics and Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Hospital, Memphis, TN, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
3
|
Kraus J, Travis SM, King MR, Petry S. Augmin is a Ran-regulated spindle assembly factor. J Biol Chem 2023; 299:104736. [PMID: 37086784 DOI: 10.1016/j.jbc.2023.104736] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/24/2023] Open
Abstract
Mitotic spindles are composed of microtubules (MTs) that must nucleate at the right place and time. Ran regulates this process by directly controlling the release of spindle assembly factors (SAFs) from nucleocytoplasmic shuttle proteins importin-αβ and subsequently forms a biochemical gradient of SAFs localized around chromosomes. The majority of spindle MTs are generated by branching MT nucleation, which has been shown to require an eight-subunit protein complex known as augmin. InXenopus laevis, Ran can control branching through a canonical SAF, TPX2, which is non-essential in Drosophila melanogaster embryos and HeLa cells. Thus, how Ran regulates branching MT nucleation when TPX2 is not required remains unknown. Here, we use in vitro pulldowns and TIRF microscopy to show that augmin is a Ran-regulated SAF. We demonstrate that augmin directly interacts with both importin-α and importin-β through two nuclear localization sequences on the Haus8 subunit, which overlap with the MT binding site. Moreover, we show Ran controls localization of augmin to MTs in both Xenopus egg extract and in vitro. Our results demonstrate that RanGTP directly regulates augmin, which establishes a new way by which Ran controls branching MT nucleation and spindle assembly both in the absence and presence of TPX2.
Collapse
Affiliation(s)
- Jodi Kraus
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sophie M Travis
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Matthew R King
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA
| | - Sabine Petry
- Department of Molecular Biology; Princeton University; Princeton, NJ, 08544; USA.
| |
Collapse
|
4
|
Gonzalez A, Kim HJ, Freibaum BD, Joyce Fung HY, Brautigam CA, Taylor JP, Chook YM. A new Karyopherin-β2 binding PY-NLS epitope of HNRNPH2 is linked to neurodevelopmental disorders. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.20.524964. [PMID: 36711837 PMCID: PMC9882364 DOI: 10.1101/2023.01.20.524964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The normally nuclear HNRNPH2 is mutated in HNRNPH2 -related X-linked neurodevelopmental disorder causing the protein to accumulate in the cytoplasm. Interactions of HNRNPH2 with its importin Karyopherin-β2 (Transportin-1) had not been studied. We present a structure that shows Karyopherin-β2 binding HNRNPH2 residues 204-215, a proline-tyrosine nuclear localization signal or PY-NLS that contains a typical R-X 2-4 -P-Y motif, 206 RPGPY 210 , followed a new Karyopherin-β2 binding epitope at 211 DRP 213 that make many interactions with Karyopherin-β2 W373. Mutations at each of these sites decrease Karyopherin-β2 binding affinities by 70-100 fold, explaining aberrant accumulation in cells and emphasizing the role of nuclear import defects in the disease. Sequence/structure analysis suggests that the new epitope C-terminal of the PY-motif, which binds Karyopherin-β2 W373, is rare and thus far limited to close paralogs HNRNPH2, HNRNPH1 and HNRNPF. Karyopherin-β2 W373, a HNRNPH2-binding hotspot, corresponds to W370 of close paralog Transportin-2, a site of pathological variants in patients with neurodevelopmental abnormalities, suggesting that Transportin-2-HNRNPH2/H1/F interactions may be compromised in the abnormalities. Summary HNRNPH2 variants in HNRNPH2 -related X-linked neurodevelopmental disorder aberrantly accumulate in the cytoplasm. A structure of Karyopherin-β2•HNRNPH2 explains nuclear import defects of the variants, reveals a new NLS epitope that suggests mechanistic changes in pathological variants of Karyopherin-β2 paralog Transportin-2.
Collapse
|
5
|
van der Zanden SY, Jongsma MLM, Neefjes ACM, Berlin I, Neefjes J. Maintaining soluble protein homeostasis between nuclear and cytoplasmic compartments across mitosis. Trends Cell Biol 2023; 33:18-29. [PMID: 35778326 DOI: 10.1016/j.tcb.2022.06.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 12/27/2022]
Abstract
The nuclear envelope (NE) is central to the architecture of eukaryotic cells, both as a physical barrier separating the nucleus from the cytoplasm and as gatekeeper of selective transport between them. However, in open mitosis, the NE fragments to allow for spindle formation and segregation of chromosomes, resulting in intermixing of nuclear and cytoplasmic soluble fractions. Recent studies have shed new light on the mechanisms driving reinstatement of soluble proteome homeostasis following NE reformation in daughter cells. Here, we provide an overview of how mitotic cells confront this challenge to ensure continuity of basic cellular functions across generations and elaborate on the implications for the proteasome - a macromolecular machine that functions in both cytoplasmic and nuclear compartments.
Collapse
Affiliation(s)
- Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Marlieke L M Jongsma
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Anna C M Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands
| | - Ilana Berlin
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center LUMC, 2333, ZC, Leiden, The Netherlands.
| |
Collapse
|
6
|
Kim HJ, Mohassel P, Donkervoort S, Guo L, O'Donovan K, Coughlin M, Lornage X, Foulds N, Hammans SR, Foley AR, Fare CM, Ford AF, Ogasawara M, Sato A, Iida A, Munot P, Ambegaonkar G, Phadke R, O'Donovan DG, Buchert R, Grimmel M, Töpf A, Zaharieva IT, Brady L, Hu Y, Lloyd TE, Klein A, Steinlin M, Kuster A, Mercier S, Marcorelles P, Péréon Y, Fleurence E, Manzur A, Ennis S, Upstill-Goddard R, Bello L, Bertolin C, Pegoraro E, Salviati L, French CE, Shatillo A, Raymond FL, Haack TB, Quijano-Roy S, Böhm J, Nelson I, Stojkovic T, Evangelista T, Straub V, Romero NB, Laporte J, Muntoni F, Nishino I, Tarnopolsky MA, Shorter J, Bönnemann CG, Taylor JP. Heterozygous frameshift variants in HNRNPA2B1 cause early-onset oculopharyngeal muscular dystrophy. Nat Commun 2022; 13:2306. [PMID: 35484142 PMCID: PMC9050844 DOI: 10.1038/s41467-022-30015-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 03/25/2022] [Indexed: 01/05/2023] Open
Abstract
Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin β2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.
Collapse
Affiliation(s)
- Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Payam Mohassel
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Sandra Donkervoort
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Lin Guo
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States
| | - Xaviere Lornage
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Nicola Foulds
- Wessex Clinical Genetics Services, Princess Anne Hospital, Academic Unit of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, England
| | - Simon R Hammans
- Wessex Neurological Centre, University Hospital Southampton, Southampton, UK
| | - A Reghan Foley
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Charlotte M Fare
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Alice F Ford
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Masashi Ogasawara
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata, Japan
| | | | - Pinki Munot
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Gautam Ambegaonkar
- Department of Paediatric Neurology, Cambridge University Hospital NHS Trust, Addenbrookes Hospital, Cambridge, CB2 0QQ, UK
| | - Rahul Phadke
- Division of Neuropathology, University College London Hospitals NHS Foundation Trust National Hospital for Neurology and Neurosurgery London, UK and Division of Neuropathology, UCL Institute of Neurology, Dubowitz Neuromuscular Centre, London, UK
| | - Dominic G O'Donovan
- Department of Histopathology Box 235, Level 5 John Bonnett Clinical Laboratories Addenbrooke's Hospital, Cambridge, UK
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Ana Töpf
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Irina T Zaharieva
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Lauren Brady
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - Ying Hu
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Thomas E Lloyd
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Andrea Klein
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Pediatric Neurology, University Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Maja Steinlin
- Division of Neuropaediatrics, Development and Rehabilitation, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Alice Kuster
- Department of Neurometabolism, University Hospital of Nantes, Nantes, France
| | - Sandra Mercier
- CHU Nantes, Service de génétique médicale, Centre de Référence des Maladies Neuromusculaires AOC, 44000, Nantes, France
- Université de Nantes, CNRS, INSERM, l'institut du thorax, 44000, Nantes, France
| | - Pascale Marcorelles
- Service d'anatomopathologie, CHU Brest and EA 4685 LIEN, Université de Bretagne Occidentale, Brest, France
| | - Yann Péréon
- CHU de Nantes, Centre de Référence des Maladies Neuromusculaires, Filnemus, Euro-NMD, Hôtel-Dieu, Nantes, France
| | - Emmanuelle Fleurence
- Etablissement de Santé pour Enfants et Adolescents de la région Nantaise, Nantes, France
| | - Adnan Manzur
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Sarah Ennis
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Rosanna Upstill-Goddard
- Human Genetics and Genomic Medicine, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Luca Bello
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Cinzia Bertolin
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova, IRP Città della Speranza, Padova, Italy
| | - Elena Pegoraro
- Department of Neurosciences, DNS, University of Padova, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, CIR-Myo Myology Center, University of Padova, IRP Città della Speranza, Padova, Italy
| | | | - Andriy Shatillo
- Institute of Neurology, Psychiatry and Narcology of NAMS of Ukraine, Kharkiv, Ukraine
| | - F Lucy Raymond
- Cambridge Institute of Medical Research, University of Cambridge, Cambridge, UK
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Susana Quijano-Roy
- Neuromuscular Unit, Pediatric Neurology and ICU Department, Raymond Poincaré Hospital (UVSQ), AP-HP Université Paris-Saclay, Garches, France
| | - Johann Böhm
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Isabelle Nelson
- Sorbonne Université, INSERM, Centre of Research in Myology, UMRS974, Paris, France
| | - Tanya Stojkovic
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Teresinha Evangelista
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Volker Straub
- John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Norma B Romero
- APHP, Centre de Référence des Maladies Neuromusculaires Nord/Est/Ile de France, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
- Unité de Morphologie Neuromusculaire, Institut de Myologie, Sorbonne Université, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jocelyn Laporte
- Département Médecine Translationnelle et Neurogénétique, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Institut National de la Santé et de la Recherche Médicale U1258, Centre National de la Recherche Scientifique UMR7104, Université de Strasbourg, Illkirch, France
| | - Francesco Muntoni
- The Dubowitz Neuromuscular Centre, NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Ichizo Nishino
- Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry (NCNP), 4-1-1 Ogawahigashi, Kodaira, Tokyo, 187-8502, Japan
- Medical Genome Center, NCNP, Kodaira, Tokyo, Japan
| | - Mark A Tarnopolsky
- Division of Neuromuscular & Neurometabolic Disorders, Department of Pediatrics, McMaster University, Hamilton Health Sciences Centre, Hamilton, ON, Canada
| | - James Shorter
- Department of Biochemistry & Biophysics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Carsten G Bönnemann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States.
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, United States.
- Howard Hughes Medical Institute, Chevy Chase, MD, United States.
| |
Collapse
|
7
|
Semmelink MFW, Steen A, Veenhoff LM. Measuring and Interpreting Nuclear Transport in Neurodegenerative Disease-The Example of C9orf72 ALS. Int J Mol Sci 2021; 22:9217. [PMID: 34502125 PMCID: PMC8431710 DOI: 10.3390/ijms22179217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/13/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
Transport from and into the nucleus is essential to all eukaryotic life and occurs through the nuclear pore complex (NPC). There are a multitude of data supporting a role for nuclear transport in neurodegenerative diseases, but actual transport assays in disease models have provided diverse outcomes. In this review, we summarize how nuclear transport works, which transport assays are available, and what matters complicate the interpretation of their results. Taking a specific type of ALS caused by mutations in C9orf72 as an example, we illustrate these complications, and discuss how the current data do not firmly answer whether the kinetics of nucleocytoplasmic transport are altered. Answering this open question has far-reaching implications, because a positive answer would imply that widespread mislocalization of proteins occurs, far beyond the reported mislocalization of transport reporters, and specific proteins such as FUS, or TDP43, and thus presents a challenge for future research.
Collapse
Affiliation(s)
| | | | - Liesbeth M. Veenhoff
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, 9713 AV Groningen, The Netherlands; (M.F.W.S.); (A.S.)
| |
Collapse
|
8
|
Guo L, Kim HJ, Wang H, Monaghan J, Freyermuth F, Sung JC, O'Donovan K, Fare CM, Diaz Z, Singh N, Zhang ZC, Coughlin M, Sweeny EA, DeSantis ME, Jackrel ME, Rodell CB, Burdick JA, King OD, Gitler AD, Lagier-Tourenne C, Pandey UB, Chook YM, Taylor JP, Shorter J. Nuclear-Import Receptors Reverse Aberrant Phase Transitions of RNA-Binding Proteins with Prion-like Domains. Cell 2018; 173:677-692.e20. [PMID: 29677512 PMCID: PMC5911940 DOI: 10.1016/j.cell.2018.03.002] [Citation(s) in RCA: 333] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/22/2017] [Accepted: 02/28/2018] [Indexed: 12/21/2022]
Abstract
RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-β2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-β1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-β2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-β2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.
Collapse
Affiliation(s)
- Lin Guo
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hong Joo Kim
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA
| | - Hejia Wang
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John Monaghan
- Department of Pediatrics, Child Neurology and Neurobiology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Fernande Freyermuth
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Julie C Sung
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin O'Donovan
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA
| | - Charlotte M Fare
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zamia Diaz
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nikita Singh
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zi Chao Zhang
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Institute of Life Sciences, Southeast University, Nanjing, 210096 Jiangsu, China
| | - Maura Coughlin
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA
| | - Elizabeth A Sweeny
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Morgan E DeSantis
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Meredith E Jackrel
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher B Rodell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Oliver D King
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Clotilde Lagier-Tourenne
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; Broad Institute of Harvard University and MIT, Cambridge, MA 02142, USA
| | - Udai Bhan Pandey
- Department of Pediatrics, Child Neurology and Neurobiology, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA 15224, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38120, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| | - James Shorter
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
9
|
Mamon LA, Ginanova VR, Kliver SF, Yakimova AO, Atsapkina AA, Golubkova EV. RNA-binding proteins of the NXF (nuclear export factor) family and their connection with the cytoskeleton. Cytoskeleton (Hoboken) 2017; 74:161-169. [PMID: 28296067 DOI: 10.1002/cm.21362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 03/04/2017] [Accepted: 03/08/2017] [Indexed: 02/05/2023]
Abstract
The mutual relationship between mRNA and the cytoskeleton can be seen from two points of view. On the one hand, the cytoskeleton is necessary for mRNA trafficking and anchoring to subcellular domains. On the other hand, cytoskeletal growth and rearrangement require the translation of mRNAs that are connected to the cytoskeleton. β-actin mRNA localization may influence dynamic changes in the actin cytoskeleton. In the cytoplasm, long-lived mRNAs exist in the form of RNP (ribonucleoprotein) complexes, where they interact with RNA-binding proteins, including NXF (Nuclear eXport Factor). Dm NXF1 is an evolutionarily conserved protein in Drosophila melanogaster that has orthologs in different animals. The universal function of nxf1 genes is the nuclear export of different mRNAs in various organisms. In this mini-review, we briefly discuss the evidence demonstrating that Dm NXF1 fulfils not only universal but also specialized cytoplasmic functions. This protein is detected not only in the nucleus but also in the cytoplasm. It is a component of neuronal granules. Dm NXF1 marks nuclear division spindles during early embryogenesis and the dense body on one side of the elongated spermatid nuclei. The characteristic features of sbr mutants (sbr10 and sbr5 ) are impairment of chromosome segregation and spindle formation anomalies during female meiosis. sbr12 mutant sterile males with immobile spermatozoa exhibit disturbances in the axoneme, mitochondrial derivatives and cytokinesis. These data allow us to propose that the Dm NXF1 proteins transport certain mRNAs in neurites and interact with localized mRNAs that are necessary for dynamic changes of the cytoskeleton.
Collapse
Affiliation(s)
- L A Mamon
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - V R Ginanova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - S F Kliver
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A O Yakimova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - A A Atsapkina
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| | - E V Golubkova
- Department of Genetics and Biotechnology, Faculty of Biology, St Petersburg State University Universitetskaya nab. 7-9, Saint-Petersburg, 199034, Russia
| |
Collapse
|
10
|
Mordovkina DA, Kim ER, Buldakov IA, Sorokin AV, Eliseeva IA, Lyabin DN, Ovchinnikov LP. Transportin-1-dependent YB-1 nuclear import. Biochem Biophys Res Commun 2016; 480:629-634. [DOI: 10.1016/j.bbrc.2016.10.107] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 10/25/2016] [Indexed: 11/24/2022]
|
11
|
Soniat M, Cağatay T, Chook YM. Recognition Elements in the Histone H3 and H4 Tails for Seven Different Importins. J Biol Chem 2016; 291:21171-21183. [PMID: 27528606 DOI: 10.1074/jbc.m116.730218] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Indexed: 12/12/2022] Open
Abstract
N-terminal tails of histones H3 and H4 are known to bind several different Importins to import the histones into the cell nucleus. However, it is not known what binding elements in the histone tails are recognized by the individual Importins. Biochemical studies of H3 and H4 tails binding to seven Importins, Impβ, Kapβ2, Imp4, Imp5, Imp7, Imp9, and Impα, show the H3 tail binding more tightly than the H4 tail. The H3 tail binds Kapβ2 and Imp5 with KD values of 77 and 57 nm, respectively, and binds the other five Importins more weakly. Mutagenic analysis shows H3 tail residues 11-27 to be the sole binding segment for Impβ, Kapβ2, and Imp4. However, Imp5, Imp7, Imp9, and Impα bind two separate elements in the H3 tail: the segment at residues 11-27 and an isoleucine-lysine nuclear localization signal (IK-NLS) motif at residues 35-40. The H4 tail also uses either one or two basic segments to bind the same set of Importins with a similar trend of relative affinities as the H3 tail, albeit at least 10-fold weaker. Of the many lysine residues in the H3 and H4 tails, only acetylation of the H3 Lys14 substantially decreased binding to several Importins. Lastly, we show that, in addition to the N-terminal tails, the histone fold domains of H3 and H4 and/or the histone chaperone Asf1b are important for Importin-histone recognition.
Collapse
Affiliation(s)
- Michael Soniat
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Tolga Cağatay
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| | - Yuh Min Chook
- From the Department of Pharmacology, University of Texas Southwestern, Dallas, Texas 75390
| |
Collapse
|
12
|
Testis-specific products of the Drosophila melanogaster sbr gene, encoding nuclear export factor 1, are necessary for male fertility. Gene 2015; 577:153-60. [PMID: 26621383 DOI: 10.1016/j.gene.2015.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 11/18/2015] [Accepted: 11/21/2015] [Indexed: 01/08/2023]
Abstract
The evolutionarily conserved nuclear export factor 1 (NXF1) provides mRNA export from the nucleus to the cytoplasm. We described several testis-specific transcripts of the Drosophila melanogaster nxf1 gene designated “sbr” in this species via different PCR approaches and CAGE-seq analysis. Characteristically, most of them have truncated 3′UTRs compared with those in other organs. In addition to regular transcripts, there are shorter transcripts that begin in intron 3 of the sbr gene. These short, 5′-truncated testis-specific transcripts vary in terms of transcription start site and their ability to exclude or retain the last 237 nucleotides of intron 3 in their 5′UTR. Using an anti-SBR antibody against the C-terminal portion of this protein, we detected the major SBR protein (74 kDa) in all analyzed organs of the fly as well as a new smaller protein (60 kDa) found only in the testes. This protein corresponds to the detected sbr transcripts that start in intron 3, based on its molecular mass. We investigated the sbr12 allele of the sbr gene, which is lethal in homozygous females and causes dominant sterility in heterozygous males. Sequencing of the sbr12 gene allele revealed a 30-bp deletion in exon 9 without a frame shift.Western blot analysiswith an SBR-specific antibody revealed two bands of the expected size in the testes of heterozygous males. Thus, a mutant protein along with the normal protein presents in the testes of lethal allele-bearing flies and the described shorter testis-specific variant of SBR may account for male sterility.
Collapse
|
13
|
Abstract
The Karyopherin-β family of proteins mediates nuclear transport of macromolecules. Nuclear versus cytoplasmic localization of proteins is often suggested by the presence of NLSs (nuclear localization signals) or NESs (nuclear export signals). Import-Karyopherin-βs or Importins bind to NLSs in their protein cargos to transport them through nuclear pore complexes into the nucleus. Until recently, only two classes of NLS had been biochemically and structurally characterized: the classical NLS, which is recognized by the Importin-α/β heterodimer and the PY-NLS (proline-tyrosine NLS), which is recognized by Karyopherin-β2 or Transportin-1. Structures of two other Karyopherin-βs, Kap121 and Transportin-SR2, in complex with their respective cargos were reported for the first time recently, revealing two new distinct classes of NLSs. The present paper briefly describes the classical NLS, reviews recent literature on the PY-NLS and provides in-depth reviews of the two newly discovered classes of NLSs that bind Kap121p and Transportin-SR respectively.
Collapse
|
14
|
Chen A, Akhshi TK, Lavoie BD, Wilde A. Importin β2 Mediates the Spatio-temporal Regulation of Anillin through a Noncanonical Nuclear Localization Signal. J Biol Chem 2015; 290:13500-9. [PMID: 25829492 DOI: 10.1074/jbc.m115.649160] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 11/06/2022] Open
Abstract
The compartmentalization of cell cycle regulators is a common mechanism to ensure the precise temporal control of key cell cycle events. For instance, many mitotic spindle assembly factors are known to be sequestered in the nucleus prior to mitotic onset. Similarly, the essential cytokinetic factor anillin, which functions at the cell membrane to promote the physical separation of daughter cells at the end of mitosis, is sequestered in the nucleus during interphase. To address the mechanism and role of anillin targeting to the nucleus in interphase, we identified the nuclear targeting motif. Here, we show that anillin is targeted to the nucleus by importin β2 in a Ran-dependent manner through an atypical basic patch PY nuclear localization signal motif. We show that although importin β2 binding does not regulate anillin's function in mitosis, it is required to prevent the cytosolic accumulation of anillin, which disrupts cellular architecture during interphase. The nuclear sequestration of anillin during interphase serves to restrict anillin's function at the cell membrane to mitosis and allows anillin to be rapidly available when the nuclear envelope breaks down to remodel the cellular architecture necessary for successful cell division.
Collapse
Affiliation(s)
- Anan Chen
- From the Departments of Biochemistry and
| | | | - Brigitte D Lavoie
- Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Andrew Wilde
- From the Departments of Biochemistry and Molecular Genetics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
15
|
Wang B, Rekosh D, Hammarskjold ML. Evolutionary conservation of a molecular machinery for export and expression of mRNAs with retained introns. RNA (NEW YORK, N.Y.) 2015; 21:426-437. [PMID: 25605961 PMCID: PMC4338338 DOI: 10.1261/rna.048520.114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/09/2014] [Indexed: 06/04/2023]
Abstract
Intron retention is one of the least studied forms of alternative splicing. Through the use of retrovirus and other model systems, it was established many years ago that mRNAs with retained introns are subject to restriction both at the level of nucleocytoplasmic export and cytoplasmic expression. It was also demonstrated that specific cis-acting elements in the mRNA could serve to bypass these restrictions. Here we show that one of these elements, the constitutive transport element (CTE), first identified in the retrovirus MPMV and subsequently in the human NXF1 gene, is a highly conserved element. Using GERP analysis, CTEs with strong primary sequence homology, predicted to display identical secondary structure, were identified in NXF genes from >30 mammalian species. CTEs were also identified in the predicted NXF1 genes of zebrafish and coelacanths. The CTE from the zebrafish NXF1 was shown to function efficiently to achieve expression of mRNA with a retained intron in human cells in conjunction with zebrafish Nxf1 and cofactor Nxt proteins. This demonstrates that all essential functional components for expression of mRNA with retained introns have been conserved from fish to man.
Collapse
Affiliation(s)
- Baomin Wang
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - David Rekosh
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | - Marie-Louise Hammarskjold
- Myles H. Thaler Center for AIDS and Human Retrovirus Research, Department of Microbiology, Immunology, and Cancer Biology, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| |
Collapse
|
16
|
Twyffels L, Gueydan C, Kruys V. Transportin-1 and Transportin-2: protein nuclear import and beyond. FEBS Lett 2014; 588:1857-68. [PMID: 24780099 DOI: 10.1016/j.febslet.2014.04.023] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/12/2014] [Accepted: 04/16/2014] [Indexed: 12/22/2022]
Abstract
Nearly 20 years after its identification as a new β-karyopherin mediating the nuclear import of the RNA-binding protein hnRNP A1, Transportin-1 is still commonly overlooked in comparison with its best known cousin, Importin-β. Transportin-1 is nonetheless a considerable player in nucleo-cytoplasmic transport. Over the past few years, significant progress has been made in the characterization of the nuclear localization signals (NLSs) that Transportin-1 recognizes, thereby providing the molecular basis of its diversified repertoire of cargoes. The recent discovery that mutations in the Transportin-dependent NLS of FUS cause mislocalization of this protein and result in amyotrophic lateral sclerosis illustrates the importance of Transportin-dependent import for human health. Besides, new functions of Transportin-1 are emerging in processes other than nuclear import. Here, we summarize what is known about Transportin-1 and the related β-karyopherin Transportin-2.
Collapse
Affiliation(s)
- Laure Twyffels
- Laboratoire de Biologie moléculaire du gène (CP300), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium; Center for Microscopy and Molecular Imaging (CMMI), 6041 Gosselies, Belgium.
| | - Cyril Gueydan
- Laboratoire de Biologie moléculaire du gène (CP300), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium
| | - Véronique Kruys
- Laboratoire de Biologie moléculaire du gène (CP300), Faculté des Sciences, Université Libre de Bruxelles (ULB), Belgium; Center for Microscopy and Molecular Imaging (CMMI), 6041 Gosselies, Belgium
| |
Collapse
|
17
|
Inefficient SRP interaction with a nascent chain triggers a mRNA quality control pathway. Cell 2014; 156:146-57. [PMID: 24439374 DOI: 10.1016/j.cell.2013.12.017] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 08/01/2013] [Accepted: 12/18/2013] [Indexed: 11/22/2022]
Abstract
Misfolded proteins are often cytotoxic, unless cellular systems prevent their accumulation. Data presented here uncover a mechanism by which defects in secretory proteins lead to a dramatic reduction in their mRNAs and protein expression. When mutant signal sequences fail to bind to the signal recognition particle (SRP) at the ribosome exit site, the nascent chain instead contacts Argonaute2 (Ago2), and the mutant mRNAs are specifically degraded. Severity of signal sequence mutations correlated with increased proximity of Ago2 to nascent chain and mRNA degradation. Ago2 knockdown inhibited degradation of the mutant mRNA, while overexpression of Ago2 or knockdown of SRP54 promoted degradation of secretory protein mRNA. The results reveal a previously unappreciated general mechanism of translational quality control, in which specific mRNA degradation preemptively regulates aberrant protein production (RAPP).
Collapse
|
18
|
Field MC, Koreny L, Rout MP. Enriching the pore: splendid complexity from humble origins. Traffic 2014; 15:141-56. [PMID: 24279500 DOI: 10.1111/tra.12141] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 11/22/2013] [Accepted: 11/26/2013] [Indexed: 01/18/2023]
Abstract
The nucleus is the defining intracellular organelle of eukaryotic cells and represents a major structural innovation that differentiates the eukaryotic and prokaryotic cellular form. The presence of a nuclear envelope (NE) encapsulating the nucleus necessitates a mechanism for interchange between the contents of the nuclear interior and the cytoplasm, which is mediated via the nuclear pore complex (NPC), a large protein assembly residing in nuclear pores in the NE. Recent advances have begun to map the structure and functions of the NPC in multiple organisms, and to allow reconstruction of some of the evolutionary events that underpin the modern NPC form, highlighting common and differential NPC features across the eukaryotes. Here we discuss some of these advances and the questions being pursued, consider how the evolution of the NPC has been constrained, and finally propose a model for how the NPC evolved.
Collapse
Affiliation(s)
- Mark C Field
- Division of Biological Chemistry and Drug Discovery, University of Dundee, Dow Street, Dundee, DD1 5EH, Scotland
| | | | | |
Collapse
|
19
|
Desmond CR, Maiuri T, Truant R. A multifunctional, multi-pathway intracellular localization signal in Huntingtin. Commun Integr Biol 2013; 6:e23318. [PMID: 23750301 PMCID: PMC3609847 DOI: 10.4161/cib.23318] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Nuclear accumulation of the polyglutamine-expanded mutant huntingtin protein remains one of the most predictive cell biological phenotypes of Huntington's disease (HD) progression in patient brain samples and mouse models of the disease. Yet, the relationship between huntingtin nuclear import, neuronal dysfunction and toxicity is not fully understood and it remains unclear whether nuclear accumulation is required for disease onset. Here, we discuss several studies that have guided current understanding of this subject, and highlight our recent data detailing the discovery of a karyopherin β1/β2-type nuclear localization signal near the N-terminus of huntingtin. This signal can function through multiple pathways of nuclear import, and may also be responsible for huntingtin import into the primary cilium. This work represents a significant step forward in our knowledge of the regulatory pathways that govern huntingtin nuclear accumulation and will allow direct examination of both normal and mutant huntingtin nuclear function. This work also suggests a re-examination of the cell biology of any protein that contains a multi-pathway nuclear localization signal. The possibility of targeting huntingtin nuclear import therapeutically and the potential impacts of such a strategy for the treatment of HD are also discussed.
Collapse
Affiliation(s)
- Carly R Desmond
- Department of Biochemistry and Biomedical Sciences; McMaster University; Hamilton, ON Canada
| | | | | |
Collapse
|
20
|
Mallet PL, Bachand F. A Proline-Tyrosine Nuclear Localization Signal (PY-NLS) Is Required for the Nuclear Import of Fission Yeast PAB2, but Not of Human PABPN1. Traffic 2013; 14:282-94. [DOI: 10.1111/tra.12036] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 12/20/2012] [Accepted: 12/26/2012] [Indexed: 12/27/2022]
Affiliation(s)
- Pierre-Luc Mallet
- RNA Group, Department of Biochemistry; Université de Sherbrooke; Sherbrooke; QC; Canada
| | - François Bachand
- RNA Group, Department of Biochemistry; Université de Sherbrooke; Sherbrooke; QC; Canada
| |
Collapse
|
21
|
Kimura M, Kose S, Okumura N, Imai K, Furuta M, Sakiyama N, Tomii K, Horton P, Takao T, Imamoto N. Identification of cargo proteins specific for the nucleocytoplasmic transport carrier transportin by combination of an in vitro transport system and stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics. Mol Cell Proteomics 2012; 12:145-57. [PMID: 23087160 DOI: 10.1074/mcp.m112.019414] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human importin-β family consists of 21 nucleocytoplasmic transport carrier proteins that carry proteins and RNAs across the nuclear envelope through nuclear pores in specific directions. These transport carriers are responsible for the nucleocytoplasmic transport of thousands of proteins, but the cargo allocation of each carrier, which is necessary information if one wishes to understand the physiological context of transport, is poorly characterized. To address this issue, we developed a high-throughput method to identify the cargoes of transport carriers by applying stable isotope labeling by amino acids in cell culture to construct an in vitro transport system. Our method can be outlined in three steps. (1) Cells are cultured in a medium containing a stable isotope. (2) The cell membranes of the labeled cells are permeabilized, and proteins extracted from unlabeled cells are transported into the nuclei of the permeabilized cells. In this step, the reaction system is first depleted of all importin-β family carriers and then supplemented with a particular importin-β family carrier of interest. (3) Proteins in the nuclei are extracted and analyzed quantitatively via LC-MS/MS. As an important test case, we used this method to identify cargo proteins of transportin, a representative member of the importin-β family. As expected, the identified candidate cargo proteins included previously reported transportin cargoes as well as new potential cargoes, which we corroborated via in vitro binding assays. The identified cargoes are predominately RNA-interacting proteins, affirming that cargoes allotted to the same carrier share functional characteristics. Finally, we found that the transportin cargoes possessed at least two classes of signal sequences: the well characterized PY-nuclear localization signals specific for transportin, and Lys/Arg-rich segments capable of binding to both transportin and importin-β. Thus, our method will be useful for linking a carrier to features shared among its cargoes and to specific nuclear localization signals.
Collapse
Affiliation(s)
- Makoto Kimura
- Cellular Dynamics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Desmond CR, Atwal RS, Xia J, Truant R. Identification of a karyopherin β1/β2 proline-tyrosine nuclear localization signal in huntingtin protein. J Biol Chem 2012; 287:39626-33. [PMID: 23012356 DOI: 10.1074/jbc.m112.412379] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Among the known pathways of protein nuclear import, the karyopherin β2/transportin pathway is only the second to have a defined nuclear localization signal (NLS) consensus. Huntingtin, a 350-kDa protein, has defined roles in the nucleus, as well as a CRM1/exportin-dependent nuclear export signal; however, the NLS and exact pathway of import have remained elusive. Here, using a live cell assay and affinity chromatography, we show that huntingtin has a karyopherin β2-dependent proline-tyrosine (PY)-NLS in the amino terminus of the protein. This NLS comprises three consensus components: a basic charged sequence, a downstream conserved arginine, and a PY sequence. Unlike the classic PY-NLS, which has an unstructured intervening sequence between the consensus components, we show that a β sheet structured region separating the consensus elements is critical for huntingtin NLS function. The huntingtin PY-NLS is also capable of import through the importin/karyopherin β1 pathway but was not functional in all cell types tested. We propose that this huntingtin PY-NLS may comprise a new class of multiple import factor-dependent NLSs with an internal structural component that may regulate NLS activity.
Collapse
Affiliation(s)
- Carly R Desmond
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada L8N3Z5
| | | | | | | |
Collapse
|
23
|
Structural and energetic basis of ALS-causing mutations in the atypical proline-tyrosine nuclear localization signal of the Fused in Sarcoma protein (FUS). Proc Natl Acad Sci U S A 2012; 109:12017-21. [PMID: 22778397 DOI: 10.1073/pnas.1207247109] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the proline/tyrosine-nuclear localization signal (PY-NLS) of the Fused in Sarcoma protein (FUS) cause amyotrophic lateral sclerosis (ALS). Here we report the crystal structure of the FUS PY-NLS bound to its nuclear import receptor Karyopherinβ2 (Kapβ2; also known as Transportin). The FUS PY-NLS occupies the structurally invariant C-terminal arch of Kapβ2, tracing a path similar to that of other characterized PY-NLSs. Unlike other PY-NLSs, which generally bind Kapβ2 in fully extended conformations, the FUS peptide is atypical as its central portion forms a 2.5-turn α-helix. The Kapβ2-binding epitopes of the FUS PY-NLS consist of an N-terminal PGKM hydrophobic motif, a central arginine-rich α-helix, and a C-terminal PY motif. ALS mutations are found almost exclusively within these epitopes. Each ALS mutation site makes multiple contacts with Kapβ2 and mutations of these residues decrease binding affinities for Kapβ2 (K(D) for wild-type FUS PY-NLS is 9.5 nM) up to ninefold. Thermodynamic analyses of ALS mutations in the FUS PY-NLS show that the weakening of FUS-Kapβ2 binding affinity, the degree of cytoplasmic mislocalization, and ALS disease severity are correlated.
Collapse
|