1
|
Gazsó-Gerhát G, Gombos R, Tóth K, Kaltenecker P, Szikora S, Bíró J, Csapó E, Asztalos Z, Mihály J. FRL and DAAM are required for lateral adhesion of interommatidial cells and patterning of the retinal floor. Development 2023; 150:dev201713. [PMID: 37997920 PMCID: PMC10690107 DOI: 10.1242/dev.201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.
Collapse
Affiliation(s)
- Gabriella Gazsó-Gerhát
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Péter Kaltenecker
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Judit Bíró
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Enikő Csapó
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged H-6726, Hungary
| | - József Mihály
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Department of Genetics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
2
|
Chen W, He B. Actomyosin activity-dependent apical targeting of Rab11 vesicles reinforces apical constriction. J Cell Biol 2022; 221:213118. [DOI: 10.1083/jcb.202103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 01/23/2022] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
During tissue morphogenesis, the changes in cell shape, resulting from cell-generated forces, often require active regulation of intracellular trafficking. How mechanical stimuli influence intracellular trafficking and how such regulation impacts tissue mechanics are not fully understood. In this study, we identify an actomyosin-dependent mechanism involving Rab11-mediated trafficking in regulating apical constriction in the Drosophila embryo. During Drosophila mesoderm invagination, apical actin and Myosin II (actomyosin) contractility induces apical accumulation of Rab11-marked vesicle-like structures (“Rab11 vesicles”) by promoting a directional bias in dynein-mediated vesicle transport. At the apical domain, Rab11 vesicles are enriched near the adherens junctions (AJs). The apical accumulation of Rab11 vesicles is essential to prevent fragmented apical AJs, breaks in the supracellular actomyosin network, and a reduction in the apical constriction rate. This Rab11 function is separate from its role in promoting apical Myosin II accumulation. These findings suggest a feedback mechanism between actomyosin activity and Rab11-mediated intracellular trafficking that regulates the force generation machinery during tissue folding.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| | - Bing He
- Department of Biological Sciences, Dartmouth College, Hanover, NH
| |
Collapse
|
3
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
4
|
Logan CM, Menko AS. Microtubules: Evolving roles and critical cellular interactions. Exp Biol Med (Maywood) 2019; 244:1240-1254. [PMID: 31387376 DOI: 10.1177/1535370219867296] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Microtubules are cytoskeletal elements known as drivers of directed cell migration, vesicle and organelle trafficking, and mitosis. In this review, we discuss new research in the lens that has shed light into further roles for stable microtubules in the process of development and morphogenesis. In the lens, as well as other systems, distinct roles for characteristically dynamic microtubules and stabilized populations are coming to light. Understanding the mechanisms of microtubule stabilization and the associated microtubule post-translational modifications is an evolving field of study. Appropriate cellular homeostasis relies on not only one cytoskeletal element, but also rather an interaction between cytoskeletal proteins as well as other cellular regulators. Microtubules are key integrators with actin and intermediate filaments, as well as cell–cell junctional proteins and other cellular regulators including myosin and RhoGTPases to maintain this balance.Impact statementThe role of microtubules in cellular functioning is constantly expanding. In this review, we examine new and exciting fields of discovery for microtubule’s involvement in morphogenesis, highlight our evolving understanding of differential roles for stabilized versus dynamic subpopulations, and further understanding of microtubules as a cellular integrator.
Collapse
Affiliation(s)
- Caitlin M Logan
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - A Sue Menko
- Pathology Anatomy and Cell Biology Department, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
5
|
Ho TY, Wu WH, Hung SJ, Liu T, Lee YM, Liu YH. Expressional Profiling of Carpet Glia in the Developing Drosophila Eye Reveals Its Molecular Signature of Morphology Regulators. Front Neurosci 2019; 13:244. [PMID: 30983950 PMCID: PMC6449730 DOI: 10.3389/fnins.2019.00244] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/01/2019] [Indexed: 12/11/2022] Open
Abstract
Homeostasis in the nervous system requires intricate regulation and is largely accomplished by the blood-brain barrier (BBB). The major gate keeper of the vertebrate BBB is vascular endothelial cells, which form tight junctions (TJs). To gain insight into the development of the BBB, we studied the carpet glia, a subperineurial glial cell type with vertebrate TJ-equivalent septate junctions, in the developing Drosophila eye. The large and flat, sheet-like carpet glia, which extends along the developing eye following neuronal differentiation, serves as an easily accessible experimental system to understand the cell types that exhibit barrier function. We profiled transcribed genes in the carpet glia using targeted DNA adenine methyl-transferase identification, followed by next-generation sequencing (targeted DamID-seq) and found that the majority of genes expressed in the carpet glia function in cellular activities were related to its dynamic morphological changes in the developing eye. To unravel the morphology regulators, we silenced genes selected from the carpet glia transcriptome using RNA interference. The Rho1 gene encoding a GTPase was previously reported as a key regulator of the actin cytoskeleton. The expression of the pathetic (path) gene, encoding a solute carrier transporter in the developing eye, is specific to the carpet glia. The reduced expression of Rho1 severely disrupted the formation of intact carpet glia, and the silencing path impaired the connection between the two carpet glial cells, indicating the pan-cellular and local effects of Rho1 and Path on carpet glial cell morphology, respectively. Our study molecularly characterized a particular subperineurial cell type providing a resource for a further understanding of the cell types comprising the BBB.
Collapse
Affiliation(s)
- Tsung-Ying Ho
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Wei-Hang Wu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Sheng-Jou Hung
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Tsunglin Liu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Golenkina S, Chaturvedi V, Saint R, Murray MJ. Frazzled can act through distinct molecular pathways in epithelial cells to regulate motility, apical constriction, and localisation of E-Cadherin. PLoS One 2018; 13:e0194003. [PMID: 29518139 PMCID: PMC5843272 DOI: 10.1371/journal.pone.0194003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/22/2018] [Indexed: 01/11/2023] Open
Abstract
Netrin receptors of the DCC/NEO/UNC-40/Frazzled family have well established roles in cell migration and axon guidance but can also regulate epithelial features such as adhesion, polarity and adherens junction (AJ) stability. Previously, we have shown that overexpression of Drosophila Frazzled (Fra) in the peripodial epithelium (PE) inhibits wing disc eversion and also generates cellular protrusions typical of motile cells. Here, we tested whether the molecular pathways by which Fra inhibits eversion are distinct from those driving motility. We show that in disc proper (DP) epithelial cells Fra, in addition to inducing F-Actin rich protrusions, can affect localization of AJ components and columnar cell shape. We then show that these phenotypes have different requirements for the three conserved Fra cytoplasmic P-motifs and for downstream genes. The formation of protrusions required the P3 motif of Fra, as well as integrins (mys and mew), the Rac pathway (Rac1, wave and, arpc3) and myosin regulatory light chain (Sqh). In contrast, apico-basal cell shape change, which was accompanied by increased myosin phosphorylation, was critically dependent upon the P1 motif and was promoted by RhoGef2 but inhibited by Rac1. Fra also caused a loss of AJ proteins (DE-Cad and Arm) from basolateral regions of epithelial cells. This phenotype required all 3 P-motifs, and was dependent upon the polarity factor par6. par6 was not required for protrusions or cell shape change, but was required to block eversion suggesting that control of AJ components may underlie the ability of Fra to promote epithelial stability. The results imply that multiple molecular pathways act downstream of Fra in epithelial cells.
Collapse
Affiliation(s)
- Sofia Golenkina
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Vishal Chaturvedi
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Robert Saint
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael J. Murray
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Logan CM, Bowen CJ, Menko AS. Functional role for stable microtubules in lens fiber cell elongation. Exp Cell Res 2017; 362:477-488. [PMID: 29253534 DOI: 10.1016/j.yexcr.2017.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/17/2017] [Accepted: 12/13/2017] [Indexed: 02/06/2023]
Abstract
The process of tissue morphogenesis, especially for tissues reliant on the establishment of a specific cytoarchitecture for their functionality, depends a balanced interplay between cytoskeletal elements and their interactions with cell adhesion molecules. The microtubule cytoskeleton, which has many roles in the cell, is a determinant of directional cell migration, a process that underlies many aspects of development. We investigated the role of microtubules in development of the lens, a tissue where cell elongation underlies morphogenesis. Our studies with the microtubule depolymerizing agent nocodazole revealed an essential function for the acetylated population of stable microtubules in the elongation of lens fiber cells, which was linked to their regulation of the activation state of myosin. Suppressing myosin activation with the inhibitor blebbistatin could attenuate the loss of acetylated microtubules by nocodazole and rescue the effect of this microtubule depolymerization agent on both fiber cell elongation and lens integrity. Our results also suggest that acetylated microtubules impact lens morphogenesis through their interaction with N-cadherin junctions, with which they specifically associate in the region where lens fiber cell elongate. Disruption of the stable microtubule network increased N-cadherin junctional organization along lateral borders of differentiating lens fiber cells, which was prevented by suppression of myosin activity. These results reveal a role for the stable microtubule population in lens fiber cell elongation, acting in tandem with N-cadherin cell-cell junctions and the actomyosin network, giving insight into the cooperative role these systems play in tissue morphogenesis.
Collapse
Affiliation(s)
- Caitlin M Logan
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Caitlin J Bowen
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - A Sue Menko
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
8
|
Sasidharan S, Borinskaya S, Patel F, Bernadskaya Y, Mandalapu S, Agapito M, Soto MC. WAVE regulates Cadherin junction assembly and turnover during epithelial polarization. Dev Biol 2017; 434:133-148. [PMID: 29223862 DOI: 10.1016/j.ydbio.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/17/2017] [Accepted: 12/01/2017] [Indexed: 02/07/2023]
Abstract
Actin is an integral component of epithelial apical junctions, yet the interactions of branched actin regulators with apical junction components are still not clear. Biochemical data have shown that α-catenin inhibits Arp2/3-dependent branched actin. These results suggested that branched actin is only needed at earliest stages of apical junction development. We use live imaging in developing C. elegans embryos to test models for how WAVE-induced branched actin collaborates with other apical junction proteins during the essential process of junction formation and maturation. We uncover both early and late essential roles for WAVE in apical junction formation. Early, as the C. elegans intestinal epithelium becomes polarized, we find that WAVE components become enriched concurrently with the Cadherin components and before the DLG-1 apical accumulation. Live imaging of F-actin accumulation in polarizing intestine supports that the Cadherin complex components and branched actin regulators work together for apical actin enrichment. Later in junction development, the apical accumulation of WAVE and Cadherin components is shown to be interdependent: Cadherin complex loss alters WAVE accumulation, and WAVE complex loss increases Cadherin accumulation. To determine why Cadherin levels rise when WVE-1 is depleted, we use FRAP to analyze Cadherin dynamics and find that loss of WAVE as well as of the trafficking protein EHD-1/RME-1 increases Cadherin dynamics. EM studies in adults depleted of branched actin regulators support that WVE-1 maintains established junctions, presumably through its trafficking effect on Cadherin. Thus we propose a developmental model for junction formation where branched actin regulators are tightly interconnected with Cadherin junctions through their previously unappreciated role in Cadherin transport.
Collapse
Affiliation(s)
- Shashikala Sasidharan
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sofya Borinskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Falshruti Patel
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yelena Bernadskaya
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Sailaja Mandalapu
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Maria Agapito
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Martha C Soto
- Department of Pathology and Laboratory Medicine, Rutgers - Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA.
| |
Collapse
|
9
|
Varicose and cheerio collaborate with pebble to mediate semaphorin-1a reverse signaling in Drosophila. Proc Natl Acad Sci U S A 2017; 114:E8254-E8263. [PMID: 28894005 DOI: 10.1073/pnas.1713010114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transmembrane semaphorin Sema-1a acts as both a ligand and a receptor to regulate axon-axon repulsion during neural development. Pebble (Pbl), a Rho guanine nucleotide exchange factor, mediates Sema-1a reverse signaling through association with the N-terminal region of the Sema-1a intracellular domain (ICD), resulting in cytoskeletal reorganization. Here, we uncover two additional Sema-1a interacting proteins, varicose (Vari) and cheerio (Cher), each with neuronal functions required for motor axon pathfinding. Vari is a member of the membrane-associated guanylate kinase (MAGUK) family of proteins, members of which can serve as scaffolds to organize signaling complexes. Cher is related to actin filament cross-linking proteins that regulate actin cytoskeleton dynamics. The PDZ domain binding motif found in the most C-terminal region of the Sema-1a ICD is necessary for interaction with Vari, but not Cher, indicative of distinct binding modalities. Pbl/Sema-1a-mediated repulsive guidance is potentiated by both vari and cher Genetic analyses further suggest that scaffolding functions of Vari and Cher play an important role in Pbl-mediated Sema-1a reverse signaling. These results define intracellular components critical for signal transduction from the Sema-1a receptor to the cytoskeleton and provide insight into mechanisms underlying semaphorin-induced localized changes in cytoskeletal organization.
Collapse
|
10
|
Chan EH, Chavadimane Shivakumar P, Clément R, Laugier E, Lenne PF. Patterned cortical tension mediated by N-cadherin controls cell geometric order in the Drosophila eye. eLife 2017; 6. [PMID: 28537220 PMCID: PMC5443664 DOI: 10.7554/elife.22796] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Accepted: 05/08/2017] [Indexed: 12/22/2022] Open
Abstract
Adhesion molecules hold cells together but also couple cell membranes to a contractile actomyosin network, which limits the expansion of cell contacts. Despite their fundamental role in tissue morphogenesis and tissue homeostasis, how adhesion molecules control cell shapes and cell patterns in tissues remains unclear. Here we address this question in vivo using the Drosophila eye. We show that cone cell shapes depend little on adhesion bonds and mostly on contractile forces. However, N-cadherin has an indirect control on cell shape. At homotypic contacts, junctional N-cadherin bonds downregulate Myosin-II contractility. At heterotypic contacts with E-cadherin, unbound N-cadherin induces an asymmetric accumulation of Myosin-II, which leads to a highly contractile cell interface. Such differential regulation of contractility is essential for morphogenesis as loss of N-cadherin disrupts cell rearrangements. Our results establish a quantitative link between adhesion and contractility and reveal an unprecedented role of N-cadherin on cell shapes and cell arrangements. DOI:http://dx.doi.org/10.7554/eLife.22796.001
Collapse
|
11
|
Martin E, Ouellette MH, Jenna S. Rac1/RhoA antagonism defines cell-to-cell heterogeneity during epidermal morphogenesis in nematodes. J Cell Biol 2016; 215:483-498. [PMID: 27821782 PMCID: PMC5119937 DOI: 10.1083/jcb.201604015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/29/2016] [Accepted: 10/19/2016] [Indexed: 01/13/2023] Open
Abstract
The antagonism between the GTPases Rac1 and RhoA controls cell-to-cell heterogeneity in isogenic populations of cells in vitro and epithelial morphogenesis in vivo. Its involvement in the regulation of cell-to-cell heterogeneity during epidermal morphogenesis has, however, never been addressed. We used a quantitative cell imaging approach to characterize epidermal morphogenesis at a single-cell level during early elongation of Caenorhabditis elegans embryos. This study reveals that a Rac1-like pathway, involving the Rac/Cdc42 guanine-exchange factor β-PIX/PIX-1 and effector PAK1/PAK-1, and a RhoA-like pathway, involving ROCK/LET-502, control the remodeling of apical junctions and the formation of basolateral protrusions in distinct subsets of hypodermal cells. In these contexts, protrusions adopt lamellipodia or an amoeboid morphology. We propose that lamella formation may reduce tension building at cell-cell junctions during morphogenesis. Cell-autonomous antagonism between these pathways enables cells to switch between Rac1- and RhoA-like morphogenetic programs. This study identifies the first case of cell-to-cell heterogeneity controlled by Rac1/RhoA antagonism during epidermal morphogenesis.
Collapse
Affiliation(s)
- Emmanuel Martin
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Marie-Hélène Ouellette
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| | - Sarah Jenna
- Department of Chemistry, Pharmaqam, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada
| |
Collapse
|
12
|
West JJ, Harris TJC. Cadherin Trafficking for Tissue Morphogenesis: Control and Consequences. Traffic 2016; 17:1233-1243. [DOI: 10.1111/tra.12407] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Junior J. West
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
13
|
ALPK1 phosphorylates myosin IIA modulating TNF-α trafficking in gout flares. Sci Rep 2016; 6:25740. [PMID: 27169898 PMCID: PMC4864424 DOI: 10.1038/srep25740] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 04/21/2016] [Indexed: 01/07/2023] Open
Abstract
Gout is characterized by the monosodium urate monohydrate (MSU)-induced arthritis. Alpha kinase-1 (ALPK1) has shown to be associated with MSU-induced inflammation and gout. Here, we used bioinformatics, proteomics, cell models, and twenty in vitro human assays to clarify some of its role in the inflammatory response to MSU. We found myosin IIA to be a frequent interacting protein partner of ALPK1, binding to its N-terminal and forming a protein complex with calmodulin and F-actin, and that MSU-induced ALPK1 phosphorylated the myosin IIA. A knockdown of endogenous ALPK1 or myosin IIA significantly reduced the MSU-induced secretion of tumour necrosis factor (TNF)-α. Furthermore, all gouty patients expressed higher basal protein levels of ALPK1, myosin IIA, and plasma TNF-α, however those medicated with colchicine has shown reduced myosin IIA and TNF-α but not ALPK1. The findings suggest ALPK1 is a kinase that participates in the regulation of Golgi-derived TNF-α trafficking through myosin IIA phosphorylation in the inflammation of gout. This novel pathway could be blocked at the level of myosin by colchicine in gout treatment.
Collapse
|
14
|
Flores-Benitez D, Knust E. Crumbs is an essential regulator of cytoskeletal dynamics and cell-cell adhesion during dorsal closure in Drosophila. eLife 2015; 4. [PMID: 26544546 PMCID: PMC4718732 DOI: 10.7554/elife.07398] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 11/06/2015] [Indexed: 12/12/2022] Open
Abstract
The evolutionarily conserved Crumbs protein is required for epithelial polarity and morphogenesis. Here we identify a novel role of Crumbs as a negative regulator of actomyosin dynamics during dorsal closure in the Drosophila embryo. Embryos carrying a mutation in the FERM (protein 4.1/ezrin/radixin/moesin) domain-binding motif of Crumbs die due to an overactive actomyosin network associated with disrupted adherens junctions. This phenotype is restricted to the amnioserosa and does not affect other embryonic epithelia. This function of Crumbs requires DMoesin, the Rho1-GTPase, class-I p21-activated kinases and the Arp2/3 complex. Data presented here point to a critical role of Crumbs in regulating actomyosin dynamics, cell junctions and morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.001 A layer of epithelial cells covers the body surface of animals. Epithelial cells have a property known as polarity; this means that they have two different poles, one of which is in contact with the environment. Midway through embryonic development, the Drosophila embryo is covered by two kinds of epithelial sheets; the epidermis on the front, the belly and the sides of the embryo, and the amnioserosa on the back. In the second half of embryonic development, the amnioserosa is brought into the embryo in a process called dorsal closure, while the epidermis expands around the back of the embryo to encompass it. One of the major activities driving dorsal closure is the contraction of amnioserosa cells. This contraction depends on the highly dynamic activity of the protein network that helps give cells their shape, known as the actomyosin cytoskeleton. One major question in the field is how changes in the actomyosin cytoskeleton are controlled as tissues take shape (a process known as “morphogenesis”) and how the integrity of epithelial tissues is maintained during these processes. A key regulator of epidermal and amnioserosa polarity is an evolutionarily conserved protein called Crumbs. The epithelial tissues of mutant embryos that do not produce Crumbs lose polarity and integrity, and the embryos fail to develop properly. Flores-Benitez and Knust have now studied the role of Crumbs in the morphogenesis of the amnioserosa during dorsal closure. This revealed that fly embryos that produce a mutant Crumbs protein that cannot interact with a protein called Moesin (which links the cell membrane and the actomyosin cytoskeleton) are unable to complete dorsal closure. Detailed analyses showed that this failure of dorsal closure is due to the over-activity of the actomyosin cytoskeleton in the amnioserosa. This results in increased and uncoordinated contractions of the cells, and is accompanied by defects in cell-cell adhesion that ultimately cause the amnioserosa to lose integrity. Flores-Benitez and Knust’s genetic analyses further showed that several different signalling systems participate in this process. Flores-Benitez and Knust’s results reveal an unexpected role of Crumbs in coordinating polarity, actomyosin activity and cell-cell adhesion. Further work is now needed to understand the molecular mechanisms and interactions that enable Crumbs to coordinate these processes; in particular, to unravel how Crumbs influences the periodic contractions that drive changes in cell shape. It will also be important to investigate whether Crumbs is involved in similar mechanisms that operate in other developmental events in which actomyosin oscillations have been linked to tissue morphogenesis. DOI:http://dx.doi.org/10.7554/eLife.07398.002
Collapse
Affiliation(s)
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
15
|
Martín-Bermudo MD, Bardet PL, Bellaïche Y, Malartre M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development 2015; 142:1492-501. [PMID: 25813543 DOI: 10.1242/dev.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 12/13/2022]
Abstract
Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.
Collapse
Affiliation(s)
| | - Pierre-Luc Bardet
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Yohanns Bellaïche
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Marianne Malartre
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain Université Paris-Sud, INSERM UMR-S757, Orsay 91405, France Centre de Génétique Moléculaire (UPR3404), CNRS, 1 avenue de la Terrasse, Gif-Sur-Yvette 91198, France
| |
Collapse
|