1
|
Benítez R, Núñez Y, Ayuso M, Isabel B, Fernández-Barroso MA, De Mercado E, Gómez-Izquierdo E, García-Casco JM, López-Bote C, Óvilo C. Changes in Biceps femoris Transcriptome along Growth in Iberian Pigs Fed Different Energy Sources and Comparative Analysis with Duroc Breed. Animals (Basel) 2021; 11:ani11123505. [PMID: 34944282 PMCID: PMC8697974 DOI: 10.3390/ani11123505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/26/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary The genetic mechanisms that regulate biological processes, such as skeletal muscle development and growth, or intramuscular fat deposition, have attracted great interest, given their impact on production traits and meat quality. In this sense, a comparison of the transcriptome of skeletal muscle between phenotypically different pig breeds, or along growth, could be useful to improve the understanding of the molecular processes underlying the differences in muscle metabolism and phenotypic traits, potentially driving the identification of causal genes, regulators and metabolic pathways involved in their variability. Abstract This experiment was conducted to investigate the effects of developmental stage, breed, and diet energy source on the genome-wide expression, meat quality traits, and tissue composition of biceps femoris muscle in growing pure Iberian and Duroc pigs. The study comprised 59 Iberian (IB) and 19 Duroc (DU) animals, who started the treatment at an average live weight (LW) of 19.9 kg. The animals were kept under identical management conditions and fed two diets with different energy sources (6% high oleic sunflower oil or carbohydrates). Twenty-nine IB animals were slaughtered after seven days of treatment at an average LW of 24.1 kg, and 30 IB animals plus all the DU animals were slaughtered after 47 days at an average LW of 50.7 kg. The main factors affecting the muscle transcriptome were age, with 1832 differentially expressed genes (DEGs), and breed (1055 DEGs), while the effect of diet on the transcriptome was very small. The results indicated transcriptome changes along time in Iberian animals, being especially related to growth and tissue development, extracellular matrix (ECM) composition, and cytoskeleton organization, with DEGs affecting relevant functions and biological pathways, such as myogenesis. The breed also affected functions related to muscle development and cytoskeleton organization, as well as functions related to solute transport and lipid and carbohydrate metabolism. Taking into account the results of the two main comparisons (age and breed effects), we can postulate that the Iberian breed is more precocious than the Duroc breed, regarding myogenesis and muscle development, in the studied growing stage.
Collapse
Affiliation(s)
- Rita Benítez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Yolanda Núñez
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Miriam Ayuso
- Department of Veterinary Sciences, Faculty of Biomedical, Pharmaceutical and Veterinary Sciences, University of Antwerp, B-2610 Wilrijk, Belgium;
| | - Beatriz Isabel
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Miguel A. Fernández-Barroso
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Eduardo De Mercado
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Emilio Gómez-Izquierdo
- Centro de Pruebas de Porcino ITACYL, Hontalbilla, 40353 Segovia, Spain; (E.D.M.); (E.G.-I.)
| | - Juan M. García-Casco
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
| | - Clemente López-Bote
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, 28040 Madrid, Spain; (B.I.); (C.L.-B.)
| | - Cristina Óvilo
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), 28040 Madrid, Spain; (R.B.); (Y.N.); (M.A.F.-B.); (J.M.G.-C.)
- Correspondence: ; Tel.: +34-91-3471492
| |
Collapse
|
2
|
Champeris Tsaniras S, Delinasios GJ, Petropoulos M, Panagopoulos A, Anagnostopoulos AK, Villiou M, Vlachakis D, Bravou V, Stathopoulos GT, Taraviras S. DNA Replication Inhibitor Geminin and Retinoic Acid Signaling Participate in Complex Interactions Associated With Pluripotency. Cancer Genomics Proteomics 2019; 16:593-601. [PMID: 31659113 PMCID: PMC6885373 DOI: 10.21873/cgp.20162] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 09/23/2019] [Accepted: 10/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM Several links between DNA replication, pluripotency and development have been recently identified. The involvement of miRNA in the regulation of cell cycle events and pluripotency factors has also gained attention. MATERIALS AND METHODS In the present study, we used the g:Profiler platform to analyze transcription factor binding sites, miRNA networks and protein-protein interactions to identify novel links among the aforementioned processes. RESULTS AND CONCLUSION A complex circuitry between retinoic acid signaling, SWI/SNF components, pluripotency factors including Oct4, Sox2 and Nanog and cell cycle regulators was identified. It is suggested that the DNA replication inhibitor geminin plays a central role in this circuitry.
Collapse
Affiliation(s)
- Spyridon Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, U.S.A
| | | | | | | | - Athanasios K Anagnostopoulos
- International Institute of Anticancer Research, Kapandriti, Greece
- Proteomics Research Unit, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Maria Villiou
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| | - Dimitrios Vlachakis
- Bioinformatics & Medical Informatics Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Patras, Greece
| | - Stavros Taraviras
- Department of Physiology, Medical School, University of Patras, Patras, Greece
| |
Collapse
|
3
|
Benhassine M, Guérin SL. Transcription of the Human 5-Hydroxytryptamine Receptor 2B (HTR2B) Gene Is under the Regulatory Influence of the Transcription Factors NFI and RUNX1 in Human Uveal Melanoma. Int J Mol Sci 2018; 19:ijms19103272. [PMID: 30347896 PMCID: PMC6214142 DOI: 10.3390/ijms19103272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 09/27/2018] [Accepted: 10/12/2018] [Indexed: 02/07/2023] Open
Abstract
Because it accounts for 70% of all eye cancers, uveal melanoma (UM) is therefore the most common primary ocular malignancy. In this study, we investigated the molecular mechanisms leading to the aberrant expression of the gene encoding the serotonin receptor 2B (HTR2B), one of the most discriminating among the candidates from the class II gene signature, in metastatic and non-metastatic UM cell lines. Transfection analyses revealed that the upstream regulatory region of the HTR2B gene contains a combination of alternative positive and negative regulatory elements functional in HTR2B− but not in HTR23B+ UM cells. We demonstrated that both the transcription factors nuclear factor I (NFI) and Runt-related transcription factor I (RUNX1) interact with regulatory elements from the HTR2B gene to either activate (NFI) or repress (RUNX1) HTR2B expression in UM cells. The results of this study will help understand better the molecular mechanisms accounting for the abnormal expression of the HTR2B gene in uveal melanoma.
Collapse
Affiliation(s)
- Manel Benhassine
- Centre Universitaire d'Ophtalmologie-Recherche (CUO-Recherche), Axe médecine régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Université Laval, Québec, QC G1S4L8, Canada.
| | - Sylvain L Guérin
- Centre Universitaire d'Ophtalmologie-Recherche (CUO-Recherche), Axe médecine régénératrice, Hôpital du Saint-Sacrement, Centre de Recherche FRQS du CHU de Québec, Université Laval, Québec, QC G1S4L8, Canada.
- Département d'ophtalmologie, Faculté de Médecine, Université Laval, Québec, QC G1V0A6, Canada.
| |
Collapse
|
4
|
Ohno Y, Suzuki-Takedachi K, Yasunaga S, Kurogi T, Santo M, Masuhiro Y, Hanazawa S, Ohtsubo M, Naka K, Takihara Y. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin. PLoS One 2016; 11:e0155558. [PMID: 27195810 PMCID: PMC4873132 DOI: 10.1371/journal.pone.0155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin) was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kyoko Suzuki-Takedachi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shin’ichiro Yasunaga
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Toshiaki Kurogi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mimoko Santo
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Motoaki Ohtsubo
- Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Kita-ishigaki 82, Beppu-city, Oita, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- * E-mail:
| |
Collapse
|