1
|
Demos E, Dimou S, Scazzocchio C, Diallinas G. Screens for mutants defective in UapA trafficking highlight the importance of ER-exit as a primary control point in transporter biogenesis. Fungal Genet Biol 2024; 175:103940. [PMID: 39521172 DOI: 10.1016/j.fgb.2024.103940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/31/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Most transmembrane membrane proteins are thought to traffic to the plasma membrane (PM) via the conventional secretory pathway through sorting from the Golgi. However, our recent work has shown that in the filamentous fungus Aspergillus nidulans several nutrient transporters and other major membrane proteins traffic to the PM via Golgi-bypass and independently of known post-Golgi secretory mechanisms. Here in an effort to dissect the molecular mechanism underlying membrane cargo trafficking via Golgi-bypass we design and use unbiased genetic screens, based on the UapA uric acid-xanthine transporter, which allowed the isolation of mutants defective in UapA translocation to the plasma membrane. Analyses of these mutants highlight the importance of ER-exit as the primary control point in transporter trafficking via Golgi-bypass. Most mutants isolated concerned mutations within the uapA gene, albeit we also obtained uapA extragenetic mutants affecting secretion and growth pleiotropically or leading on apparent activation of an efflux transporter related to purine-detoxification. Our work paves the way to use genetic approaches targeting specifically trafficking mutations affecting Golgi-bypass.
Collapse
Affiliation(s)
- Effie Demos
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece
| | - Claudio Scazzocchio
- Department of Life Sciences, Imperial College London, London, UK; Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, 15784 Athens, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 70013 Heraklion, Greece.
| |
Collapse
|
2
|
Sagia GM, Georgiou X, Chamilos G, Diallinas G, Dimou S. Distinct trafficking routes of polarized and non-polarized membrane cargoes in Aspergillus nidulans. eLife 2024; 13:e103355. [PMID: 39431919 DOI: 10.7554/elife.103355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/10/2024] [Indexed: 10/22/2024] Open
Abstract
Membrane proteins are sorted to the plasma membrane via Golgi-dependent trafficking. However, our recent studies challenged the essentiality of Golgi in the biogenesis of specific transporters. Here, we investigate the trafficking mechanisms of membrane proteins by following the localization of the polarized R-SNARE SynA versus the non-polarized transporter UapA, synchronously co-expressed in wild-type or isogenic genetic backgrounds repressible for conventional cargo secretion. In wild-type, the two cargoes dynamically label distinct secretory compartments, highlighted by the finding that, unlike SynA, UapA does not colocalize with the late-Golgi. In line with early partitioning into distinct secretory carriers, the two cargoes collapse in distinct ER-Exit Sites (ERES) in a sec31ts background. Trafficking via distinct cargo-specific carriers is further supported by showing that repression of proteins essential for conventional cargo secretion does not affect UapA trafficking, while blocking SynA secretion. Overall, this work establishes the existence of distinct, cargo-dependent, trafficking mechanisms, initiating at ERES and being differentially dependent on Golgi and SNARE interactions.
Collapse
Affiliation(s)
- Georgia Maria Sagia
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| | - Georgios Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens, Greece
| |
Collapse
|
3
|
Kourkoulou A, Martzoukou O, Fischer R, Amillis S. A type II phosphatidylinositol-4-kinase coordinates sorting of cargo polarizing by endocytic recycling. Commun Biol 2024; 7:855. [PMID: 38997419 PMCID: PMC11245547 DOI: 10.1038/s42003-024-06553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 07/04/2024] [Indexed: 07/14/2024] Open
Abstract
Depending on their phosphorylation status, derivatives of phosphatidylinositol play important roles in vesicle identity, recognition and intracellular trafficking processes. In eukaryotic cells, phosphatidylinositol-4 phosphate pools generated by specific kinases are key determinants of the conventional secretion pathways. Earlier work in yeast has classified phosphatidylinositol-4 kinases in two types, Stt4p and Pik1p belonging to type III and Lsb6p to type II, with distinct cellular localizations and functions. Eurotiomycetes appear to lack Pik1p homologues. In Aspergillus nidulans, unlike homologues in other fungi, AnLsb6 is associated to late Golgi membranes and when heterologously overexpressed, it compensates for the thermosensitive phenotype in a Saccharomyces cerevisiae pik1 mutant, whereas its depletion leads to disorganization of Golgi-associated PHOSBP-labelled membranes, that tend to aggregate dependent on functional Rab5 GTPases. Evidence provided herein, indicates that the single type II phosphatidylinositol-4 kinase AnLsb6 is the main contributor for decorating secretory vesicles with relevant phosphatidylinositol-phosphate species, which navigate essential cargoes following the route of apical polarization via endocytic recycling.
Collapse
Affiliation(s)
- Anezia Kourkoulou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Olga Martzoukou
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece
| | - Reinhard Fischer
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Sotiris Amillis
- National and Kapodistrian University of Athens, Department of Biology, Athens, Hellas, Greece.
- Karlsruhe Institute of Technology - South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany.
| |
Collapse
|
4
|
Georgiou X, Dimou S, Diallinas G, Samiotaki M. The interactome of the UapA transporter reveals putative new players in anterograde membrane cargo trafficking. Fungal Genet Biol 2023; 169:103840. [PMID: 37730157 DOI: 10.1016/j.fgb.2023.103840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023]
Abstract
Neosynthesized plasma membrane (PM) proteins co-translationally translocate to the ER, concentrate at regions called ER-exit sites (ERes) and pack into COPII secretory vesicles which are sorted to the early-Golgi through membrane fusion. Following Golgi maturation, membrane cargoes reach the late-Golgi, from where they exit in clathrin-coated vesicles destined to the PM, directly or through endosomes. Post-Golgi membrane cargo trafficking also involves the cytoskeleton and the exocyst. The Golgi-dependent secretory pathway is thought to be responsible for the trafficking of all major membrane proteins. However, our recent findings in Aspergillus nidulans showed that several plasma membrane cargoes, such as transporters and receptors, follow a sorting route that seems to bypass Golgi functioning. To gain insight on membrane trafficking and specifically Golgi-bypass, here we used proximity dependent biotinylation (PDB) coupled with data-independent acquisition mass spectrometry (DIA-MS) for identifying transient interactors of the UapA transporter. Our assays, which included proteomes of wild-type and mutant strains affecting ER-exit or endocytosis, identified both expected and novel interactions that might be physiologically relevant to UapA trafficking. Among those, we validated, using reverse genetics and fluorescence microscopy, that COPI coatomer is essential for ER-exit and anterograde trafficking of UapA and other membrane cargoes. We also showed that ArfAArf1 GTPase activating protein (GAP) Glo3 contributes to UapA trafficking at increased temperature. This is the first report addressing the identification of transient interactions during membrane cargo biogenesis using PDB and proteomics coupled with fungal genetics. Our work provides a basis for dissecting dynamic membrane cargo trafficking via PDB assays.
Collapse
Affiliation(s)
- Xenia Georgiou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis, Athens 15784, Greece; Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion 70013, Greece.
| | - Martina Samiotaki
- Biomedical Sciences Research Center "Alexander Fleming", Institute for Bioinnovation, Vari 16672, Greece.
| |
Collapse
|
5
|
Liu S, Gong X, Ma J, Wang S, Guo M. MoMih1 is indispensable for asexual development, cell wall integrity, and pathogenicity of Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2023; 14:1146915. [PMID: 36998683 PMCID: PMC10044144 DOI: 10.3389/fpls.2023.1146915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
Asexual spore serves as essential inoculum of rice blast during the disease cycle, and differentiation of young conidium from conidiophore is intimately regulated by cell cycle. Mih1 encodes a dual-specificity phosphatase that involved in the G2/M transition of the mitotic cell cycle by regulating the Cdk1 activity in eukaryotes. Till now, the roles of Mih1 homologue, however, remain unclear in Magnaporthe oryzae. We here functionally characterized the Mih1 homologue MoMih1 in M. oryzae. MoMih1 is localized to both the cytoplasm and nucleus and can physically interact with the CDK protein MoCdc28 in vivo. Loss of MoMih1 led to delayed nucleus division and a high level of Tyr15 phosphorylation of MoCdc28. The MoMih1 mutants showed retarded mycelial growth with a defective polar growth, less fungal biomass, and shorter distance between diaphragms, compared with the KU80. Asexual reproduction altered in MoMih1 mutants, with both abnormal conidial morphogenesis and decreased conidiation. The MoMih1 mutants severely attenuated the virulence to host plants due to the impaired ability of penetration and biotrophic growth. The incapability of scavenging of host-derived reactive oxygen species, which was possibly ascribed to the severely decreased extracellular enzymes activities, were partially associated with deficiency of pathogenicity. Besides, the MoMih1 mutants displayed also improper localization of retromer protein MoVps26 and polarisome component MoSpa2, and defects of cell wall integrity (CWI), melanin pigmentation, chitin synthesis, and hydrophobicity. In conclusion, our results demonstrate that MoMih1 plays pleiotropic roles during fungal development and plant infection of M. oryzae.
Collapse
Affiliation(s)
- Shiyi Liu
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Xinli Gong
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Ji Ma
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Shuaishuai Wang
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| | - Min Guo
- Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Anhui Agricultural University, Hefei, China
- College of Plant Protection, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Qiu R, Zhang J, Xiang X. Kinesin-1 autoinhibition facilitates the initiation of dynein cargo transport. J Cell Biol 2023; 222:e202205136. [PMID: 36524956 PMCID: PMC9802684 DOI: 10.1083/jcb.202205136] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/04/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
The functional significance of Kinesin-1 autoinhibition has been unclear. Kinesin-1 transports multiple cargoes including cytoplasmic dynein to microtubule plus ends. From a genetic screen for Aspergillus mutants defective in dynein-mediated early endosome transport, we identified a kinesin-1 mutation kinAK895* at the C-terminal IAK motif involved in autoinhibition. The kinA∆IAK and kinAK895E mutants exhibited a similar defect in dynein-mediated early endosome transport, verifying the importance of kinesin-1 autoinhibition in dynein-mediated transport. Kinesin-1 autoinhibition is not critical for dynein accumulation at microtubule plus ends or for the secretory vesicle cargoes of kinesin-1 to reach the hyphal tip. However, it facilitates dynein to initiate early endosome transport. This is unrelated to a direct competition between dynein and kinesin-1 on early endosomes because kinesin-3 rather than kinesin-1 drives the plus-end-directed early endosome movement. This effect of kinesin-1 autoinhibition on dynein-mediated early endosome transport is related to cargo adapter-mediated dynein activation but at a step beyond the switching of dynein from its autoinhibited conformation.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences, F. Edward Hébert School of Medicine, Bethesda, MA, USA
| |
Collapse
|
7
|
Cell wall dynamics stabilize tip growth in a filamentous fungus. PLoS Biol 2023; 21:e3001981. [PMID: 36649360 PMCID: PMC9882835 DOI: 10.1371/journal.pbio.3001981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 01/27/2023] [Accepted: 12/22/2022] [Indexed: 01/18/2023] Open
Abstract
Hyphal tip growth allows filamentous fungi to colonize space, reproduce, or infect. It features remarkable morphogenetic plasticity including unusually fast elongation rates, tip turning, branching, or bulging. These shape changes are all driven from the expansion of a protective cell wall (CW) secreted from apical pools of exocytic vesicles. How CW secretion, remodeling, and deformation are modulated in concert to support rapid tip growth and morphogenesis while ensuring surface integrity remains poorly understood. We implemented subresolution imaging to map the dynamics of CW thickness and secretory vesicles in Aspergillus nidulans. We found that tip growth is associated with balanced rates of CW secretion and expansion, which limit temporal fluctuations in CW thickness, elongation speed, and vesicle amount, to less than 10% to 20%. Affecting this balance through modulations of growth or trafficking yield to near-immediate changes in CW thickness, mechanics, and shape. We developed a model with mechanical feedback that accounts for steady states of hyphal growth as well as rapid adaptation of CW mechanics and vesicle recruitment to different perturbations. These data provide unprecedented details on how CW dynamics emerges from material secretion and expansion, to stabilize fungal tip growth as well as promote its morphogenetic plasticity.
Collapse
|
8
|
Qiu R, Zhang J, McDaniel D, Peñalva MA, Xiang X. Live-Cell Imaging of Dynein-Mediated Cargo Transport in Aspergillus nidulans. Methods Mol Biol 2023; 2623:3-23. [PMID: 36602676 DOI: 10.1007/978-1-0716-2958-1_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Filamentous fungi have been used for studying long-distance transport of cargoes driven by cytoplasmic dynein. Aspergillus nidulans is a well-established genetic model organism used for studying dynein function and regulation in vivo. Here, we describe how we grow A. nidulans strains for live-cell imaging and how we observe the dynein-mediated distribution of early endosomes and secretory vesicles. Using an on-stage incubator and culture chambers for inverted microscopes, we can image fungal hyphae that naturally attach to the bottom of the chambers, using wide-field epifluorescence microscopes or the new Zeiss LSM 980 (with Airyscan 2) microscope. In addition to methods for preparing cells for imaging, a procedure for A. nidulans transformation is also described.
Collapse
Affiliation(s)
- Rongde Qiu
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Dennis McDaniel
- Department of Microbiology and Immunology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain.
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, The Uniformed Services University of the Health Sciences- F. Edward Hébert School of Medicine, Bethesda, MD, USA.
| |
Collapse
|
9
|
Gingras RM, Sulpizio AM, Park J, Bretscher A. High-resolution secretory timeline from vesicle formation at the Golgi to fusion at the plasma membrane in S. cerevisiae. eLife 2022; 11:e78750. [PMID: 36331188 PMCID: PMC9671497 DOI: 10.7554/elife.78750] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 11/03/2022] [Indexed: 11/06/2022] Open
Abstract
Most of the components in the yeast secretory pathway have been studied, yet a high-resolution temporal timeline of their participation is lacking. Here, we define the order of acquisition, lifetime, and release of critical components involved in late secretion from the Golgi to the plasma membrane. Of particular interest is the timing of the many reported effectors of the secretory vesicle Rab protein Sec4, including the myosin-V Myo2, the exocyst complex, the lgl homolog Sro7, and the small yeast-specific protein Mso1. At the trans-Golgi network (TGN) Sec4's GEF, Sec2, is recruited to Ypt31-positive compartments, quickly followed by Sec4 and Myo2 and vesicle formation. While transported to the bud tip, the entire exocyst complex, including Sec3, is assembled on to the vesicle. Before fusion, vesicles tether for 5 s, during which the vesicle retains the exocyst complex and stimulates lateral recruitment of Rho3 on the plasma membrane. Sec2 and Myo2 are rapidly lost, followed by recruitment of cytosolic Sro7, and finally the SM protein Sec1, which appears for just 2 s prior to fusion. Perturbation experiments reveal an ordered and robust series of events during tethering that provide insights into the function of Sec4 and effector exchange.
Collapse
Affiliation(s)
- Robert M Gingras
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Abigail M Sulpizio
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Joelle Park
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| | - Anthony Bretscher
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell UniversityIthacaUnited States
| |
Collapse
|
10
|
Pinar M, Alonso A, de los Ríos V, Bravo-Plaza I, de la Gandara Á, Galindo A, Arias-Palomo E, Peñalva MÁ. The type V myosin-containing complex HUM is a RAB11 effector powering movement of secretory vesicles. iScience 2022; 25:104514. [PMID: 35754728 PMCID: PMC9213775 DOI: 10.1016/j.isci.2022.104514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 05/26/2022] [Indexed: 01/01/2023] Open
Abstract
In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ana Alonso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Álvaro de la Gandara
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Antonio Galindo
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Francis Crick Avenue, CB2 0QH Cambridge, UK
| | - Ernesto Arias-Palomo
- Department of Chemical and Structural Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel Á. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
- Corresponding author
| |
Collapse
|
11
|
Mi C, Zhang L, Huang G, Shao G, Yang F, You X, Dong MQ, Sun S, Sui SF. Structural basis for assembly of TRAPPII complex and specific activation of GTPase Ypt31/32. SCIENCE ADVANCES 2022; 8:eabi5603. [PMID: 35080977 PMCID: PMC8791620 DOI: 10.1126/sciadv.abi5603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
Transport protein particle (TRAPP) complexes belong to the multiprotein tethering complex and exist in three forms-core TRAPP/TRAPPI, TRAPPII, and TRAPPIII. TRAPPII activates GTPase Ypt31/Ypt32 as the guanine nucleotide exchange factor in the trans-Golgi network to determine the maturation of Golgi cisternae into post-Golgi carriers in yeast. Here, we present cryo-EM structures of yeast TRAPPII in apo and Ypt32-bound states. All the structures show a dimeric architecture assembled by two triangle-shaped monomers, while the monomer in the apo state exhibits both open and closed conformations, and the monomer in the Ypt32-bound form only captures the closed conformation. Located in the interior of the monomer, Ypt32 binds with both core TRAPP/TRAPPI and Trs120 via its nucleotide-binding domain and binds with Trs31 via its hypervariable domain. Combined with functional analysis, the structures provide insights into the assembly of TRAPPII and the mechanism of the specific activation of Ypt31/Ypt32 by TRAPPII.
Collapse
Affiliation(s)
- Chenchen Mi
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Li Zhang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangcan Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Fan Yang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xin You
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng-Qiu Dong
- National Institute of Biological Sciences, Beijing 102206, China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Department of Biology, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
12
|
Abstract
In a number of elongated cells, such as fungal hyphae, a vesicle cluster is observed at the growing tip. This cluster, called a Spitzenkörper, has been suggested to act as a vesicle supply center, yet analysis of its function is challenging, as a majority of components identified thus far are essential for growth. Here, we probe the function of the Spitzenkörper in the human fungal pathogen Candida albicans, using genetics and synthetic physical interactions (SPI). We show that the C. albicans Spitzenkörper is comprised principally of secretory vesicles. Mutant strains lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having a SPI between Mlc1 and either another Spitzenkörper component, the Rab GTPase Sec4, or prenylated green fluorescent protein (GFP), are viable and still exhibit a Spitzenkörper during filamentous growth. Strikingly, all of these mutants formed filaments with increased diameters and extension rates, indicating that Mlc1 negatively regulates myosin V, Myo2, activity. The results of our quantitative studies reveal a strong correlation between filament diameter and extension rate, which is consistent with the vesicle supply center model for fungal tip growth. Together, our results indicate that the Spitzenkörper protein Mlc1 is important for growth robustness and reveal a critical link between filament morphology and extension rate. IMPORTANCE Hyphal tip growth is critical in a range of fungal pathogens, in particular for invasion into animal and plant tissues. In Candida albicans, as in many filamentous fungi, a cluster of vesicles, called a Spitzenkörper, is observed at the tip of growing hyphae that is thought to function as a vesicle supply center. A central prediction of the vesicle supply center model is that the filament diameter is proportional to the extension rate. Here, we show that mutants lacking the Spitzenkörper component myosin light chain 1 (Mlc1) or having synthetic physical interactions between Mlc1 and either another Spitzenkörper component or prenylated GFP, are defective in filamentous growth regulation, exhibiting a range of growth rates and sizes, with a strong correlation between diameter and extension rate. These results suggest that the Spitzenkörper is important for growth robustness and reveal a critical link between filament morphology and extension rate.
Collapse
|
13
|
Lingo DE, Shukla N, Osmani AH, Osmani SA. Aspergillus nidulans biofilm formation modifies cellular architecture and enables light-activated autophagy. Mol Biol Cell 2021; 32:1181-1192. [PMID: 33826367 PMCID: PMC8351559 DOI: 10.1091/mbc.e20-11-0734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
After growing on surfaces, including those of medical and industrial importance, fungal biofilms self-generate internal microenvironments. We previously reported that gaseous microenvironments around founder Aspergillus nidulans cells change during biofilm formation causing microtubules to disassemble under control of the hypoxic transcription factor SrbA. Here we investigate if biofilm formation might also promote changes to structures involved in exocytosis and endocytosis. During biofilm formation, the endoplasmic reticulum (ER) remained intact but ER exit sites and the Golgi apparatus were modified as were endocytic actin patches. The biofilm-driven changes required the SrbA hypoxic transcription factor and could be triggered by nitric oxide, further implicating gaseous regulation of biofilm cellular architecture. By tracking green fluorescent protein (GFP)-Atg8 dynamics, biofilm founder cells were also observed to undergo autophagy. Most notably, biofilm cells that had undergone autophagy were triggered into further autophagy by spinning disk confocal light. Our findings indicate that fungal biofilm formation modifies the secretory and endocytic apparatus and show that biofilm cells can also undergo autophagy that is reactivated by light. The findings provide new insights into the changes occurring in fungal biofilm cell biology that potentially impact their unique characteristics, including antifungal drug resistance.
Collapse
Affiliation(s)
- Dale E Lingo
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Nandini Shukla
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210.,The Ohio State Biochemistry Program, The Ohio State University, Columbus, OH 43210
| | - Aysha H Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| | - Stephen A Osmani
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
14
|
Pinar M, Peñalva MA. The fungal RABOME: RAB GTPases acting in the endocytic and exocytic pathways of Aspergillus nidulans (with excursions to other filamentous fungi). Mol Microbiol 2021; 116:53-70. [PMID: 33724562 DOI: 10.1111/mmi.14716] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/04/2021] [Accepted: 03/11/2021] [Indexed: 10/21/2022]
Abstract
RAB GTPases are major determinants of membrane identity that have been exploited as highly specific reporters to study intracellular traffic in vivo. A score of fungal papers have considered individual RABs, but systematic, integrated studies on the localization and physiological role of these regulators and their effectors have been performed only with Aspergillus nidulans. These studies have influenced the intracellular trafficking field beyond fungal specialists, leading to findings such as the maturation of trans-Golgi (TGN) cisternae into post-Golgi RAB11 secretory vesicles, the concept that these RAB11 secretory carriers are loaded with three molecular nanomotors, the understanding of the role of endocytic recycling mediated by RAB6 and RAB11 in determining the hyphal mode of life, the discovery that early endosome maturation and the ESCRT pathway are essential, the identification of specific adaptors of dynein-dynactin to RAB5 endosomes, the exquisite dependence that autophagy displays on RAB1 activity, the role of TRAPPII as a GEF for RAB11, or the conclusion that the RAB1-to-RAB11 transition is not mediated by TRAPP maturation. A remarkable finding was that the A. nidulans Spitzenkörper contains four RABs: RAB11, Sec4, RAB6, and RAB1. How these RABs cooperate during exocytosis represents an as yet outstanding question.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
15
|
Abstract
Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. Tip-growing fungal cells maintain cell polarity at the apical regions and elongate by de novo synthesis of the cell wall. Cell polarity and tip growth rate affect mycelial morphology. However, it remains unclear how both features act cooperatively to determine cell shape. Here, we investigated this relationship by analyzing hyphal tip growth of filamentous fungi growing inside extremely narrow 1 μm-width channels of microfluidic devices. Since the channels are much narrower than the diameter of hyphae, any hypha growing through the channel must adapt its morphology. Live-cell imaging analyses revealed that hyphae of some species continued growing through the channels, whereas hyphae of other species often ceased growing when passing through the channels, or had lost apical polarity after emerging from the other end of the channel. Fluorescence live-cell imaging analyses of the Spitzenkörper, a collection of secretory vesicles and polarity-related proteins at the hyphal tip, in Neurospora crassa indicates that hyphal tip growth requires a very delicate balance of ordered exocytosis to maintain polarity in spatially confined environments. We analyzed the mycelial growth of seven fungal species from different lineages, including phytopathogenic fungi. This comparative approach revealed that the growth defects induced by the channels were not correlated with their taxonomic classification or with the width of hyphae, but, rather, correlated with the hyphal elongation rate. This report indicates a trade-off between morphological plasticity and velocity in mycelial growth and serves to help understand fungal invasive growth into substrates or plant/animal cells, with direct impact on fungal biotechnology, ecology, and pathogenicity.
Collapse
|
16
|
Zheng H, Li L, Yu Z, Yuan Y, Zheng Q, Xie Q, Li G, Abubakar YS, Zhou J, Wang Z, Zheng W. FgSpa2 recruits FgMsb3, a Rab8 GAP, to the polarisome to regulate polarized trafficking, growth and pathogenicity in Fusarium graminearum. THE NEW PHYTOLOGIST 2021; 229:1665-1683. [PMID: 32978966 DOI: 10.1111/nph.16935] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
In filamentous fungi, hyphal growth depends on the continuous delivery of vesicles to the growing tips. It is unclear how fast-growing hyphae coordinate simultaneous cell extension and expansion in the tip cells. We have functionally characterized 12 TBC (Tre-2/Bub2/Cdc16) domain-containing proteins in Fusarium graminearum. Among them, FgMsb3 is found to regulate hyphal tip expansion and to be required for pathogenicity. The regulatory mechanism of FgMsb3 has been further investigated by genetic, high-resolution microscopy and high-throughput co-immunoprecipitation strategies. The FgMsb3 protein localizes at the polarisome and the hyphal apical dome (HAD) where it acts as a GTPase-activating protein for FgRab8 which is required for apical secretion-mediated growth and pathogenicity. Deletion of FgMSB3 causes excessive polarized trafficking but blocks the fusion of FgSnc1-associated vesicles to the plasma membrane. Moreover, we establish that FgSpa2 interacts with FgMsb3, enabling FgMsb3 tethering to the polarisome. Loss of FgSpa2 or other polarisome components (FgBud6 and FgPea2) causes complete shifting of FgMsb3 to the HAD and this affects the polarized growth and pathogenicity of the fungus. In summary, we conclude that FgSpa2 regulates FgMsb3-FgRab8 cascade and this is crucial for creating a steady-state equilibrium that maintains continuous polarized growth and contributes to the pathogenicity of F. graminearum.
Collapse
Affiliation(s)
- Huawei Zheng
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lingping Li
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi Yu
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanping Yuan
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Qiaojia Zheng
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Qiurong Xie
- Fujian Key Laboratory of Integrative Medicine on Geriatric, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Guangpu Li
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Yakubu Saddeeq Abubakar
- Department of Biochemistry, Faculty of Life Sciences, Ahmadu Bello University, Zaria, 810211, Nigeria
| | - Jie Zhou
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zonghua Wang
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Fujian Province Key Laboratory of Pathogenic Fungi and Mycotoxins, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
17
|
Taheraly S, Ershov D, Dmitrieff S, Minc N. An image analysis method to survey the dynamics of polar protein abundance in the regulation of tip growth. J Cell Sci 2020; 133:133/22/jcs252064. [PMID: 33257499 DOI: 10.1242/jcs.252064] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/14/2020] [Indexed: 11/20/2022] Open
Abstract
Tip growth is critical for the lifestyle of many walled cells. In yeast and fungi, this process is typically associated with the polarized deposition of conserved tip factors, including landmarks, Rho GTPases, cytoskeleton regulators, and membrane and cell wall remodelers. Because tip growth speeds may vary extensively between life cycles or species, we asked whether the local amount of specific polar elements could determine or limit tip growth speeds. Using the model fission yeast, we developed a quantitative image analysis pipeline to dynamically correlate single tip elongation speeds and polar protein abundance in large data sets. We found that polarity landmarks are typically diluted by growth. In contrast, tip growth speed is positively correlated with the local amount of factors related to actin, secretion or cell wall remodeling, but, surprisingly, exhibits long saturation plateaus above certain concentrations of those factors. Similar saturation observed for Spitzenkörper components in much faster growing fungal hyphae suggests that elements independent of canonical surface remodelers may limit single tip growth. This work provides standardized methods and resources to decipher the complex mechanisms that control cell growth.This article has an associated First Person interview with Sarah Taheraly, joint first author of the paper.
Collapse
Affiliation(s)
- Sarah Taheraly
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Dmitry Ershov
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Serge Dmitrieff
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| | - Nicolas Minc
- Université de Paris, CNRS, Institut Jacques Monod, 75013, Paris, France
| |
Collapse
|
18
|
Peñalva MA, Moscoso‐Romero E, Hernández‐González M. Tracking exocytosis of aGPI‐anchored protein inAspergillus nidulans. Traffic 2020; 21:675-688. [DOI: 10.1111/tra.12761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 12/26/2022]
Affiliation(s)
- Miguel A. Peñalva
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Esteban Moscoso‐Romero
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- Morphogenesis and Cell Polarity Unit Instituto de Biología Funcional y Genómica CSIC‐Universidad de Salamanca Salamanca Spain
| | - Miguel Hernández‐González
- Department of Cellular and Molecular Biology Centro de Investigaciones Biológicas CSIC Madrid Spain
- The Francis Crick Institute London UK
| |
Collapse
|
19
|
Silva PM, Puerner C, Seminara A, Bassilana M, Arkowitz RA. Secretory Vesicle Clustering in Fungal Filamentous Cells Does Not Require Directional Growth. Cell Rep 2020; 28:2231-2245.e5. [PMID: 31433995 DOI: 10.1016/j.celrep.2019.07.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/22/2019] [Accepted: 07/18/2019] [Indexed: 11/27/2022] Open
Abstract
During symmetry breaking, the highly conserved Rho GTPase Cdc42 becomes stabilized at a defined site via an amplification process. However, little is known about how a new polarity site is established in an already asymmetric cell-a critical process in a changing environment. The human fungal pathogen Candida albicans switches from budding to filamentous growth in response to external cues, a transition controlled by Cdc42. Here, we have used optogenetic manipulation of cell polarity to reset growth in asymmetric filamentous C. albicans cells. We show that increasing the level of active Cdc42 on the plasma membrane results in disruption of the exocyst subunit Sec3 localization and a striking de novo clustering of secretory vesicles. This new cluster of secretory vesicles is highly dynamic, moving by hops and jumps, until a new growth site is established. Our results reveal that secretory vesicle clustering can occur in the absence of directional growth.
Collapse
Affiliation(s)
- Patrícia M Silva
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Charles Puerner
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Agnese Seminara
- Université Côte d'Azur, CNRS, Institute Physics of Nice (INPHYNI), Ave. J. Vallot, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, Institute of Biology Valrose (iBV), Parc Valrose, Nice, France.
| |
Collapse
|
20
|
Dimou S, Diallinas G. Life and Death of Fungal Transporters under the Challenge of Polarity. Int J Mol Sci 2020; 21:ijms21155376. [PMID: 32751072 PMCID: PMC7432044 DOI: 10.3390/ijms21155376] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic plasma membrane (PM) transporters face critical challenges that are not widely present in prokaryotes. The two most important issues are proper subcellular traffic and targeting to the PM, and regulated endocytosis in response to physiological, developmental, or stress signals. Sorting of transporters from their site of synthesis, the endoplasmic reticulum (ER), to the PM has been long thought, but not formally shown, to occur via the conventional Golgi-dependent vesicular secretory pathway. Endocytosis of specific eukaryotic transporters has been studied more systematically and shown to involve ubiquitination, internalization, and sorting to early endosomes, followed by turnover in the multivesicular bodies (MVB)/lysosomes/vacuole system. In specific cases, internalized transporters have been shown to recycle back to the PM. However, the mechanisms of transporter forward trafficking and turnover have been overturned recently through systematic work in the model fungus Aspergillus nidulans. In this review, we present evidence that shows that transporter traffic to the PM takes place through Golgi bypass and transporter endocytosis operates via a mechanism that is distinct from that of recycling membrane cargoes essential for fungal growth. We discuss these findings in relation to adaptation to challenges imposed by cell polarity in fungi as well as in other eukaryotes and provide a rationale of why transporters and possibly other housekeeping membrane proteins ‘avoid’ routes of polar trafficking.
Collapse
|
21
|
Athanasopoulos A, André B, Sophianopoulou V, Gournas C. Fungal plasma membrane domains. FEMS Microbiol Rev 2020; 43:642-673. [PMID: 31504467 DOI: 10.1093/femsre/fuz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2019] [Indexed: 12/11/2022] Open
Abstract
The plasma membrane (PM) performs a plethora of physiological processes, the coordination of which requires spatial and temporal organization into specialized domains of different sizes, stability, protein/lipid composition and overall architecture. Compartmentalization of the PM has been particularly well studied in the yeast Saccharomyces cerevisiae, where five non-overlapping domains have been described: The Membrane Compartments containing the arginine permease Can1 (MCC), the H+-ATPase Pma1 (MCP), the TORC2 kinase (MCT), the sterol transporters Ltc3/4 (MCL), and the cell wall stress mechanosensor Wsc1 (MCW). Additional cortical foci at the fungal PM are the sites where clathrin-dependent endocytosis occurs, the sites where the external pH sensing complex PAL/Rim localizes, and sterol-rich domains found in apically grown regions of fungal membranes. In this review, we summarize knowledge from several fungal species regarding the organization of the lateral PM segregation. We discuss the mechanisms of formation of these domains, and the mechanisms of partitioning of proteins there. Finally, we discuss the physiological roles of the best-known membrane compartments, including the regulation of membrane and cell wall homeostasis, apical growth of fungal cells and the newly emerging role of MCCs as starvation-protective membrane domains.
Collapse
Affiliation(s)
- Alexandros Athanasopoulos
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Bruno André
- Molecular Physiology of the Cell laboratory, Université Libre de Bruxelles (ULB), Institut de Biologie et de Médecine Moléculaires, rue des Pr Jeener et Brachet 12, 6041, Gosselies, Belgium
| | - Vicky Sophianopoulou
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| | - Christos Gournas
- Microbial Molecular Genetics Laboratory, Institute of Biosciences and Applications, National Centre for Scientific Research 'Demokritos,' Patr. Grigoriou E & 27 Neapoleos St. 15341, Agia Paraskevi, Greece
| |
Collapse
|
22
|
Spitzenkörper assembly mechanisms reveal conserved features of fungal and metazoan polarity scaffolds. Nat Commun 2020; 11:2830. [PMID: 32503980 PMCID: PMC7275032 DOI: 10.1038/s41467-020-16712-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/14/2020] [Indexed: 02/08/2023] Open
Abstract
The Spitzenkörper (SPK) constitutes a collection of secretory vesicles and polarity-related proteins intimately associated with polarized growth of fungal hyphae. Many SPK-localized proteins are known, but their assembly and dynamics remain poorly understood. Here, we identify protein-protein interaction cascades leading to assembly of two SPK scaffolds and recruitment of diverse effectors in Neurospora crassa. Both scaffolds are transported to the SPK by the myosin V motor (MYO-5), with the coiled-coil protein SPZ-1 acting as cargo adaptor. Neither scaffold appears to be required for accumulation of SPK secretory vesicles. One scaffold consists of Leashin-2 (LAH-2), which is required for SPK localization of the signalling kinase COT-1 and the glycolysis enzyme GPI-1. The other scaffold comprises a complex of Janus-1 (JNS-1) and the polarisome protein SPA-2. Via its Spa homology domain (SHD), SPA-2 recruits a calponin domain-containing F-actin effector (CCP-1). The SHD NMR structure reveals a conserved surface groove required for effector binding. Similarities between SPA-2/JNS-1 and the metazoan GIT/PIX complex identify foundational features of the cell polarity apparatus that predate the fungal-metazoan divergence. The Spitzenkörper (SPK) is a polarized accumulation of proteins and secretory vesicles associated with tip growth of fungal hyphae. Here, Zheng et al. study SPK assembly and dynamics, identify SPK protein scaffolds and associated proteins, and reveal similarities with other scaffolds from metazoans.
Collapse
|
23
|
Pinar M, Peñalva MA. En bloc TGN recruitment of Aspergillus TRAPPII reveals TRAPP maturation as unlikely to drive RAB1-to-RAB11 transition. J Cell Sci 2020; 133:jcs241141. [PMID: 32327558 DOI: 10.1242/jcs.241141] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/06/2020] [Indexed: 08/31/2023] Open
Abstract
Transport protein particle (TRAPP) complexes regulate membrane traffic. TRAPPII and TRAPPIII share a core hetero-heptamer, also denoted TRAPPI. In fungi TRAPPIII and TRAPPII mediate GDP exchange on RAB1 and RAB11, respectively, regulating traffic across the Golgi, with TRAPPIII also activating RAB1 in autophagosomes. Our finding that Aspergillus nidulans TRAPPII can be assembled by addition of a TRAPPII-specific subcomplex onto core TRAPP prompted us to investigate the possibility that TRAPPI and/or TRAPPIII already residing in the Golgi matures into TRAPPII to determine a RAB1-to-RAB11 conversion as Golgi cisternae progress from early Golgi to TGN identity. By time-resolved microscopy, we determine that the TRAPPII reporter Trs120 (the homolog of metazoan TRAPPC9) is recruited to existing trans-Golgi network (TGN) cisternae slightly before RAB11 arrives, and resides for ∼45 s on them before cisternae tear off into RAB11 secretory carriers. Notably, the core TRAPP reporter Bet3 (the homolog of metazoan TRAPPC3) was not detectable in early Golgi cisternae, being instead recruited to TGN cisternae simultaneously with Trs120, indicating en bloc recruitment of TRAPPII to the Golgi and arguing strongly against the TRAPP maturation model.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
24
|
Dimou S, Martzoukou O, Dionysopoulou M, Bouris V, Amillis S, Diallinas G. Translocation of nutrient transporters to cell membrane via Golgi bypass in Aspergillus nidulans. EMBO Rep 2020; 21:e49929. [PMID: 32452614 DOI: 10.15252/embr.201949929] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/15/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023] Open
Abstract
Nutrient transporters, being polytopic membrane proteins, are believed, but not formally shown, to traffic from their site of synthesis, the ER, to the plasma membrane through Golgi-dependent vesicular trafficking. Here, we develop a novel genetic system to investigate the trafficking of a neosynthesized model transporter, the well-studied UapA purine transporter of Aspergillus nidulans. We show that sorting of neosynthesized UapA to the plasma membrane (PM) bypasses the Golgi and does not necessitate key Rab GTPases, AP adaptors, microtubules or endosomes. UapA PM localization is found to be dependent on functional COPII vesicles, actin polymerization, clathrin heavy chain and the PM t-SNARE SsoA. Actin polymerization proved to primarily affect COPII vesicle formation, whereas the essential role of ClaH seems indirect and less clear. We provide evidence that other evolutionary and functionally distinct transporters of A. nidulans also follow the herein identified Golgi-independent trafficking route of UapA. Importantly, our findings suggest that specific membrane cargoes drive the formation of distinct COPII subpopulations that bypass the Golgi to be sorted non-polarly to the PM, and thus serving house-keeping cell functions.
Collapse
Affiliation(s)
- Sofia Dimou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Olga Martzoukou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Vangelis Bouris
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
25
|
Pinar M, Arias-Palomo E, de los Ríos V, Arst HN, Peñalva MA. Characterization of Aspergillus nidulans TRAPPs uncovers unprecedented similarities between fungi and metazoans and reveals the modular assembly of TRAPPII. PLoS Genet 2019; 15:e1008557. [PMID: 31869332 PMCID: PMC6946167 DOI: 10.1371/journal.pgen.1008557] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 01/07/2020] [Accepted: 12/06/2019] [Indexed: 12/22/2022] Open
Abstract
TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the ‘Trs33 side’ of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII. TRAPPs govern intracellular traffic across eukaryotes, activating the Golgi GTPases RAB1 and RAB11. Other genetically tractable fungi are emerging as alternatives to baker’s yeast for cell-biological studies. We exploit Aspergillus nidulans, a filamentous ascomycete that has a lifestyle highly demanding for exocytosis and, that unlike baker’s yeast, has not undergone extensive gene loss. We show that fungal and metazoan TRAPPs are more similar than previously thought, after identifying three A. nidulans subunits previously believed exclusive to metazoans and demonstrating that TRAPPI is very minor, if it exists at all. Also importantly we classified, using a novel genetic approach, essential TRAPP subunits according to their role in activating RAB1 and/or RAB11, which demonstrated that the only indispensable role for TRAPPs is mediating nucleotide exchange on these GTPases and led to the discovery of a stable four-subunit subcomplex that assembles onto the also stable seven-subunit core to form the TRAPPII holocomplex.
Collapse
Affiliation(s)
- Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Ernesto Arias-Palomo
- Department of Structural and Chemical Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Otamendi A, Perez-de-Nanclares-Arregi E, Oiartzabal-Arano E, Cortese MS, Espeso EA, Etxebeste O. Developmental regulators FlbE/D orchestrate the polarity site-to-nucleus dynamics of the fungal bZIP transcription factor FlbB. Cell Mol Life Sci 2019; 76:4369-4390. [PMID: 31065746 PMCID: PMC11105705 DOI: 10.1007/s00018-019-03121-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/17/2019] [Accepted: 04/29/2019] [Indexed: 12/19/2022]
Abstract
Permanently polarized cells have developed transduction mechanisms linking polarity sites with gene regulation in the nucleus. In neurons, one mechanism is based on long-distance retrograde migration of transcription factors (TFs). Aspergillus nidulans FlbB is the only known fungal TF shown to migrate retrogradely to nuclei from the polarized region of fungal cells known as hyphae. There, FlbB controls developmental transitions by triggering the production of asexual multicellular structures. FlbB dynamics in hyphae is orchestrated by regulators FlbE and FlbD. At least three FlbE domains are involved in the acropetal transport of FlbB, with a final MyoE/actin filament-dependent step from the subapex to the apex. Experiments employing a T2A viral peptide-containing chimera (FlbE::mRFP::T2A::FlbB::GFP) suggest that apical FlbB/FlbE interaction is inhibited to initiate a dynein-dependent FlbB transport to nuclei. FlbD controls the nuclear accumulation of FlbB through a cMyb domain and a C-terminal LxxLL motif. Overall, results elucidate a highly dynamic pattern of FlbB interactions, which enable timely developmental induction. Furthermore, this system establishes a reference for TF-based long-distance signaling in permanently polarized cells.
Collapse
Affiliation(s)
- Ainara Otamendi
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Elixabet Perez-de-Nanclares-Arregi
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Elixabet Oiartzabal-Arano
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Marc S Cortese
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018, San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
| | - Oier Etxebeste
- Biochemistry II Laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of The Basque Country, Manuel de Lardizabal, 3, 20018, San Sebastian, Spain.
| |
Collapse
|
27
|
Identification of the guanine nucleotide exchange factor for SAR1 in the filamentous fungal model Aspergillus nidulans. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2019; 1866:118551. [PMID: 31487505 DOI: 10.1016/j.bbamcr.2019.118551] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 12/30/2022]
Abstract
In spite of its basic and applied interest, the regulation of ER exit by filamentous fungi is insufficiently understood. In previous work we isolated a panel of conditional mutations in sarA encoding the master GTPase SarASAR1 in A. nidulans and demonstrated its key role in exocytosis and hyphal morphogenesis. However, the SAR1 guanine nucleotide exchange factor (GEF), Sec12, has not been characterized in any filamentous fungus, largely due to the fact that SEC12 homologues share little amino acid sequence identity beyond a GGGGxxxxGϕxN motif involved in guanine nucleotide exchange. Here we demonstrate that AN11127 encodes A. nidulans Sec12, which is an essential protein that localizes to the ER and that, when overexpressed, rescues the growth defect resulting from a hypomorphic sarA6ts mutation at 37 °C. Using purified, bacterially expressed proteins we demonstrate that the product of AN11127 accelerates nucleotide exchange on SarASAR1, but not on its closely related GTPase ArfAARF1, as expected for a bona fide GEF. The unequivocal characterization of A. nidulans Sec12 paves the way for the tailored modification of ER exit in a model organism that is closely related to industrial species of filamentous fungi.
Collapse
|
28
|
Pantazopoulou A, Glick BS. A Kinetic View of Membrane Traffic Pathways Can Transcend the Classical View of Golgi Compartments. Front Cell Dev Biol 2019; 7:153. [PMID: 31448274 PMCID: PMC6691344 DOI: 10.3389/fcell.2019.00153] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/22/2019] [Indexed: 01/07/2023] Open
Abstract
A long-standing assumption is that the cisternae of the Golgi apparatus can be grouped into functionally distinct compartments, yet the molecular identities of those compartments have not been clearly described. The concept of a compartmentalized Golgi is challenged by the cisternal maturation model, which postulates that cisternae form de novo and then undergo progressive biochemical changes. Cisternal maturation can potentially be reconciled with Golgi compartmentation by defining compartments as discrete kinetic stages in the maturation process. These kinetic stages are distinguished by the traffic pathways that are operating. For example, a major transition occurs when a cisterna stops producing COPI vesicles and begins producing clathrin-coated vesicles. This transition separates one kinetic stage, the "early Golgi," from a subsequent kinetic stage, the "late Golgi" or "trans-Golgi network (TGN)." But multiple traffic pathways drive Golgi maturation, and the periods of operation for different traffic pathways can partially overlap, so there is no simple way to define a full set of Golgi compartments in terms of kinetic stages. Instead, we propose that the focus should be on the series of transitions experienced by a Golgi cisterna as various traffic pathways are switched on and off. These traffic pathways drive changes in resident transmembrane protein composition. Transitions in traffic pathways seem to be the fundamental, conserved determinants of Golgi organization. According to this view, the initial goal is to identify the relevant traffic pathways and place them on the kinetic map of Golgi maturation, and the ultimate goal is to elucidate the logic circuit that switches individual traffic pathways on and off as a cisterna matures.
Collapse
Affiliation(s)
- Areti Pantazopoulou
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Benjamin S Glick
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
29
|
Verdín J, Sánchez-León E, Rico-Ramírez AM, Martínez-Núñez L, Fajardo-Somera RA, Riquelme M. Off the wall: The rhyme and reason of Neurospora crassa hyphal morphogenesis. ACTA ACUST UNITED AC 2019; 5:100020. [PMID: 32743136 PMCID: PMC7389182 DOI: 10.1016/j.tcsw.2019.100020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/07/2019] [Accepted: 02/10/2019] [Indexed: 12/11/2022]
Abstract
Chitin and β-1,3-glucan synthases are transported separately in chitosomes and macrovesicles. Chitin synthases occupy the core of the SPK; β-1,3-glucan synthases the outer layer. CHS-4 arrival to the SPK and septa is CSE-7 dependent. Rabs YPT-1 and YPT-31 localization at the SPK mimics that of chitosomes and macrovesicles. The exocyst acts as a tether between the SPK outer layer vesicles and the apical PM.
The fungal cell wall building processes are the ultimate determinants of hyphal shape. In Neurospora crassa the main cell wall components, β-1,3-glucan and chitin, are synthesized by enzymes conveyed by specialized vesicles to the hyphal tip. These vesicles follow different secretory routes, which are delicately coordinated by cargo-specific Rab GTPases until their accumulation at the Spitzenkörper. From there, the exocyst mediates the docking of secretory vesicles to the plasma membrane, where they ultimately get fused. Although significant progress has been done on the cellular mechanisms that carry cell wall synthesizing enzymes from the endoplasmic reticulum to hyphal tips, a lot of information is still missing. Here, the current knowledge on N. crassa cell wall composition and biosynthesis is presented with an emphasis on the underlying molecular and cellular secretory processes.
Collapse
Key Words
- BGT, β-1,3-glucan transferases
- CHS, chitin synthase
- CLSM, confocal laser scanning microscopy
- CWI, cell wall integrity
- CWP, cell wall proteins
- Cell wall
- ER, endoplasmic reticulum
- FRAP, fluorescence recovery after photobleaching
- GEF, guanine nucleotide exchange factor
- GFP, green fluorescent protein
- GH, glycosyl hydrolases
- GPI, glycosylphosphatidylinositol
- GSC, β-1,3-glucan synthase complex
- MMD, myosin-like motor domain
- MS, mass spectrometry
- MT, microtubule
- NEC, network of elongated cisternae
- PM, plasma membrane
- SPK, Spitzenkörper
- Spitzenkörper
- TIRFM, total internal reflection fluorescence microscopy
- TM, transmembrane
- Tip growth
- Vesicles
Collapse
Affiliation(s)
- Jorge Verdín
- Industrial Biotechnology, CIATEJ-Jalisco State Scientific Research and Technology Assistance Center, Mexico National Council for Science and Technology, Zapopan, Jalisco, Mexico
| | - Eddy Sánchez-León
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Adriana M Rico-Ramírez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| | - Leonora Martínez-Núñez
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rosa A Fajardo-Somera
- Karlsruhe Institute of Technology (KIT) South Campus, Institute for Applied Biosciences, Department of Microbiology, Karlsruhe, Germany
| | - Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, CICESE Ensenada, Baja California, Mexico
| |
Collapse
|
30
|
Aspergillus nidulans in the post-genomic era: a top-model filamentous fungus for the study of signaling and homeostasis mechanisms. Int Microbiol 2019; 23:5-22. [DOI: 10.1007/s10123-019-00064-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
|
31
|
Schultzhaus Z, Cunningham GA, Mouriño-Pérez RR, Shaw BD. The phospholipid flippase DnfD localizes to late Golgi and is involved in asexual differentiation in Aspergillus nidulans. Mycologia 2019; 111:13-25. [PMID: 30699058 DOI: 10.1080/00275514.2018.1543927] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The maintenance of cell shape requires finely tuned and robust vesicle trafficking in order to provide sufficient plasma membrane materials. The hyphal cells of filamentous fungi are an extreme example of cell shape maintenance due to their ability to grow rapidly and respond to the environment while keeping a relatively consistent shape. We have previously shown that two phospholipid flippases, which regulate the asymmetry of specific phospholipids within the plasma membrane, are important for hyphal growth in Aspergillus nidulans. Here, we examine the rest of the phospholipid flippases encoded by A. nidulans by obtaining single and double deletions of all four family members, dnfA, dnfB, dnfC, and dnfD. We find that deleting dnfC does not impart a noticeable phenotype, by itself or with other deletions, but that dnfD, the homolog of the essential yeast gene neo1, is important for conidiation. dnfD deletion mutants form misshapen conidiophore vesicles that are defective in metulae formation. We localize DnfD to late Golgi equivalents, where it appears just before dissociation of this organelle. We propose that DnfD functions in a trafficking process that is specifically required for the morphological changes that take place during conidiation.
Collapse
Affiliation(s)
- Z Schultzhaus
- a Department of Plant Pathology and Microbiology , Texas A&M University , 2132 TAMU , College Station , Texas 77845.,b Center for Biomolecular Science and Engineering , Naval Research laboratory , Washington , District of Columbia 20375
| | - G A Cunningham
- a Department of Plant Pathology and Microbiology , Texas A&M University , 2132 TAMU , College Station , Texas 77845
| | - R R Mouriño-Pérez
- c Departamento de Microbiología , Centro de Investigación Científica y de Educación Superior de Ensenada , Ensenada , Baja California , México
| | - B D Shaw
- a Department of Plant Pathology and Microbiology , Texas A&M University , 2132 TAMU , College Station , Texas 77845
| |
Collapse
|
32
|
Takeshita N. Control of Actin and Calcium for Chitin Synthase Delivery to the Hyphal Tip of Aspergillus. Curr Top Microbiol Immunol 2019; 425:113-129. [PMID: 31974757 DOI: 10.1007/82_2019_193] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Filamentous fungi are covered by a cell wall consisting mainly of chitin and glucan. The synthesis of chitin, a β-1,4-linked homopolymer of N-acetylglucosamine, is essential for hyphal morphogenesis. Fungal chitin synthases are integral membrane proteins that have been classified into seven classes. ChsB, a class III chitin synthase, is known to play a key role in hyphal tip growth and has been used here as a model to understand the cell biology of cell wall biosynthesis in Aspergillus nidulans. Chitin synthases are transported on secretory vesicles to the plasma membrane for new cell wall synthesis. Super-resolution localization imaging as a powerful biophysical approach indicated dynamics of the Spitzenkörper where spatiotemporally regulated exocytosis and cell extension, whereas high-speed pulse-chase imaging has revealed ChsB transport mechanism mediated by kinesin-1 and myosin-5. In addition, live imaging analysis showed correlations among intracellular Ca2+ levels, actin assembly, and exocytosis in growing hyphal tips. This suggests that pulsed Ca2+ influxes coordinate the temporal control of actin assembly and exocytosis, which results in stepwise cell extension. It is getting clear that turgor pressure and cell wall pressure are involved in the activation of Ca2+ channels for Ca2+ oscillation and cell extension. Here the cell wall synthesis and tip growth meet again.
Collapse
Affiliation(s)
- Norio Takeshita
- Microbiology Research Center for Sustainability (MiCS), Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
33
|
Hernández-González M, Bravo-Plaza I, de Los Ríos V, Pinar M, Pantazopoulou A, Peñalva MA. COPI localizes to the early Golgi in Aspergillus nidulans. Fungal Genet Biol 2018; 123:78-86. [PMID: 30550852 DOI: 10.1016/j.fgb.2018.12.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 01/21/2023]
Abstract
Coatomer-I (COPI) is a heteromeric protein coat that facilitates the budding of membranous carriers mediating Golgi-to-ER and intra-Golgi transport. While the structural features of COPI have been thoroughly investigated, its physiological role is insufficiently understood. Here we exploit the amenability of A. nidulans for studying intracellular traffic, taking up previous studies by Breakspear et al. (2007) with the α-COP/CopA subunit of COPI. Endogenously tagged α-COP/CopA largely localizes to SedVSed5 syntaxin-containing early Golgi cisterna, and acute inactivation of ER-to-Golgi traffic delocalizes COPI to a haze, consistent with the cisternal maturation model. In contrast, the Golgi localization of COPI is independent of the TGN regulators HypBSec7 and HypATrs120, implying that COPI budding predominates at the SedVSed5 early Golgi, with lesser contribution of the TGN. This finding agrees with the proposed role of COPI-mediated intra-Golgi retrograde traffic in driving cisternal maturation, which predicts that the capacity of the TGN to generate COPI carriers is low. The COPI early Golgi compartments intimately associates with Sec13-containing ER exit sites. Characterization of the heat-sensitive copA1ts (sodVIC1) mutation showed that it results in a single residue substitution in the ε-COP-binding Carboxyl-Terminal-Domain of α-COP that likely destabilizes its folding. However, we show that Golgi disorganization by copA1ts necessitates >150 min-long incubation at 42 °C. This weak subcellular phenotype makes it unsuitable for inactivating COPI traffic acutely for microscopy studies, and explains the aneuploidy-stabilizing role of the mutation at subrestrictive temperatures.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Centre for Mechanochemical Cell Biology, Gibbet Hill Road, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK(1)
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Vivian de Los Ríos
- Proteomics and Genomics Facility, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain; Department of Molecular Genetics and Cell Biology, Biological Sciences Division, The University of Chicago, United States(1).
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain.
| |
Collapse
|
34
|
Weiner A, Orange F, Lacas‐Gervais S, Rechav K, Ghugtyal V, Bassilana M, Arkowitz RA. On‐site secretory vesicle delivery drives filamentous growth in the fungal pathogenCandida albicans. Cell Microbiol 2018; 21:e12963. [DOI: 10.1111/cmi.12963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/02/2018] [Accepted: 10/04/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Allon Weiner
- Université Côte d'AzurCNRS, Inserm, Institute of Biology Valrose Parc Valrose Nice France
| | | | | | - Katya Rechav
- Chemical Research SupportWeizmann Institute of Science Rehovot Israel
| | - Vikram Ghugtyal
- Université Côte d'AzurCNRS, Inserm, Institute of Biology Valrose Parc Valrose Nice France
| | - Martine Bassilana
- Université Côte d'AzurCNRS, Inserm, Institute of Biology Valrose Parc Valrose Nice France
| | - Robert A. Arkowitz
- Université Côte d'AzurCNRS, Inserm, Institute of Biology Valrose Parc Valrose Nice France
| |
Collapse
|
35
|
Hernández‐González M, Pantazopoulou A, Spanoudakis D, Seegers CL, Peñalva MA. Genetic dissection of the secretory route followed by a fungal extracellular glycosyl hydrolase. Mol Microbiol 2018; 109:781-800. [DOI: 10.1111/mmi.14073] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/15/2018] [Accepted: 07/02/2018] [Indexed: 01/16/2023]
Affiliation(s)
- Miguel Hernández‐González
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Department of Molecular Genetics and Cell Biology The University of Chicago Chicago IL USA
| | - Dimitris Spanoudakis
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| | - Christel L.C. Seegers
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
- Avebe UA Foxhol The Netherlands
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and WhiteBiotech Interdepartmental Unit Centro de Investigaciones Biológicas CSIC Madrid Spain
| |
Collapse
|
36
|
Secretory Vesicle Polar Sorting, Endosome Recycling and Cytoskeleton Organization Require the AP-1 Complex in Aspergillus nidulans. Genetics 2018; 209:1121-1138. [PMID: 29925567 DOI: 10.1534/genetics.118.301240] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/19/2018] [Indexed: 11/18/2022] Open
Abstract
The AP-1 complex is essential for membrane protein traffic via its role in the pinching-off and sorting of secretory vesicles (SVs) from the trans-Golgi and/or endosomes. While its essentiality is undisputed in metazoa, its role in simpler eukaryotes seems less clear. Here, we dissect the role of AP-1 in the filamentous fungus Aspergillus nidulans and show that it is absolutely essential for growth due to its role in clathrin-dependent maintenance of polar traffic of specific membrane cargoes toward the apex of growing hyphae. We provide evidence that AP-1 is involved in both anterograde sorting of RabERab11-labeled SVs and RabA/BRab5-dependent endosome recycling. Additionally, AP-1 is shown to be critical for microtubule and septin organization, further rationalizing its essentiality in cells that face the challenge of cytoskeleton-dependent polarized cargo traffic. This work also opens a novel issue on how nonpolar cargoes, such as transporters, are sorted to the eukaryotic plasma membrane.
Collapse
|
37
|
Fiedler MRM, Barthel L, Kubisch C, Nai C, Meyer V. Construction of an improved Aspergillus niger platform for enhanced glucoamylase secretion. Microb Cell Fact 2018; 17:95. [PMID: 29908567 PMCID: PMC6004097 DOI: 10.1186/s12934-018-0941-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/08/2018] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND The lifestyle of filamentous fungi depends on the secretion of hydrolytic enzymes into the surrounding medium, which degrade polymeric substances into monomers that are then taken up to sustain metabolism. This feature has been exploited in biotechnology to establish platform strains with high secretory capacity including Aspergillus niger. The accepted paradigm is that proteins become mainly secreted at the tips of fungal hyphae. However, it is still a matter of debate if the amount of growing hyphal tips in filamentous fungi correlates with an increase in secretion, with previous studies showing either a positive or no correlation. RESULTS Here, we followed a systematic approach to study protein secretion in A. niger. First, we put the glaA gene encoding for glucoamylase (GlaA), the most abundant secreted protein of A. niger, under control of the tunable Tet-on system. Regulation of glaA gene expression by omitting or adding the inducer doxycycline to cultivation media allowed us to study the effect of glaA under- or overexpression in the same isolate. By inducing glaA expression in a fluorescently tagged v-SNARE reporter strain expressing GFP-SncA, we could demonstrate that the amount of post-Golgi carriers indeed depends on and correlates with glaA gene expression. By deleting the racA gene, encoding the Rho-GTPase RacA in this isolate, we generated a strain which is identical to the parental strain with respect to biomass formation but produces about 20% more hyphal tips. This hyperbranching phenotype caused a more compact macromorphology in shake flask cultivations. When ensuring continuous high-level expression of glaA by repeated addition of doxycycline, this hyperbranching strain secreted up to four times more GlaA into the culture medium compared to its parental strain. CONCLUSION The data obtained in this study strongly indicate that A. niger responds to forced transcription of secretory enzymes with increased formation of post-Golgi carriers to efficiently accommodate the incoming cargo load. This physiological adaptation can be rationally exploited to generate hypersecretion platforms based on a hyperbranching phenotype. We propose that a racA deletion background serves as an excellent chassis for such hypersecretion strains.
Collapse
Affiliation(s)
- Markus R. M. Fiedler
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Lars Barthel
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Christin Kubisch
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Corrado Nai
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| | - Vera Meyer
- Department Applied and Molecular Microbiology, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany
| |
Collapse
|
38
|
Molecular basis of resistance to the microtubule-depolymerizing antitumor compound plocabulin. Sci Rep 2018; 8:8616. [PMID: 29872155 PMCID: PMC5988728 DOI: 10.1038/s41598-018-26736-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Accepted: 05/17/2018] [Indexed: 12/13/2022] Open
Abstract
Plocabulin (PM060184) is a microtubule depolymerizing agent with potent antiproliferative activity undergoing phase II clinical trials for the treatment of solid tumors. Plocabulin shows antifungal activity virtually abolishing growth of the filamentous fungus Aspergillus nidulans. A. nidulans hyphae depend both on mitotic and interphase microtubules, as human cells. Here, we exploited the A. nidulans genetic amenability to gain insight into the mechanism of action of plocabulin. By combining mutations in the two A. nidulans β-tubulin isotypes we obtained a plocabulin-insensitive strain, showing that β-tubulin is the only molecular target of plocabulin in fungal cells. From a genetic screen, we recovered five mutants that show plocabulin resistance but do not carry mutations in β-tubulin. Resistance mutations resulted in amino acid substitutions in (1) two subunits of the eukaryotic translation initiation factor eIF2B activating the General Amino Acid Control, (2) TIM44, an essential component of the inner mitochondrial membrane translocase, (3) two transcription factors of the binuclear zinc cluster family potentially interfering with the uptake or efflux of plocabulin. Given the conservation of some of the identified proteins and their respective cellular functions in the tumor environment, our results pinpoint candidates to be tested as potential biomarkers for determination of drug efficiency.
Collapse
|
39
|
Riquelme M, Aguirre J, Bartnicki-García S, Braus GH, Feldbrügge M, Fleig U, Hansberg W, Herrera-Estrella A, Kämper J, Kück U, Mouriño-Pérez RR, Takeshita N, Fischer R. Fungal Morphogenesis, from the Polarized Growth of Hyphae to Complex Reproduction and Infection Structures. Microbiol Mol Biol Rev 2018; 82:e00068-17. [PMID: 29643171 PMCID: PMC5968459 DOI: 10.1128/mmbr.00068-17] [Citation(s) in RCA: 201] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Filamentous fungi constitute a large group of eukaryotic microorganisms that grow by forming simple tube-like hyphae that are capable of differentiating into more-complex morphological structures and distinct cell types. Hyphae form filamentous networks by extending at their tips while branching in subapical regions. Rapid tip elongation requires massive membrane insertion and extension of the rigid chitin-containing cell wall. This process is sustained by a continuous flow of secretory vesicles that depends on the coordinated action of the microtubule and actin cytoskeletons and the corresponding motors and associated proteins. Vesicles transport cell wall-synthesizing enzymes and accumulate in a special structure, the Spitzenkörper, before traveling further and fusing with the tip membrane. The place of vesicle fusion and growth direction are enabled and defined by the position of the Spitzenkörper, the so-called cell end markers, and other proteins involved in the exocytic process. Also important for tip extension is membrane recycling by endocytosis via early endosomes, which function as multipurpose transport vehicles for mRNA, septins, ribosomes, and peroxisomes. Cell integrity, hyphal branching, and morphogenesis are all processes that are largely dependent on vesicle and cytoskeleton dynamics. When hyphae differentiate structures for asexual or sexual reproduction or to mediate interspecies interactions, the hyphal basic cellular machinery may be reprogrammed through the synthesis of new proteins and/or the modification of protein activity. Although some transcriptional networks involved in such reprogramming of hyphae are well studied in several model filamentous fungi, clear connections between these networks and known determinants of hyphal morphogenesis are yet to be established.
Collapse
Affiliation(s)
- Meritxell Riquelme
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Jesús Aguirre
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Salomon Bartnicki-García
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Gerhard H Braus
- Department of Molecular Microbiology and Genetics and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Michael Feldbrügge
- Institute for Microbiology, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Ursula Fleig
- Institute for Functional Genomics of Microorganisms, Heinrich Heine University Düsseldorf, Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Wilhelm Hansberg
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de Mexico, Mexico City, Mexico
| | - Alfredo Herrera-Estrella
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Irapuato, Mexico
| | - Jörg Kämper
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| | - Ulrich Kück
- Ruhr University Bochum, Lehrstuhl für Allgemeine und Molekulare Botanik, Bochum, Germany
| | - Rosa R Mouriño-Pérez
- Department of Microbiology, Centro de Investigación Científica y de Educación Superior de Ensenada, Ensenada, Baja California, Mexico
| | - Norio Takeshita
- University of Tsukuba, Faculty of Life and Environmental Sciences, Tsukuba, Japan
| | - Reinhard Fischer
- Karlsruhe Institute of Technology-South Campus, Institute for Applied Biosciences, Karlsruhe, Germany
| |
Collapse
|
40
|
Hernández-González M, Bravo-Plaza I, Pinar M, de los Ríos V, Arst HN, Peñalva MA. Endocytic recycling via the TGN underlies the polarized hyphal mode of life. PLoS Genet 2018; 14:e1007291. [PMID: 29608571 PMCID: PMC5880334 DOI: 10.1371/journal.pgen.1007291] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 03/06/2018] [Indexed: 12/13/2022] Open
Abstract
Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1μm/min) and the long intracellular distances (>100 μm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth. Filamentous fungi form long tubular cells, called hyphae, which grow rapidly by apical extension, enabling these sessile organisms to explore substrates and facilitating tissue invasion in the case of pathogenic species. Because the shape of the hyphae is determined by an external cell wall, hyphal growth requires that cell-wall sculpting enzymes polarize to the tips. Endocytosis is essential for hyphal growth, and it was suspected that this results from its participation in a recycling pathway that takes up cell-wall enzymes from the plasma membrane and re-delivers them to the apex. Here we track the trafficking of a chitin synthase (a cell-wall modifying enzyme) to demonstrate that it is polarized by endocytic recycling. This chitin synthase is delivered by exocytosis to the apex, but diffuses away until being captured by a subapical collar of actin patches (sites of endocytosis) from where it reaches a sorting endosome before undergoing transport to the nearest trans-Golgi cisternae and incorporating into secretory vesicles that re-deliver the enzyme to the apex. Because impairing transit across this pathway compromises apical extension markedly and results in severe morphological defects, the pathway could be manipulated to prevent fungal pathogenicity of plants and humans, an enormous burden on human welfare.
Collapse
Affiliation(s)
- Miguel Hernández-González
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Ignacio Bravo-Plaza
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Mario Pinar
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Vivian de los Ríos
- Proteomics Facility, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
| | - Herbert N. Arst
- Section of Microbiology, Imperial College London, Flowers Building, Armstrong Road, London, United Kingdom
| | - Miguel A. Peñalva
- Department of Cellular and Molecular Biology and Intradepartmental WhiteBiotech Unit, Centro de Investigaciones Biológicas del Consejo Superior de Investigaciones Científicas, Ramiro de Maeztu, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Zhou L, Evangelinos M, Wernet V, Eckert AF, Ishitsuka Y, Fischer R, Nienhaus GU, Takeshita N. Superresolution and pulse-chase imaging reveal the role of vesicle transport in polar growth of fungal cells. SCIENCE ADVANCES 2018; 4:e1701798. [PMID: 29387789 PMCID: PMC5787382 DOI: 10.1126/sciadv.1701798] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 12/27/2017] [Indexed: 06/07/2023]
Abstract
Polarized growth of filamentous fungi requires continuous transport of biomolecules to the hyphal tip. To this end, construction materials are packaged in vesicles and transported by motor proteins along microtubules and actin filaments. We have studied these processes with quantitative superresolution localization microscopy of live Aspergillus nidulans cells expressing the photoconvertible protein mEosFPthermo fused to the chitin synthase ChsB. ChsB is mainly located at the Spitzenkörper near the hyphal tip and produces chitin, a key component of the cell wall. We have visualized the pulsatory dynamics of the Spitzenkörper, reflecting vesicle accumulation before exocytosis and their subsequent fusion with the apical plasma membrane. Furthermore, high-speed pulse-chase imaging after photoconversion of mEosFPthermo in a tightly focused spot revealed that ChsB is transported with two different speeds from the cell body to the hyphal tip and vice versa. Comparative analysis using motor protein deletion mutants allowed us to assign the fast movements (7 to 10 μm s-1) to transport of secretory vesicles by kinesin-1, and the slower ones (2 to 7 μm s-1) to transport by kinesin-3 on early endosomes. Our results show how motor proteins ensure the supply of vesicles to the hyphal tip, where temporally regulated exocytosis results in stepwise tip extension.
Collapse
Affiliation(s)
- Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
| | - Minoas Evangelinos
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Biology, University of Athens, Athens, Greece
- Institut de Biologie et de Médecine Moléculaires, Université Libre de Bruxelles, Gosselies, Belgium
| | - Valentin Wernet
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - Antonia F. Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Yuji Ishitsuka
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Reinhard Fischer
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
| | - G. Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
- Institute of Nanotechnology, KIT, Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Institute of Toxicology and Genetics, KIT, Eggenstein-Leopoldshafen, Germany
| | - Norio Takeshita
- Department of Microbiology, Institute for Applied Biosciences, KIT, Karlsruhe, Germany
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
42
|
Etxebeste O, Espeso EA. Neurons show the path: tip-to-nucleus communication in filamentous fungal development and pathogenesis. FEMS Microbiol Rev 2017; 40:610-24. [PMID: 27587717 DOI: 10.1093/femsre/fuw021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2016] [Indexed: 01/11/2023] Open
Abstract
Multiple fungal species penetrate substrates and accomplish host invasion through the fast, permanent and unidirectional extension of filamentous cells known as hyphae. Polar growth of hyphae results, however, in a significant increase in the distance between the polarity site, which also receives the earliest information about ambient conditions, and nuclei, where adaptive responses are executed. Recent studies demonstrate that these long distances are overcome by signal transduction pathways which convey sensory information from the polarity site to nuclei, controlling development and pathogenesis. The present review compares the striking connections of the mechanisms for long-distance communication in hyphae with those from neurons, and discusses the importance of their study in order to understand invasion and dissemination processes of filamentous fungi, and design strategies for developmental control in the future.
Collapse
Affiliation(s)
- Oier Etxebeste
- Biochemistry II laboratory, Department of Applied Chemistry, Faculty of Chemistry, University of the Basque Country (UPV/EHU), 20018 San Sebastian, Spain
| | - Eduardo A Espeso
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
43
|
Wakade R, Labbaoui H, Stalder D, Arkowitz RA, Bassilana M. Overexpression of YPT6 restores invasive filamentous growth and secretory vesicle clustering in a Candida albicans arl1 mutant. Small GTPases 2017; 11:204-210. [PMID: 28960163 DOI: 10.1080/21541248.2017.1378157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Virulence of the human fungal pathogen Candida albicans depends on the switch from budding to filamentous growth. Deletion of the Arf GTPase Arl1 results in hyphae that are shorter as well as reduced virulence. How Arl1 is regulated during hyphal growth, a process characteristic of filamentous fungi, yet absent in S. cerevisiae, is unknown. Here, we investigated the importance of the Rab6 homolog, Ypt6, in Arl1-dependent hyphal growth and determined that YPT6 overexpression specifically rescued the hyphal growth defect of an arl1 mutant, but not the converse. Furthermore, we show that deletion of ARL1 results in an alteration of the distribution of the Rab8 homolog, Sec4, in hyphal cells and that this defect is restored upon YPT6 overexpression.
Collapse
Affiliation(s)
- Rohan Wakade
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Hayet Labbaoui
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Danièle Stalder
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Robert A Arkowitz
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, INSERM, iBV, Parc Valrose, Nice, FRANCE
| |
Collapse
|
44
|
Pinar M, Peñalva MA. Aspergillus nidulansBapH is a RAB11 effector that connects membranes in the Spitzenkörper with basal autophagy. Mol Microbiol 2017; 106:452-468. [DOI: 10.1111/mmi.13777] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2017] [Indexed: 12/13/2022]
Affiliation(s)
- Mario Pinar
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas del CSIC, Ramiro de Maeztu 9; Madrid 28040 Spain
| | - Miguel A. Peñalva
- Departamento de Biología Celular y Molecular; Centro de Investigaciones Biológicas del CSIC, Ramiro de Maeztu 9; Madrid 28040 Spain
| |
Collapse
|
45
|
Pulses of Ca 2+ coordinate actin assembly and exocytosis for stepwise cell extension. Proc Natl Acad Sci U S A 2017; 114:5701-5706. [PMID: 28507141 DOI: 10.1073/pnas.1700204114] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Many eukaryotic cells grow by extending their cell periphery in pulses. The molecular mechanisms underlying this process are not yet fully understood. Here we present a comprehensive model of stepwise cell extension by using the unique tip growth system of filamentous fungi. Live-cell imaging analysis, including superresolution microscopy, revealed that the fungus Aspergillus nidulans extends the hyphal tip in an oscillatory manner. The amount of F-actin and secretory vesicles (SV) accumulating at the hyphal tip oscillated with a positive temporal correlation, whereas vesicle amounts were negatively correlated to the growth rate. The intracellular Ca2+ level also pulsed with a positive temporal correlation to the amount of F-actin and SV at the hyphal tip. Two Ca2+ channels, MidA and CchA, were needed for proper tip growth and the oscillations of actin polymerization, exocytosis, and the growth rate. The data indicate a model in which transient Ca2+ pluses cause depolymerization of F-actin at the cortex and promote SV fusion with the plasma membrane, thereby extending the cell tip. Over time, Ca2+ diffuses away and F-actin and SV accumulate again at the hyphal tip. Our data provide evidence that temporally controlled actin polymerization and exocytosis are coordinated by pulsed Ca2+ influx, resulting in stepwise cell extension.
Collapse
|
46
|
Steinberg G, Peñalva MA, Riquelme M, Wösten HA, Harris SD. Cell Biology of Hyphal Growth. Microbiol Spectr 2017; 5:10.1128/microbiolspec.funk-0034-2016. [PMID: 28429675 PMCID: PMC11687463 DOI: 10.1128/microbiolspec.funk-0034-2016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/30/2022] Open
Abstract
Filamentous fungi are a large and ancient clade of microorganisms that occupy a broad range of ecological niches. The success of filamentous fungi is largely due to their elongate hypha, a chain of cells, separated from each other by septa. Hyphae grow by polarized exocytosis at the apex, which allows the fungus to overcome long distances and invade many substrates, including soils and host tissues. Hyphal tip growth is initiated by establishment of a growth site and the subsequent maintenance of the growth axis, with transport of growth supplies, including membranes and proteins, delivered by motors along the cytoskeleton to the hyphal apex. Among the enzymes delivered are cell wall synthases that are exocytosed for local synthesis of the extracellular cell wall. Exocytosis is opposed by endocytic uptake of soluble and membrane-bound material into the cell. The first intracellular compartment in the endocytic pathway is the early endosomes, which emerge to perform essential additional functions as spatial organizers of the hyphal cell. Individual compartments within septated hyphae can communicate with each other via septal pores, which allow passage of cytoplasm or organelles to help differentiation within the mycelium. This article introduces the reader to more detailed aspects of hyphal growth in fungi.
Collapse
Affiliation(s)
- Gero Steinberg
- Department of Biosciences, College of Live and Environmental Sciences, University of Exeter, EX1 1TE Exeter, United Kingdom
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas CSIC, Madrid, 28040, Spain
| | - Meritxell Riquelme
- Department of Microbiology, Center for Scientific Research and Higher Education of Ensenada, CICESE, Ensenada, Baja California C.P. 22860, Mexico
| | - Han A Wösten
- Department of Biology, University of Utrecht, 3584 CH, Utrecht, The Netherlands
| | - Steven D Harris
- Center for Plant Science Innovation and Department of Plant Pathology, University of Nebraska, Lincoln, NE 68588-0660
| |
Collapse
|
47
|
Martzoukou O, Amillis S, Zervakou A, Christoforidis S, Diallinas G. The AP-2 complex has a specialized clathrin-independent role in apical endocytosis and polar growth in fungi. eLife 2017; 6. [PMID: 28220754 PMCID: PMC5338921 DOI: 10.7554/elife.20083] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/07/2017] [Indexed: 12/26/2022] Open
Abstract
Filamentous fungi provide excellent systems for investigating the role of the AP-2 complex in polar growth. Using Aspergillus nidulans, we show that AP-2 has a clathrin-independent essential role in polarity maintenance and growth. This is in line with a sequence analysis showing that the AP-2 β subunit (β2) of higher fungi lacks a clathrin-binding domain, and experiments showing that AP-2 does not co-localize with clathrin. We provide genetic and cellular evidence that AP-2 interacts with endocytic markers SlaBEnd4 and SagAEnd3 and the lipid flippases DnfA and DnfB in the sub-apical collar region of hyphae. The role of AP-2 in the maintenance of proper apical membrane lipid and cell wall composition is further supported by its functional interaction with BasA (sphingolipid biosynthesis) and StoA (apical sterol-rich membrane domains), and its essentiality in polar deposition of chitin. Our findings support that the AP-2 complex of dikarya has acquired, in the course of evolution, a specialized clathrin-independent function necessary for fungal polar growth. DOI:http://dx.doi.org/10.7554/eLife.20083.001
Collapse
Affiliation(s)
- Olga Martzoukou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Sotiris Amillis
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Amalia Zervakou
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Savvas Christoforidis
- Institute of Molecular Biology and Biotechnology-Biomedical Research, Foundation for Research and Technology, Ioannina, Greece.,Laboratory of Biological Chemistry, Department of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - George Diallinas
- Department of Biology, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
48
|
Peñalva MA, Zhang J, Xiang X, Pantazopoulou A. Transport of fungal RAB11 secretory vesicles involves myosin-5, dynein/dynactin/p25, and kinesin-1 and is independent of kinesin-3. Mol Biol Cell 2017; 28:947-961. [PMID: 28209731 PMCID: PMC5385943 DOI: 10.1091/mbc.e16-08-0566] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 01/31/2017] [Accepted: 02/07/2017] [Indexed: 12/02/2022] Open
Abstract
In Aspergillus nidulans, the distribution of exocytic carriers involves interplay between kinesin-1, myosin-5, and dynein. Engagement of the dynein complex to these carriers requires dynactin p25, but, unlike that of early endosomes, it does not require the Hook complex. Hyphal tip cells of the fungus Aspergillus nidulans are useful for studying long-range intracellular traffic. Post-Golgi secretory vesicles (SVs) containing the RAB11 orthologue RabE engage myosin-5 as well as plus end– and minus end–directed microtubule motors, providing an experimental system with which to investigate the interplay between microtubule and actin motors acting on the same cargo. By exploiting the fact that depolymerization of F-actin unleashes SVs focused at the apex by myosin-5 to microtubule-dependent motors, we establish that the minus end–directed transport of SVs requires the dynein/dynactin supercomplex. This minus end–directed transport is largely unaffected by genetic ablation of the Hook complex adapting early endosomes (EEs) to dynein but absolutely requires p25 in dynactin. Thus dynein recruitment to two different membranous cargoes, namely EEs and SVs, requires p25, highlighting the importance of the dynactin pointed-end complex to scaffold cargoes. Finally, by studying the behavior of SVs and EEs in null and rigor mutants of kinesin-3 and kinesin-1 (UncA and KinA, respectively), we demonstrate that KinA is the major kinesin mediating the anterograde transport of SVs. Therefore SVs arrive at the apex of A. nidulans by anterograde transport involving cooperation of kinesin-1 with myosin-5 and can move away from the apex powered by dynein.
Collapse
Affiliation(s)
- Miguel A Peñalva
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| | - Jun Zhang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Xin Xiang
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814-4799
| | - Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid 28040, Spain
| |
Collapse
|
49
|
Pantazopoulou A. The Golgi apparatus: insights from filamentous fungi. Mycologia 2017; 108:603-22. [DOI: 10.3852/15-309] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/01/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Areti Pantazopoulou
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, Madrid 28040, Spain
| |
Collapse
|
50
|
Phospholipid flippases DnfA and DnfB exhibit differential dynamics within the A. nidulans Spitzenkörper. Fungal Genet Biol 2016; 99:26-28. [PMID: 28034798 DOI: 10.1016/j.fgb.2016.12.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 01/01/2023]
Abstract
The Spitzenkörper is a structure at the apex of growing cells in many filamentous fungi. Ultrastructural studies indicate that the Spitzenkörper is an organized mass of secretory vesicles, with different types of vesicles present in outer and inner layers. Here, we used live-cell imaging to demonstrate that the phospholipid flippases DnfA and DnfB, which preferentially localize to the outer and inner layers, respectively, exhibit different dynamics in the Spitzenkörper of Aspergillus nidulans. Additionally, deletion of dnfA partially destabilized the Spitzenkörper, while the depletion of cdc50, an essential β-subunit of most flippases, had dramatic effects on hyphal tip organization and morphology.
Collapse
|