1
|
Debec A, Peronnet R, Lang M, Molet M. Primary cell cultures from the single-chromosome ant Myrmecia croslandi. Chromosome Res 2024; 32:10. [PMID: 39034331 DOI: 10.1007/s10577-024-09755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/12/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
The number of chromosomes varies tremendously across species. It is not clear whether having more or fewer chromosomes could be advantageous. The probability of non-disjunction should theoretically decrease with smaller karyotypes, but too long chromosomes should enforce spatial constraint for their segregation during the mitotic anaphase. Here, we propose a new experimental cell system to acquire novel insights into the mechanisms underlying chromosome segregation. We collected the endemic Australian ant Myrmecia croslandi, the only known species with the simplest possible karyotype of a single chromosome in the haploid males (and one pair of chromosomes in the diploid females), since males are typically haploid in hymenopteran insects. Five colonies, each with a queen and a few hundreds of workers, were collected in the Canberra district (Australia), underwent karyotype analysis to confirm the presence of a single pair of chromosomes in worker pupae, and were subsequently maintained in the laboratory in Paris (France). Starting from dissociated male embryos, we successfully conducted primary cell cultures comprised of single-chromosome cells. This could be developed into a unique model that will be of great interest for future genomic and cell biology studies related to mitosis.
Collapse
Affiliation(s)
- Alain Debec
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, 75005, Paris, France.
| | - Romain Peronnet
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, 75005, Paris, France
| | - Michael Lang
- Université Paris Cité, CNRS, Institut Jacques Monod, 75013, Paris, France
- Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay - Institut Diversité, Ecologie et Evolution du Vivant (ID EEV), 91190, Gif-Sur-Yvette, France
| | - Mathieu Molet
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, 75005, Paris, France
| |
Collapse
|
2
|
Yamamoto Y, Gerbi SA. Development of Transformation for Genome Editing of an Emerging Model Organism. Genes (Basel) 2022; 13:genes13071108. [PMID: 35885891 PMCID: PMC9323590 DOI: 10.3390/genes13071108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 12/10/2022] Open
Abstract
With the advances in genomic sequencing, many organisms with novel biological properties are ripe for use as emerging model organisms. However, to make full use of them, transformation methods need to be developed to permit genome editing. Here, we present the development of transformation for the fungus fly Bradysia (Sciara) coprophila; this may serve as a paradigm for the development of transformation for other emerging systems, especially insects. Bradysia (Sciara) has a variety of unique biological features, including locus-specific developmentally regulated DNA amplification, chromosome imprinting, a monopolar spindle in male meiosis I, non-disjunction of the X chromosome in male meiosis II, X chromosome elimination in early embryogenesis, germ-line-limited (L) chromosomes and high resistance to radiation. Mining the unique biology of Bradysia (Sciara) requires a transformation system to test mutations of DNA sequences that may play roles for these features. We describe a Bradysia (Sciara) transformation system using a modified piggyBac transformation vector and detailed protocols we have developed to accommodate Bradysia (Sciara) specific requirements. This advance will provide a platform for us and others in the growing Bradysia (Sciara) community to take advantage of this unique biological system. In addition, the versatile piggyBac vectors described here and transformation methods will be useful for other emerging model systems.
Collapse
Affiliation(s)
| | - Susan A. Gerbi
- Correspondence: ; Tel.: +1-401-863-2359; Fax: +1-401-863-1201
| |
Collapse
|
3
|
Ferreira-Cerca S. The dark side of the ribosome life cycle. RNA Biol 2022; 19:1045-1049. [PMID: 36082947 PMCID: PMC9467602 DOI: 10.1080/15476286.2022.2121421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Thanks to genetics, biochemistry, and structural biology many features of the ribosome´s life cycles in models of bacteria, eukaryotes, and some organelles have been revealed to near-atomic details. Collectively, these studies have provided a very detailed understanding of what are now well-established prototypes for ribosome biogenesis and function as viewed from a 'classical' model organisms perspective. However, very important challenges remain ahead to explore the functional and structural diversity of both ribosome biogenesis and function across the biological diversity on earth. Particularly, the 'third domain of life', the archaea, and also many non-model bacterial and eukaryotic organisms have been comparatively neglected. Importantly, characterizing these additional biological systems will not only offer a yet untapped window to enlighten the evolution of ribosome biogenesis and function but will also help to unravel fundamental principles of molecular adaptation of these central cellular processes.
Collapse
Affiliation(s)
- Sébastien Ferreira-Cerca
- Regensburg Center for Biochemistry, Biochemistry III - Institute for Biochemistry, Genetics and Microbiology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
4
|
Park JM, Oliva Chávez AS, Shaw DK. Ticks: More Than Just a Pathogen Delivery Service. Front Cell Infect Microbiol 2021; 11:739419. [PMID: 34540723 PMCID: PMC8440996 DOI: 10.3389/fcimb.2021.739419] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Affiliation(s)
- Jason M Park
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| | - Adela S Oliva Chávez
- Department of Entomology, Texas A&M University, College Station, TX, United States
| | - Dana K Shaw
- Program in Vector-Borne Disease, Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, WA, United States
| |
Collapse
|
5
|
Mammola S, Lunghi E, Bilandžija H, Cardoso P, Grimm V, Schmidt SI, Hesselberg T, Martínez A. Collecting eco-evolutionary data in the dark: Impediments to subterranean research and how to overcome them. Ecol Evol 2021; 11:5911-5926. [PMID: 34141192 PMCID: PMC8207145 DOI: 10.1002/ece3.7556] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/25/2022] Open
Abstract
Caves and other subterranean habitats fulfill the requirements of experimental model systems to address general questions in ecology and evolution. Yet, the harsh working conditions of these environments and the uniqueness of the subterranean organisms have challenged most attempts to pursuit standardized research.Two main obstacles have synergistically hampered previous attempts. First, there is a habitat impediment related to the objective difficulties of exploring subterranean habitats and our inability to access the network of fissures that represents the elective habitat for the so-called "cave species." Second, there is a biological impediment illustrated by the rarity of most subterranean species and their low physiological tolerance, often limiting sample size and complicating laboratory experiments.We explore the advantages and disadvantages of four general experimental setups (in situ, quasi in situ, ex situ, and in silico) in the light of habitat and biological impediments. We also discuss the potential of indirect approaches to research. Furthermore, using bibliometric data, we provide a quantitative overview of the model organisms that scientists have exploited in the study of subterranean life.Our over-arching goal is to promote caves as model systems where one can perform standardized scientific research. This is important not only to achieve an in-depth understanding of the functioning of subterranean ecosystems but also to fully exploit their long-discussed potential in addressing general scientific questions with implications beyond the boundaries of this discipline.
Collapse
Affiliation(s)
- Stefano Mammola
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
- Dark‐MEG: Molecular Ecology GroupWater Research Institute (IRSA)National Research Council (CNR)VerbaniaItaly
| | - Enrico Lunghi
- Key Laboratory of the Zoological Systematics and EvolutionInstitute of ZoologyChinese Academy of SciencesBeijingChina
- Museo di Storia Naturale dell'Università degli Studi di Firenze“La Specola”FirenzeItaly
| | - Helena Bilandžija
- Department of Molecular BiologyRudjer Boskovic InstituteZagrebCroatia
| | - Pedro Cardoso
- Laboratory for Integrative Biodiversity Research (LIBRe)Finnish Museum of Natural History (LUOMUS)University of HelsinkiHelsinkiFinland
| | - Volker Grimm
- Department of Ecological ModellingHelmholtz Centre for Environmental Research – UFZLeipzigGermany
- Plant Ecology and Nature ConservationUniversity of PotsdamPotsdamGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
| | - Susanne I. Schmidt
- Institute of HydrobiologyBiology Centre CASČeské BudějoviceCzech Republic
| | | | - Alejandro Martínez
- Dark‐MEG: Molecular Ecology GroupWater Research Institute (IRSA)National Research Council (CNR)VerbaniaItaly
| |
Collapse
|
6
|
Meta-Analysis of Gene Popularity: Less Than Half of Gene Citations Stem from Gene Regulatory Networks. Genes (Basel) 2021; 12:genes12020319. [PMID: 33672419 PMCID: PMC7926953 DOI: 10.3390/genes12020319] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/14/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022] Open
Abstract
The reasons for selecting a gene for further study might vary from historical momentum to funding availability, thus leading to unequal attention distribution among all genes. However, certain biological features tend to be overlooked in evaluating a gene’s popularity. Here we present a meta-analysis of the reasons why different genes have been studied and to what extent, with a focus on the gene-specific biological features. From unbiased datasets we can define biological properties of genes that reasonably may affect their perceived importance. We make use of both linear and nonlinear computational approaches for estimating gene popularity to then compare their relative importance. We find that roughly 25% of the studies are the result of a historical positive feedback, which we may think of as social reinforcement. Of the remaining features, gene family membership is the most indicative followed by disease relevance and finally regulatory pathway association. Disease relevance has been an important driver until the 1990s, after which the focus shifted to exploring every single gene. We also present a resource that allows one to study the impact of reinforcement, which may guide our research toward genes that have not yet received proportional attention.
Collapse
|
7
|
Bourne SD, Hudson J, Holman LE, Rius M. Marine Invasion Genomics: Revealing Ecological and Evolutionary Consequences of Biological Invasions. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/13836_2018_21] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
8
|
Goldstein B, King N. The Future of Cell Biology: Emerging Model Organisms. Trends Cell Biol 2016; 26:818-824. [PMID: 27639630 DOI: 10.1016/j.tcb.2016.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 12/18/2022]
Abstract
Most current research in cell biology uses just a handful of model systems including yeast, Arabidopsis, Drosophila, Caenorhabditis elegans, zebrafish, mouse, and cultured mammalian cells. And for good reason - for many biological questions, the best system for the question is likely to be found among these models. However, in some cases, and particularly as the questions that engage scientists broaden, the best system for a question may be a little-studied organism. Modern research tools are facilitating a renaissance for unusual and interesting organisms as emerging model systems. As a result, we predict that an ever-expanding breadth of model systems may be a hallmark of future cell biology.
Collapse
Affiliation(s)
- Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Nicole King
- Howard Hughes Medical Institute and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
9
|
Cook CE, Chenevert J, Larsson TA, Arendt D, Houliston E, Lénárt P. Old knowledge and new technologies allow rapid development of model organisms. Mol Biol Cell 2016; 27:882-7. [PMID: 26976934 PMCID: PMC4791132 DOI: 10.1091/mbc.e15-10-0682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/01/2022] Open
Abstract
Until recently the set of "model" species used commonly for cell biology was limited to a small number of well-understood organisms, and developing a new model was prohibitively expensive or time-consuming. With the current rapid advances in technology, in particular low-cost high-throughput sequencing, it is now possible to develop molecular resources fairly rapidly. Wider sampling of biological diversity can only accelerate progress in addressing cellular mechanisms and shed light on how they are adapted to varied physiological contexts. Here we illustrate how historical knowledge and new technologies can reveal the potential of nonconventional organisms, and we suggest guidelines for selecting new experimental models. We also present examples of nonstandard marine metazoan model species that have made important contributions to our understanding of biological processes.
Collapse
Affiliation(s)
- Charles E Cook
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton CB10 1SD, United Kingdom
| | - Janet Chenevert
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, 06230 Villefranche-sur-mer, France
| | - Tomas A Larsson
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Detlev Arendt
- Developmental Biology Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Evelyn Houliston
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-mer, 06230 Villefranche-sur-mer, France
| | - Péter Lénárt
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| |
Collapse
|