1
|
Gengyo-Ando K, Kumagai M, Ando H, Nakai J. Domain 3a mutation of VPS33A suppresses larval arrest phenotype in the loss of VPS45 in Caenorhabditis elegans. MICROPUBLICATION BIOLOGY 2024; 2024:10.17912/micropub.biology.001155. [PMID: 38585203 PMCID: PMC10995724 DOI: 10.17912/micropub.biology.001155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The Sec1/Munc18 (SM) protein VPS45 is a key regulator of SNARE-mediated membrane fusion in endosomal trafficking, but its precise role remains unknown. To understand the function of VPS45 in vivo , we performed a genetic suppressor screen in Caenorhabditis elegans . We found that the temperature-sensitive lethality caused by the loss of VPS-45 can be suppressed by a mutation in another SM protein, VPS33A. The VPS33A M376I mutation is located in domain 3a, which is predicted to be essential for SNARE complex assembly. These results highlight the functional importance of domain 3a in endosomal SM proteins and its role in specific membrane fusion.
Collapse
Affiliation(s)
- Keiko Gengyo-Ando
- Oral Physiology, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Masahiko Kumagai
- Bioinformatics Unit, Research Center for Advanced Analysis, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Hideki Ando
- Oral Physiology, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| | - Junichi Nakai
- Oral Physiology, Tohoku University Graduate School of Dentistry, Miyagi, Japan
| |
Collapse
|
2
|
Cadena Del Castillo CE, Hannich JT, Kaech A, Chiyoda H, Brewer J, Fukuyama M, Færgeman NJ, Riezman H, Spang A. Patched regulates lipid homeostasis by controlling cellular cholesterol levels. Nat Commun 2021; 12:4898. [PMID: 34385431 PMCID: PMC8361143 DOI: 10.1038/s41467-021-24995-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 07/11/2021] [Indexed: 02/07/2023] Open
Abstract
Hedgehog (Hh) signaling is essential during development and in organ physiology. In the canonical pathway, Hh binding to Patched (PTCH) relieves the inhibition of Smoothened (SMO). Yet, PTCH may also perform SMO-independent functions. While the PTCH homolog PTC-3 is essential in C. elegans, worms lack SMO, providing an excellent model to probe non-canonical PTCH function. Here, we show that PTC-3 is a cholesterol transporter. ptc-3(RNAi) leads to accumulation of intracellular cholesterol and defects in ER structure and lipid droplet formation. These phenotypes were accompanied by a reduction in acyl chain (FA) length and desaturation. ptc-3(RNAi)-induced lethality, fat content and ER morphology defects were rescued by reducing dietary cholesterol. We provide evidence that cholesterol accumulation modulates the function of nuclear hormone receptors such as of the PPARα homolog NHR-49 and NHR-181, and affects FA composition. Our data uncover a role for PTCH in organelle structure maintenance and fat metabolism.
Collapse
Affiliation(s)
| | - J Thomas Hannich
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
- CeMM - Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zurich, Switzerland
| | - Hirohisa Chiyoda
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Jonathan Brewer
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Masamitsu Fukuyama
- Laboratory of Physiological Chemistry, Graduate School of Pharmaceutical Sciences, University of Tokyo, Tokyo, Japan
| | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, Villum Center for Bioanalytical Sciences, University of Southern Denmark, Odense, Denmark
| | - Howard Riezman
- Department of Biochemistry and NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
3
|
Sparvoli D, Zoltner M, Cheng CY, Field MC, Turkewitz AP. Diversification of CORVET tethers facilitates transport complexity in Tetrahymena thermophila. J Cell Sci 2020; 133:jcs238659. [PMID: 31964712 PMCID: PMC7033735 DOI: 10.1242/jcs.238659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
In endolysosomal networks, two hetero-hexameric tethers called HOPS and CORVET are found widely throughout eukaryotes. The unicellular ciliate Tetrahymena thermophila possesses elaborate endolysosomal structures, but curiously both it and related protozoa lack the HOPS tether and several other trafficking proteins, while retaining the related CORVET complex. Here, we show that Tetrahymena encodes multiple paralogs of most CORVET subunits, which assemble into six distinct complexes. Each complex has a unique subunit composition and, significantly, shows unique localization, indicating participation in distinct pathways. One pair of complexes differ by a single subunit (Vps8), but have late endosomal versus recycling endosome locations. While Vps8 subunits are thus prime determinants for targeting and functional specificity, determinants exist on all subunits except Vps11. This unprecedented expansion and diversification of CORVET provides a potent example of tether flexibility, and illustrates how 'backfilling' following secondary losses of trafficking genes can provide a mechanism for evolution of new pathways.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| | - Martin Zoltner
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
| | - Chao-Yin Cheng
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, 37005 Ceske Budejovice, Czech Republic
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, 920 E 58th Street, The University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
4
|
Solinger JA, Rashid HO, Prescianotto-Baschong C, Spang A. FERARI is required for Rab11-dependent endocytic recycling. Nat Cell Biol 2020; 22:213-224. [PMID: 31988382 DOI: 10.1038/s41556-019-0456-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 12/16/2019] [Indexed: 01/22/2023]
Abstract
Endosomal transport is essential for cellular organization and compartmentalization and cell-cell communication. Sorting endosomes provide a crossroads for various trafficking pathways and determine recycling, secretion or degradation of proteins. The organization of these processes requires membrane-tethering factors to coordinate Rab GTPase function with membrane fusion. Here, we report a conserved tethering platform that acts in the Rab11 recycling pathways at sorting endosomes, which we name factors for endosome recycling and Rab interactions (FERARI). The Rab-binding module of FERARI consists of Rab11FIP5 and rabenosyn-5/RABS-5, while the SNARE-interacting module comprises VPS45 and VIPAS39. Unexpectedly, the membrane fission protein EHD1 is also a FERARI component. Thus, FERARI appears to combine fusion activity through the SM protein VPS45 with pinching activity through EHD1 on SNX-1-positive endosomal membranes. We propose that coordination of fusion and pinching through a kiss-and-run mechanism drives cargo at endosomes into recycling pathways.
Collapse
Affiliation(s)
| | | | | | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
5
|
Morishita S, Wada N, Fukuda M, Nakamura T. Rab5 activation on macropinosomes requires ALS2, and subsequent Rab5 inactivation through ALS2 detachment requires active Rab7. FEBS Lett 2018; 593:230-241. [PMID: 30485418 DOI: 10.1002/1873-3468.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 11/08/2022]
Abstract
Macropinocytosis is a nonspecific bulk uptake of extracellular fluid. During endosome maturation, the Rab5-to-Rab7 switch machinery executes the conversion from early to late endosomes. However, how the Rab switch works during macropinosome maturation remains unclear. Here, we elucidate the Rab switch machinery in macropinosome maturation using Förster resonance energy transfer imaging. Rab5 is activated and concurrently recruited to macropinosomes during ruffle closure. ALS2 depletion abolishes transient Rab5 activation on macropinosomes, while ALS2 is recruited to macropinosomes simultaneously with Rab5 activation. Thus, we conclude ALS2 activates Rab5 on macropinosomes. The absence of active Rab7 prolongs ALS2 presence and Rab5 activation on macropinosomes, indicating that active Rab7 is necessary for Rab5 inactivation through ALS2 dissociation and plays key roles in the Rab switch on macropinosomes.
Collapse
Affiliation(s)
- So Morishita
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Naoyuki Wada
- Department of Applied Biological Science, Tokyo University of Science, Noda, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Takeshi Nakamura
- Division of Biosignaling, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Japan
| |
Collapse
|
6
|
Podinovskaia M, Spang A. The Endosomal Network: Mediators and Regulators of Endosome Maturation. ENDOCYTOSIS AND SIGNALING 2018; 57:1-38. [DOI: 10.1007/978-3-319-96704-2_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Stevens J, Spang A. Attenuation of N-glycosylation causes polarity and adhesion defects in the C. elegans embryo. J Cell Sci 2017; 130:1224-1231. [PMID: 28202691 DOI: 10.1242/jcs.189316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 02/06/2017] [Indexed: 11/20/2022] Open
Abstract
The Caenorhabditiselegans early embryo is highly polarized, requiring sequestration of cytoplasmic polarity factors at the plasma membrane. This compartmentalization aids asymmetric distribution of lipids and proteins, which is partially responsible for the fates of the daughter cells. Since most plasma membrane proteins are glycosylated, we determined the effect of attenuation of N-glycosylation on cell polarity. While polarity establishment was not perturbed, the size difference between the two cells formed in first cell division (AB and P1) was more variable in embryos with reduced N-glycosylation than in the mock-treated embryos. In addition, among other deficiencies, we observed spindle orientation defects in two-cell embryos. Moreover, cell-cell adhesion was specifically lost at the two-cell stage when N-glycosylation was reduced. This loss-of-adhesion phenotype was rescued by interfering with polarity establishment, indicating that polarity establishment enforces plasma membrane compartmentalization. Consistent with this idea, the decreased plasma membrane levels of the adhesion proteins E-cadherin and MAGI-1 in ribo-1(RNAi) embryos were restored in the absence of functional PAR-2. Our data suggest a general role for N-glycosylation in plasma membrane compartmentalization and cell polarity.
Collapse
Affiliation(s)
- Julia Stevens
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Klingelbergstrasse 70, Basel CH-4056, Switzerland
| |
Collapse
|
8
|
MITANI S. Comprehensive functional genomics using Caenorhabditis elegans as a model organism. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2017; 93:561-577. [PMID: 29021508 PMCID: PMC5743858 DOI: 10.2183/pjab.93.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/31/2017] [Indexed: 06/07/2023]
Abstract
We have been working on functional genomics using C. elegans as a model organism. We first used cell-type specific markers and preexisting mutants to investigate how genotype-phenotype causal relationships are regulated. With the aid of transgenic methods, we analyzed various biological processes in C. elegans. We have developed efficient methods to isolate gene knockout strains. Thousands of strains isolated this way are used by many researchers and have revealed many biological mechanisms. We have also developed methods to examine the functions of genes in a comprehensive manner by integrating transgenes into chromosomes, designing conditional knockouts, and creating balancers for lethal mutations. A combination of these biological resources and techniques will be useful to understand the functions of genes in C. elegans, which has many genes that are orthologous to those of higher organisms including humans.
Collapse
Affiliation(s)
- Shohei MITANI
- Department of Physiology, Tokyo Women’s Medical University School of Medicine, Tokyo, Japan
- Tokyo Women’s Medical University Institute for Integrated Medical Sciences, Tokyo, Japan
| |
Collapse
|
9
|
Rogerson C, Gissen P. The CHEVI tethering complex: facilitating special deliveries. J Pathol 2016; 240:249-252. [DOI: 10.1002/path.4785] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Clare Rogerson
- MRC Laboratory for Molecular Cell Biology; University College London; London UK
- Institute of Child Health; University College London; London UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology; University College London; London UK
- Institute of Child Health; University College London; London UK
- Inherited Metabolic Diseases Unit; Great Ormond Street Hospital; London UK
| |
Collapse
|
10
|
Gengyo-Ando K, Kage-Nakadai E, Yoshina S, Otori M, Kagawa-Nagamura Y, Nakai J, Mitani S. Distinct roles of the two VPS33 proteins in the endolysosomal system in Caenorhabditis elegans. Traffic 2016; 17:1197-1213. [PMID: 27558849 DOI: 10.1111/tra.12430] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 08/18/2016] [Accepted: 08/18/2016] [Indexed: 02/02/2023]
Abstract
Sec1/Munc-18 (SM) family proteins are essential regulators in intracellular transport in eukaryotic cells. The SM protein Vps33 functions as a core subunit of two tethering complexes, class C core vacuole/endosome tethering (CORVET) and homotypic fusion and vacuole protein sorting (HOPS) in the endocytic pathway in yeast. Metazoan cells possess two Vps33 proteins, VPS33A and VPS33B, but their precise roles remain unknown. Here, we present a comparative analysis of Caenorhabditis elegans null mutants for these proteins. We found that the vps-33.1 (VPS33A) mutants exhibited severe defects in both endocytic function and endolysosomal biogenesis in scavenger cells. Furthermore, vps-33.1 mutations caused endocytosis defects in other tissues, and the loss of maternal and zygotic VPS-33.1 resulted in embryonic lethality. By contrast, vps-33.2 mutants were viable but sterile, with terminally arrested spermatocytes. The spermatogenesis phenotype suggests that VPS33.2 is involved in the formation of a sperm-specific organelle. The endocytosis defect in the vps-33.1 mutant was not restored by the expression of VPS-33.2, which indicates that these proteins have nonredundant functions. Together, our data suggest that VPS-33.1 shares most of the general functions of yeast Vps33 in terms of tethering complexes in the endolysosomal system, whereas VPS-33.2 has tissue/organelle specific functions in C. elegans.
Collapse
Affiliation(s)
- Keiko Gengyo-Ando
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan. .,Brain and Body System Science Institute, Saitama University, Saitama, Japan. .,Graduate School of Science and Engineering, Saitama University, Saitama, Japan.
| | - Eriko Kage-Nakadai
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.,The OCU Advanced Research Institute for Natural Science and Technology, Osaka City University, Osaka, Japan
| | - Sawako Yoshina
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Muneyoshi Otori
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Yuko Kagawa-Nagamura
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Junichi Nakai
- Brain and Body System Science Institute, Saitama University, Saitama, Japan.,Graduate School of Science and Engineering, Saitama University, Saitama, Japan
| | - Shohei Mitani
- Department of Physiology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan.
| |
Collapse
|
11
|
Spang A. Membrane Tethering Complexes in the Endosomal System. Front Cell Dev Biol 2016; 4:35. [PMID: 27243003 PMCID: PMC4860415 DOI: 10.3389/fcell.2016.00035] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023] Open
Abstract
Vesicles that are generated by endocytic events at the plasma membrane are destined to early endosomes. A prerequisite for proper fusion is the tethering of two membrane entities. Tethering of vesicles to early endosomes is mediated by the class C core vacuole/endosome tethering (CORVET) complex, while fusion of late endosomes with lysosomes depends on the homotypic fusion and vacuole protein sorting (HOPS) complex. Recycling through the trans-Golgi network (TGN) and to the plasma membrane is facilitated by the Golgi associated retrograde protein (GARP) and endosome-associated recycling protein (EARP) complexes, respectively. However, there are other tethering functions in the endosomal system as there are multiple pathways through which proteins can be delivered from endosomes to either the TGN or the plasma membrane. Furthermore, proteins that may be part of novel tethering complexes have been recently identified. Thus, it is likely that more tethering factors exist. In this review, I will provide an overview of different tethering complexes of the endosomal system and discuss how they may provide specificity in membrane traffic.
Collapse
Affiliation(s)
- Anne Spang
- Biozentrum, Growth & Development, University of Basel Basel, Switzerland
| |
Collapse
|
12
|
Galmes R, ten Brink C, Oorschot V, Veenendaal T, Jonker C, van der Sluijs P, Klumperman J. Vps33B is required for delivery of endocytosed cargo to lysosomes. Traffic 2015; 16:1288-305. [DOI: 10.1111/tra.12334] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Romain Galmes
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
- Present address: Institut Jacques Monod; CNRS, UMR7592, Université Paris Diderot; Sorbonne Paris Cité F-75013 Paris France
| | - Corlinda ten Brink
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Viola Oorschot
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
- Present address: Monash Micro Imaging; 15 Innovation Walk, Strip 1 Monash Biotechnology, Monash University; Clayton VIC 3800 Australia
| | - Tineke Veenendaal
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Caspar Jonker
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Peter van der Sluijs
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| | - Judith Klumperman
- Department of Cell Biology and Institute of Biomembranes; Center for Molecular Medicine, University Medical Center Utrecht; Heidelberglaan 100 3584CX Utrecht The Netherlands
| |
Collapse
|
13
|
van der Kant R, Jonker CTH, Wijdeven RH, Bakker J, Janssen L, Klumperman J, Neefjes J. Characterization of the Mammalian CORVET and HOPS Complexes and Their Modular Restructuring for Endosome Specificity. J Biol Chem 2015; 290:30280-90. [PMID: 26463206 DOI: 10.1074/jbc.m115.688440] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Indexed: 01/30/2023] Open
Abstract
Trafficking of cargo through the endosomal system depends on endosomal fusion events mediated by SNARE proteins, Rab-GTPases, and multisubunit tethering complexes. The CORVET and HOPS tethering complexes, respectively, regulate early and late endosomal tethering and have been characterized in detail in yeast where their sequential membrane targeting and assembly is well understood. Mammalian CORVET and HOPS subunits significantly differ from their yeast homologues, and novel proteins with high homology to CORVET/HOPS subunits have evolved. However, an analysis of the molecular interactions between these subunits in mammals is lacking. Here, we provide a detailed analysis of interactions within the mammalian CORVET and HOPS as well as an additional endosomal-targeting complex (VIPAS39-VPS33B) that does not exist in yeast. We show that core interactions within CORVET and HOPS are largely conserved but that the membrane-targeting module in HOPS has significantly changed to accommodate binding to mammalian-specific RAB7 interacting lysosomal protein (RILP). Arthrogryposis-renal dysfunction-cholestasis (ARC) syndrome-associated mutations in VPS33B selectively disrupt recruitment to late endosomes by RILP or binding to its partner VIPAS39. Within the shared core of CORVET/HOPS, we find that VPS11 acts as a molecular switch that binds either CORVET-specific TGFBRAP1 or HOPS-specific VPS39/RILP thereby allowing selective targeting of these tethering complexes to early or late endosomes to time fusion events in the endo/lysosomal pathway.
Collapse
Affiliation(s)
- Rik van der Kant
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Caspar T H Jonker
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Ruud H Wijdeven
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Jeroen Bakker
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Lennert Janssen
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| | - Judith Klumperman
- Department of Cell Biology, Center of Molecular Medicine, Utrecht, 3584 CX, The Netherlands
| | - Jacques Neefjes
- From the Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, 1066 CX, The Netherlands and
| |
Collapse
|
14
|
Wartosch L, Günesdogan U, Graham SC, Luzio JP. Recruitment of VPS33A to HOPS by VPS16 Is Required for Lysosome Fusion with Endosomes and Autophagosomes. Traffic 2015; 16:727-42. [PMID: 25783203 PMCID: PMC4510706 DOI: 10.1111/tra.12283] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 03/12/2015] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
The mammalian homotypic fusion and vacuole protein sorting (HOPS) complex is comprised of six subunits: VPS11, VPS16, VPS18, VPS39, VPS41 and the Sec1/Munc18 (SM) family member VPS33A. Human HOPS has been predicted to be a tethering complex required for fusion of intracellular compartments with lysosomes, but it remains unclear whether all HOPS subunits are required. We showed that the whole HOPS complex is required for fusion of endosomes with lysosomes by monitoring the delivery of endocytosed fluorescent dextran to lysosomes in cells depleted of individual HOPS proteins. We used the crystal structure of the VPS16/VPS33A complex to design VPS16 and VPS33A mutants that no longer bind each other and showed that, unlike the wild-type proteins, these mutants no longer rescue lysosome fusion with endosomes or autophagosomes in cells depleted of the endogenous proteins. There was no effect of depleting either VIPAR or VPS33B, paralogs of VPS16 and VPS33A, on fusion of lysosomes with either endosomes or autophagosomes and immunoprecipitation showed that they form a complex distinct from HOPS. Our data demonstrate the necessity of recruiting the SM protein VPS33A to HOPS via its interaction with VPS16 and that HOPS proteins, but not VIPAR or VPS33B, are essential for fusion of endosomes or autophagosomes with lysosomes.
Collapse
Affiliation(s)
- Lena Wartosch
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Wellcome Trust/MRC BuildingUniversity of CambridgeCambridgeCB2 0XYUK
| | - Ufuk Günesdogan
- Wellcome Trust/Cancer Research UK Gurdon InstituteUniversity of CambridgeCambridgeCB2 1QNUK
| | | | - J. Paul Luzio
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, Wellcome Trust/MRC BuildingUniversity of CambridgeCambridgeCB2 0XYUK
| |
Collapse
|
15
|
Rana M, Lachmann J, Ungermann C. Identification of a Rab GTPase-activating protein cascade that controls recycling of the Rab5 GTPase Vps21 from the vacuole. Mol Biol Cell 2015; 26:2535-49. [PMID: 25971802 PMCID: PMC4571306 DOI: 10.1091/mbc.e15-02-0062] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 05/06/2015] [Indexed: 01/30/2023] Open
Abstract
Endocytic transport depends on two consecutive Rabs, Vps21 (Rab5 in metazoans) and Ypt7 (Rab7), which bind to effectors on early and late endosomes. This study now shows that inactivation of Vps21 via its GTPase-activating protein (GAP) Msb3 requires both Ypt7 and fusion with the vacuole. The data suggest an endosomal GAP cascade that includes the effector of Ypt7. Transport within the endocytic pathway depends on a consecutive function of the endosomal Rab5 and the late endosomal/lysosomal Rab7 GTPases to promote membrane recycling and fusion in the context of endosomal maturation. We previously identified the hexameric BLOC-1 complex as an effector of the yeast Rab5 Vps21, which also recruits the GTPase-activating protein (GAP) Msb3. This raises the question of when Vps21 is inactivated on endosomes. We provide evidence for a Rab cascade in which activation of the Rab7 homologue Ypt7 triggers inactivation of Vps21. We find that the guanine nucleotide exchange factor (GEF) of Ypt7 (the Mon1-Ccz1 complex) and BLOC-1 both localize to the same endosomes. Overexpression of Mon1-Ccz1, which generates additional Ypt7-GTP, or overexpression of activated Ypt7 promotes relocalization of Vps21 from endosomes to the endoplasmic reticulum (ER), which is indicative of Vps21 inactivation. This ER relocalization is prevented by loss of either BLOC-1 or Msb3, but it also occurs in mutants lacking endosome–vacuole fusion machinery such as the HOPS tethering complex, an effector of Ypt7. Importantly, BLOC-1 interacts with the HOPS on vacuoles, suggesting a direct Ypt7-dependent cross-talk. These data indicate that efficient Vps21 recycling requires both Ypt7 and endosome–vacuole fusion, thus suggesting extended control of a GAP cascade beyond Rab interactions.
Collapse
Affiliation(s)
- Meenakshi Rana
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Jens Lachmann
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| | - Christian Ungermann
- Biochemistry Section, Department of Biology/Chemistry, University of Osnabrück, 49076 Osnabrück, Germany
| |
Collapse
|