1
|
Ono M, Ito T, Yamaki S, Hori Y, Zhou Q, Zhao X, Muramoto S, Yamamoto R, Furuyama T, Sakata-Haga H, Hatta T, Hamaguchi T, Kato N. Spatiotemporal development of the neuronal accumulation of amyloid precursor protein and the amyloid plaque formation in the brain of 3xTg-AD mice. Heliyon 2024; 10:e28821. [PMID: 38596059 PMCID: PMC11002285 DOI: 10.1016/j.heliyon.2024.e28821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/11/2024] Open
Abstract
The amyloid plaque is a hallmark of Alzheimer's disease. The accumulation of the amyloid precursor protein (APP) in the neuronal structure is assumed to lead to amyloid plaque formation through the excessive production of β-amyloid protein. To study the relationship between the neuronal accumulation of APP and amyloid plaque formation, we histologically analyzed their development in the different brain regions in 3xTg-AD mice, which express Swedish mutated APP (APPSWE) in the neurons. Observation throughout the brain revealed APPSWE-positive somata in the broad regions. Quantitative model analysis showed that the somatic accumulation of APPSWE developed firstly in the hippocampus from a very early age (<1 month) and proceeded slower in the isocortex. In line with this, the hippocampus was the first region to form amyloid plaques at the age of 9-12 months, while amyloid plaques were rarely observed in the isocortex. Females had more APPSWE-positive somata and plaques than males. Furthermore, amyloid plaques were observed in the lateral septum and pontine grey, which did not contain APPSWE-positive somata but only the APPSWE-positive fibers. These results suggested that neuronal accumulation of APPSWE, both in somatodendritic and axonal domains, is closely related to the formation of amyloid plaques.
Collapse
Affiliation(s)
- Munenori Ono
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tetsufumi Ito
- Systems Function and Morphology, University of Toyama, Toyama, 930-0194, Japan
| | - Sachiko Yamaki
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Yoshie Hori
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Qing Zhou
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Xirun Zhao
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Shinji Muramoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Ryo Yamamoto
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Takafumi Furuyama
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Hiromi Sakata-Haga
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Toshihisa Hatta
- Department of Anatomy, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Tsuyoshi Hamaguchi
- Department of Neurology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Nobuo Kato
- Department of Physiology, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| |
Collapse
|
2
|
Chen H, Yang X, Gao Y, Jiang H, Guo M, Zhou Y, Li C, Tan Y, Zhang Y, Xue W. Electroacupuncture ameliorates cognitive impairment in APP/PS1 mouse by modulating TFEB levels to relieve ALP dysfunction. Brain Res 2024; 1823:148683. [PMID: 37992796 DOI: 10.1016/j.brainres.2023.148683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/09/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023]
Abstract
Recently, the underlying mechanisms of acupuncture on the effects of Alzheimer's disease (AD) treatment have not been fully elucidated. Defects in ALP (autophagy-lysosomal pathway) and TFEB (transcription factor EB) play critical roles in AD. Our previous studies have demonstrated that electroacupuncture (EA) can ameliorate both β-amyloid (Aβ) pathology and cognitive function in APP/PS1 mice. However, the effects of EA on the expression of ALP and TFEB and their potential mechanisms require further investigation. Twenty-eight male APP/PS1 mice were randomly divided into Tg and Tg + EA groups, and 14 C57BL/6 mice served as the wild-type (WT) group. After 1 week of adaptation to the living environment, mice in the Tg + EA group were restrained in mouse bags and received manual acupuncture at Baihui (GV20) acupoint and EA stimulation at bilateral Yongquan (KI1) acupoints, using the same restraint method for WT and Tg groups. The intervention was applied for 15 min each time, every other day, lasting for six weeks. After intervention, the spatial learning and memory of the mice was assessed using the Morris water maze test. Hippocampal Aβ expression was detected by immunohistochemistry and ELISA. Transmission electron microscopy (TEM) was used to observe autophagic vacuoles and autolysosomes in the hippocampus. Immunofluorescence method was applied to examine the expression of TFEB in CA1 region of the hippocampus and the co-localization of CTSD or LAMP1 with Aβ. Western blot analysis was performed to evaluate the changes of LC3, p62, CTSD, LAMP1, TFEB and n-TFEB (nuclear TFEB) in the hippocampus. The findings of behavioral assessment indicated that EA alleviated the cognitive impairment of APP/PS1 mice. Compared with the WT group, the Tg group showed significant cognitive decline and abnormalities in ALP and TFEB function (P < 0.01 or P < 0.05). However, these abnormal changes were alleviated in the Tg + EA group (P < 0.01 or P < 0.05). The Tg group also showed more senile plaques and ALP dysfunction features, compared with the WT group, and these changes were alleviated by EA. In conclusion, this study highlights that EA ameliorated Aβ pathology-related cognitive impairments in the APP/PS1 model associated with ALP and TFEB dysfunction.
Collapse
Affiliation(s)
- Haotian Chen
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaokun Yang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yushan Gao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huili Jiang
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengwei Guo
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingyi Zhou
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Chenlu Li
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yunxiang Tan
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, 510405, China
| | - Yang Zhang
- Guangshui City Hospital of Traditional Chinese Medicine, 432700, China
| | - Weiguo Xue
- School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
3
|
Jang J, Yeo S, Baek S, Jung HJ, Lee MS, Choi SH, Choe Y. Abnormal accumulation of extracellular vesicles in hippocampal dystrophic axons and regulation by the primary cilia in Alzheimer's disease. Acta Neuropathol Commun 2023; 11:142. [PMID: 37667395 PMCID: PMC10478284 DOI: 10.1186/s40478-023-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Dystrophic neurites (DNs) are abnormal axons and dendrites that are swollen or deformed in various neuropathological conditions. In Alzheimer's disease (AD), DNs play a crucial role in impairing neuronal communication and function, and they may also contribute to the accumulation and spread of amyloid beta (Aβ) in the brain of AD patients. However, it is still a challenge to understand the DNs of specific neurons that are vulnerable to Aβ in the pathogenesis of AD. To shed light on the development of radiating DNs, we examined enriched dystrophic hippocampal axons in a mouse model of AD using a three-dimensional rendering of projecting neurons. We employed the anterograde spread of adeno-associated virus (AAV)1 and conducted proteomic analysis of synaptic compartments obtained from hippocampo-septal regions. Our findings revealed that DNs were formed due to synaptic loss at the axon terminals caused by the accumulation of extracellular vesicle (EV). Abnormal EV-mediated transport and exocytosis were identified in association with primary cilia, indicating their involvement in the accumulation of EVs at presynaptic terminals. To further address the regulation of DNs by primary cilia, we conducted knockdown of the Ift88 gene in hippocampal neurons, which impaired EV-mediated secretion of Aβ and promoted accumulation of axonal spheroids. Using single-cell RNA sequencing, we identified the septal projecting hippocampal somatostatin neurons (SOM) as selectively vulnerable to Aβ with primary cilia dysfunction and vesicle accumulation. Our study suggests that DNs in AD are initiated by the ectopic accumulation of EVs at the neuronal axon terminals, which is affected by neuronal primary cilia.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | | | - Mi Suk Lee
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | - Youngshik Choe
- Korea Brain Research Institute, Daegu, 41068, Korea.
- , Daegu, Korea.
| |
Collapse
|
4
|
Aow J, Huang TR, Goh YT, Sun AX, Thinakaran G, Koo EH. Evidence for a clathrin-independent endocytic pathway for APP internalization in the neuronal somatodendritic compartment. Cell Rep 2023; 42:112774. [PMID: 37450368 PMCID: PMC10449584 DOI: 10.1016/j.celrep.2023.112774] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/08/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023] Open
Abstract
Amyloid precursor protein (APP) internalization via clathrin-/dynamin-mediated endocytosis (CME) mediated by its YENPTY motif into endosomes containing β-secretase is proposed to be critical for amyloid-beta (Aβ) production. Here, we show that somatodendritic APP internalization in primary rodent neurons is not blocked by inhibiting dynamin or mutating the YENPTY motif, in contrast to non-neuronal cell lines. These phenomena, confirmed in induced human neurons under dynamin inhibition, occur during basal conditions and chemical long-term-depression stimulus, pointing to a clathrin-independent internalization pathway for somatodendritic APP. Mutating the YENPTY motif does not alter APP recycling, degradation, or endolysosomal colocalization. However, both dynamin inhibition and the YENPTY mutant significantly decrease secreted Aβ in neurons, suggesting that internalized somatodendritic APP may not constitute a major source of Aβ. Interestingly, like APP, somatodendritic low-density lipoprotein receptor (LDLR) internalization does not require its CME motif. These results highlight intriguing differences in neuronal internalization pathways and refine our understanding of Aβ production and secretion.
Collapse
Affiliation(s)
- Jonathan Aow
- Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Tzu-Rung Huang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Yeek Teck Goh
- Genome Institute of Singapore, Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Alfred Xuyang Sun
- Duke-NUS Graduate Medical School, Signature Research Program in Neuroscience and Behavioural Disorders, Singapore, Singapore
| | - Gopal Thinakaran
- USF Health Byrd Alzheimer's Center and Research Institute and Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Edward H Koo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Department of Neurosciences, University of California San Diego, San Diego, CA, USA; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
5
|
Depp C, Sun T, Sasmita AO, Spieth L, Berghoff SA, Nazarenko T, Overhoff K, Steixner-Kumar AA, Subramanian S, Arinrad S, Ruhwedel T, Möbius W, Göbbels S, Saher G, Werner HB, Damkou A, Zampar S, Wirths O, Thalmann M, Simons M, Saito T, Saido T, Krueger-Burg D, Kawaguchi R, Willem M, Haass C, Geschwind D, Ehrenreich H, Stassart R, Nave KA. Myelin dysfunction drives amyloid-β deposition in models of Alzheimer's disease. Nature 2023; 618:349-357. [PMID: 37258678 PMCID: PMC10247380 DOI: 10.1038/s41586-023-06120-6] [Citation(s) in RCA: 78] [Impact Index Per Article: 78.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 04/21/2023] [Indexed: 06/02/2023]
Abstract
The incidence of Alzheimer's disease (AD), the leading cause of dementia, increases rapidly with age, but why age constitutes the main risk factor is still poorly understood. Brain ageing affects oligodendrocytes and the structural integrity of myelin sheaths1, the latter of which is associated with secondary neuroinflammation2,3. As oligodendrocytes support axonal energy metabolism and neuronal health4-7, we hypothesized that loss of myelin integrity could be an upstream risk factor for neuronal amyloid-β (Aβ) deposition, the central neuropathological hallmark of AD. Here we identify genetic pathways of myelin dysfunction and demyelinating injuries as potent drivers of amyloid deposition in mouse models of AD. Mechanistically, myelin dysfunction causes the accumulation of the Aβ-producing machinery within axonal swellings and increases the cleavage of cortical amyloid precursor protein. Suprisingly, AD mice with dysfunctional myelin lack plaque-corralling microglia despite an overall increase in their numbers. Bulk and single-cell transcriptomics of AD mouse models with myelin defects show that there is a concomitant induction of highly similar but distinct disease-associated microglia signatures specific to myelin damage and amyloid plaques, respectively. Despite successful induction, amyloid disease-associated microglia (DAM) that usually clear amyloid plaques are apparently distracted to nearby myelin damage. Our data suggest a working model whereby age-dependent structural defects of myelin promote Aβ plaque formation directly and indirectly and are therefore an upstream AD risk factor. Improving oligodendrocyte health and myelin integrity could be a promising target to delay development and slow progression of AD.
Collapse
Affiliation(s)
- Constanze Depp
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Andrew Octavian Sasmita
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Lena Spieth
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Taisiia Nazarenko
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Katharina Overhoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Agnes A Steixner-Kumar
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Swati Subramanian
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sahab Arinrad
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Torben Ruhwedel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sandra Göbbels
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Alkmini Damkou
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Silvia Zampar
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Oliver Wirths
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
| | - Maik Thalmann
- Department of German Philology, Georg-August University, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Dilja Krueger-Burg
- Department of Psychiatry and Psychotherapy, University Medical Center, Georg-August University, Göttingen, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Riki Kawaguchi
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Michael Willem
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians University of Munich, Munich, Germany
| | - Daniel Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Hannelore Ehrenreich
- Clinical Neuroscience, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Ruth Stassart
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul-Flechsig-Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
6
|
Li Z, Cao Y, Pei H, Ma L, Yang Y, Li H. The contribution of mitochondria-associated endoplasmic reticulum membranes (MAMs) dysfunction in Alzheimer's disease and the potential countermeasure. Front Neurosci 2023; 17:1158204. [PMID: 36960176 PMCID: PMC10027904 DOI: 10.3389/fnins.2023.1158204] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 03/09/2023] Open
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease. There are many studies targeting extracellular deposits of amyloid β-peptide (Aβ) and intracellular neurofibrillary tangles (NFTs), however, there are no effective treatments to halt the progression. Mitochondria-associated endoplasmic reticulum membranes (MAMs) have long been found to be associated with various pathogenesis hypotheses of AD, such as Aβ deposition, mitochondrial dysfunction, and calcium homeostasis. However, there is a lack of literature summarizing recent advances in the mechanism and treatment studies. Accordingly, this article reviews the latest research involving the roles of MAM structure and tethering proteins in the pathogenesis of AD and summarizes potential strategies targeting MAMs to dissect treatment perspectives for AD.
Collapse
Affiliation(s)
- Zehui Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu Cao
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lina Ma
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Yang Yang,
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Li,
| |
Collapse
|
7
|
Fathy YY, Jonkman LE, Bol JJ, Timmermans E, Jonker AJ, Rozemuller AJM, van de Berg WDJ. Axonal degeneration in the anterior insular cortex is associated with Alzheimer's co-pathology in Parkinson's disease and dementia with Lewy bodies. Transl Neurodegener 2022; 11:52. [PMID: 36474289 PMCID: PMC9728006 DOI: 10.1186/s40035-022-00325-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Axons, crucial for impulse transmission and cellular trafficking, are thought to be primary targets of neurodegeneration in Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Axonal degeneration occurs early, preceeding and exceeding neuronal loss, and contributes to the spread of pathology, yet is poorly described outside the nigrostriatal circuitry. The insula, a cortical brain hub, was recently discovered to be highly vulnerable to pathology and plays a role in cognitive deficits in PD and DLB. The aim of this study was to evaluate morphological features as well as burden of proteinopathy and axonal degeneration in the anterior insular sub-regions in PD, PD with dementia (PDD), and DLB. METHODS α-Synuclein, phosphorylated (p-)tau, and amyloid-β pathology load were evaluated in the anterior insular (agranular and dysgranular) subregions of post-mortem human brains (n = 27). Axonal loss was evaluated using modified Bielschowsky silver staining and quantified using stereology. Cytoskeletal damage was comprehensively studied using immunofluorescent multi-labelling and 3D confocal laser-scanning microscopy. RESULTS Compared to PD and PDD, DLB showed significantly higher α-synuclein and p-tau pathology load, argyrophilic grains, and more severe axonal loss, particularly in the anterior agranular insula. Alternatively, the dysgranular insula showed a significantly higher load of amyloid-β pathology and its axonal density correlated with cognitive performance. p-Tau contributed most to axonal loss in the DLB group, was highest in the anterior agranular insula and significantly correlated with CDR global scores for dementia. Neurofilament and myelin showed degenerative changes including swellings, demyelination, and detachment of the axon-myelin unit. CONCLUSIONS Our results highlight the selective vulnerability of the anterior insular sub-regions to various converging pathologies, leading to impaired axonal integrity in PD, PDD and DLB, disrupting their functional properties and potentially contributing to cognitive, emotional, and autonomic deficits.
Collapse
Affiliation(s)
- Yasmine Y. Fathy
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Center, Postbus 2040, 3000 CA Rotterdam, Netherlands
| | - Laura E. Jonkman
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - John J. Bol
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Evelien Timmermans
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Allert J. Jonker
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| | - Annemieke J. M. Rozemuller
- grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands ,grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Pathology, Amsterdam Neuroscience, Vrije University Amsterdam, De Boelelaan, Amsterdam, Netherlands
| | - Wilma D. J. van de Berg
- grid.12380.380000 0004 1754 9227Amsterdam UMC, Department of Anatomy and Neurosciences, Section Clinical Neuroanatomy and Biobanking, Amsterdam Neuroscience, Vrije University Amsterdam, O
- 2 Life Sciences building, De Boelelaan 1108, 1081 HZ Amsterdam, Netherlands ,grid.484519.5Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Almenar-Queralt A, dos Santos Chaves R, Kwon EJ, Shah SB. Heads Up! Interlinked Amyloidogenic and Axonal Transport Pathways in Concussion-Induced Neurodegeneration. Neurosci Insights 2022; 17:26331055221129641. [PMID: 36274925 PMCID: PMC9580075 DOI: 10.1177/26331055221129641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/29/2022] [Indexed: 11/07/2022] Open
Abstract
Mild traumatic brain injury (mTBI), a condition in which brain function is transiently disrupted by a mechanical force, is a major risk factor for developing Alzheimer’s disease (AD) and other neurodegenerative conditions. In this commentary, we summarize recent findings in human neurons derived from induced pluripotent stem cells, detailing early neuronal events following mild injury that may seed future neurodegeneration. In particular, we discuss interlinked relationships between mTBI and several biological pathways hypothesized to underlie AD progression, including amyloidogenic cleavage of amyloid precursor protein (APP), impairment of axonal transport, and the development of APP-associated axonal swellings. We also describe the implications of these findings for future mechanistic and translational studies.
Collapse
Affiliation(s)
- Angels Almenar-Queralt
- Department of Pediatrics, University of California—San Diego, La Jolla, CA, USA,Sanford Consortium for Regenerative Medicine, University of California—San Diego, La Jolla, CA, USA
| | - Rodrigo dos Santos Chaves
- Sanford Consortium for Regenerative Medicine, University of California—San Diego, La Jolla, CA, USA,Department of Orthopaedic Surgery, University of California—San Diego, La Jolla, CA, USA
| | - Ester J. Kwon
- Sanford Consortium for Regenerative Medicine, University of California—San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California—San Diego, La Jolla, CA, USA
| | - Sameer B Shah
- Department of Orthopaedic Surgery, University of California—San Diego, La Jolla, CA, USA,Department of Bioengineering, University of California—San Diego, La Jolla, CA, USA,Research Division, VA San Diego Healthcare System, San Diego, CA, USA,Sameer B Shah, Department of Orthopaedic Surgery, University of California, 9500 Gilman Drive MC 0863, La Jolla, CA 92093, USA.
| |
Collapse
|
9
|
Yang H, Li J, Li X, Ma L, Hou M, Zhou H, Zhou R. Based on molecular structures: Amyloid-β generation, clearance, toxicity and therapeutic strategies. Front Mol Neurosci 2022; 15:927530. [PMID: 36117918 PMCID: PMC9470852 DOI: 10.3389/fnmol.2022.927530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Amyloid-β (Aβ) has long been considered as one of the most important pathogenic factors in Alzheimer’s disease (AD), but the specific pathogenic mechanism of Aβ is still not completely understood. In recent years, the development of structural biology technology has led to new understandings about Aβ molecular structures, Aβ generation and clearance from the brain and peripheral tissues, and its pathological toxicity. The purpose of the review is to discuss Aβ metabolism and toxicity, and the therapeutic strategy of AD based on the latest progress in molecular structures of Aβ. The Aβ structure at the atomic level has been analyzed, which provides a new and refined perspective to comprehend the role of Aβ in AD and to formulate therapeutic strategies of AD.
Collapse
Affiliation(s)
- Hai Yang
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Jinping Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Xiaoxiong Li
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Linqiu Ma
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Mingliang Hou
- Department of Neurology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Huadong Zhou
- Department of Neurology, Army Medical Center of PLA, Chongqing, China
| | - Rui Zhou
- Southwest Hospital, Army Medical University, Chongqing, China
- *Correspondence: Rui Zhou,
| |
Collapse
|
10
|
Weible AP, Wehr M. Amyloid Pathology in the Central Auditory Pathway of 5XFAD Mice Appears First in Auditory Cortex. J Alzheimers Dis 2022; 89:1385-1402. [PMID: 36031901 PMCID: PMC10097438 DOI: 10.3233/jad-220538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Effective treatment of Alzheimer’s disease (AD) will hinge on early detection. This has led to the search for early biomarkers that use non-invasive testing. One possible early biomarker is auditory temporal processing deficits, which reflect central auditory pathway dysfunction and precede cognitive and memory declines in AD. Gap detection is a measure of auditory temporal processing, is impaired in human AD, and is also impaired in the 5XFAD mouse model of AD. Gap detection deficits appear as early as postnatal day 60 in 5XFAD mice, months before cognitive deficits or cell death, supporting gap detection as an early biomarker. However, it remains unclear how gap detection deficits relate to the progression of amyloid pathology in the auditory system. Objective: To determine the progression of amyloid pathology throughout the central auditory system and across age in 5XFAD mice. Methods: We quantified intracellular and extracellular antibody labelling of Aβ 42 in 6 regions of the central auditory system from p14 to p150. Results: Pathology appeared first in primary auditory cortex (A1) as intracellular accumulation of Aβ 42 in layer 5 pyramidal neurons by age p21. Extracellular plaques appeared later, by age p90, in A1, medial geniculate body, and inferior colliculus. Auditory brainstem structures showed minimal amyloid pathology. We also observed pathology in the caudal pontine reticular nucleus, a brainstem structure that is outside of the central auditory pathway but which is involved in the acoustic startle reflex. Conclusion: These results suggest that Aβ 42 accumulation, but not plaques, may impair gap detection.
Collapse
Affiliation(s)
- Aldis P. Weible
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| | - Michael Wehr
- Department of Psychology, Institute of Neuroscience, University of Oregon, Eugene, OR, USA
| |
Collapse
|
11
|
Fernandez Bessone I, Navarro J, Martinez E, Karmirian K, Holubiec M, Alloatti M, Goto-Silva L, Arnaiz Yepez C, Martins-de-Souza D, Minardi Nascimento J, Bruno L, Saez TM, Rehen SK, Falzone TL. DYRK1A Regulates the Bidirectional Axonal Transport of APP in Human-Derived Neurons. J Neurosci 2022; 42:6344-6358. [PMID: 35803734 PMCID: PMC9398544 DOI: 10.1523/jneurosci.2551-21.2022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 11/21/2022] Open
Abstract
Dyrk1a triplication in Down's syndrome and its overexpression in Alzheimer's disease suggest a role for increased DYRK1A activity in the abnormal metabolism of APP. Transport defects are early phenotypes in the progression of Alzheimer's disease, which lead to APP processing impairments. However, whether DYRK1A regulates the intracellular transport and delivery of APP in human neurons remains unknown. From a proteomic dataset of human cerebral organoids treated with harmine, a DYRK1A inhibitor, we found expression changes in protein clusters associated with the control of microtubule-based transport and in close interaction with the APP vesicle. Live imaging of APP axonal transport in human-derived neurons treated with harmine or overexpressing a dominant negative DYRK1A revealed a reduction in APP vesicle density and enhanced the stochastic behavior of retrograde vesicle transport. Moreover, harmine increased the fraction of slow segmental velocities and changed speed transitions supporting a DYRK1A-mediated effect in the exchange of active motor configuration. Contrarily, the overexpression of DYRK1A in human polarized neurons increased the axonal density of APP vesicles and enhanced the processivity of retrograde APP. In addition, increased DYRK1A activity induced faster retrograde segmental velocities together with significant changes in slow to fast anterograde and retrograde speed transitions, suggesting the facilitation of the active motor configuration. Our results highlight DYRK1A as a modulator of the axonal transport machinery driving APP intracellular distribution in neurons, and stress DYRK1A inhibition as a putative therapeutic intervention to restore APP axonal transport in Down's syndrome and Alzheimer's disease.SIGNIFICANCE STATEMENT Axonal transport defects are early events in the progression of neurodegenerative diseases, such as Alzheimer's disease. However, the molecular mechanisms underlying transport defects remain elusive. Dyrk1a kinase is triplicated in Down's syndrome and overexpressed in Alzheimer's disease, suggesting that DYRK1A dysfunction affects molecular pathways leading to early-onset neurodegeneration. Here, we show by live imaging of human-derived neurons that DYRK1A activity differentially regulates the intracellular trafficking of APP. Further, single-particle analysis revealed DYRK1A as a modulator of axonal transport and the configuration of active motors within the APP vesicle. Our work highlights DYRK1A as a regulator of APP axonal transport and metabolism, supporting DYRK1A inhibition as a therapeutic strategy to restore intracellular dynamics in Alzheimer's disease.
Collapse
Affiliation(s)
- Iván Fernandez Bessone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Jordi Navarro
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Emanuel Martinez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Karina Karmirian
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Mariana Holubiec
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Matias Alloatti
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Livia Goto-Silva
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
| | - Cayetana Arnaiz Yepez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Daniel Martins-de-Souza
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Laboratory of Neuroproteomics, University of Campinas Campinas, Brasil, SP, 13083-970
- Instituto Nacional de Biomarcadores Em Neuropsiquiatria, Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brasil, SP, 13083-970
- Experimental Medicine Research Cluster, University of Campinas, Campinas, Brasil, SP, 13083-970
| | | | - Luciana Bruno
- Instituto de Cálculo, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina C1428EGA
| | - Trinidad M Saez
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
| | - Stevens K Rehen
- D'Or Institute for Research and Education, Rio de Janeiro, Brasil, RJ, 22281-100
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Brasil, RJ, 21941-902
| | - Tomás L Falzone
- Instituto de Biología Celular y Neurociencia IBCN, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina C1121ABG
- Instituto de Investigación en Biomedicina de Buenos Aires, Partner Institute of the Max Planck Society, Buenos Aires, Argentina C1425FQD
| |
Collapse
|
12
|
Lotlikar MS, Tarantino MB, Jorfi M, Kovacs DM, Tanzi RE, Bhattacharyya R. Microfluidic separation of axonal and somal compartments of neural progenitor cells differentiated in a 3D matrix. STAR Protoc 2022; 3:101028. [PMID: 35059649 PMCID: PMC8755568 DOI: 10.1016/j.xpro.2021.101028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
This protocol describes the differentiation of human neural progenitor cells (hNPCs) in a microfluidic device containing a thin 3D matrix with two separate chambers, enabling a cleaner separation between axons and soma/bulk neurons. We have used this technique to study how mitochondria-associated ER membranes (MAMs) regulate the generation of somal and axonal amyloid β (Aβ) in FAD hNPCs, a cellular model of Alzheimer's disease. This protocol also details the quantification of Aβ molecules and isolation of pure axons via axotomy. For complete details on the use and execution of this profile, please refer to Bhattacharyya et al. (2021).
Collapse
Affiliation(s)
- Madhura S. Lotlikar
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marina B. Tarantino
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Dora M. Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Raja Bhattacharyya
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
13
|
Burrinha T, Cláudia GA. Aging impact on amyloid precursor protein neuronal trafficking. Curr Opin Neurobiol 2022; 73:102524. [PMID: 35303572 DOI: 10.1016/j.conb.2022.102524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/03/2022]
Abstract
Neurons live a lifetime. Neuronal aging may increase the risk of Alzheimer's disease. How does neuronal membrane trafficking maintain synapse function during aging? In the normal aged brain, intraneuronal beta-amyloid (Aβ) accumulates without Alzheimer's disease mutations or risk variants. However, do changes with neuronal aging potentiate Aβ accumulation? We reviewed the membrane trafficking of the amyloid precursor protein in neurons and highlighted its importance in Aβ production. Importantly, we reviewed the evidence supporting the impact of aging on neuronal membrane trafficking, APP processing, and consequently Aβ production. Dissecting the molecular regulators of APP trafficking during neuronal aging is required to identify strategies to delay synaptic decline and protect from Alzheimer's disease.
Collapse
Affiliation(s)
- Tatiana Burrinha
- Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal. https://twitter.com/@burrinha_t
| | - Guimas Almeida Cláudia
- Chronic Diseases Research Center (CEDOC), NOVA Medical School (NMS), Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal.
| |
Collapse
|
14
|
Jahagirdar D, Bangde P, Jain R, Dandekar P. Degenerative disease-on-a-chip: Developing microfluidic models for rapid availability of newer therapies. Biotechnol J 2021; 16:e2100154. [PMID: 34390543 DOI: 10.1002/biot.202100154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022]
Abstract
BACKGROUND Understanding the pathophysiology of degenerative diseases pertaining to nervous system, ocular region, bone/cartilage and muscle are still being comprehended, thus delaying the availability of targeted therapies. PURPOSE AND SCOPE Newer micro-physiological systems (organ-on-chip technology) involves development of more sophisticated devices, modelling a range of in vitro human tissues and an array of models for diseased conditions. These models expand opportunities for high throughput screening (HTS) of drugs and are likely to be rapid and cost-effective, thus reducing extensive usage of animal models. CONCLUSION Through this review article, we aim to present an overview of the degenerative disease models that are presently being developed using microfluidic platforms with the aim of mimicking in vivo tissue physiology and micro-architecture. The manuscript provides an overview of the degenerative disease models and their potential for testing and screening of possible biotherapeutic molecules and drugs. It highlights the perspective of the regulatory bodies with respect to the established-on chip models and thereby enhancing its translational potential. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Devashree Jahagirdar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Prachi Bangde
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Ratnesh Jain
- Department of Chemical Engineering, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| | - Prajakta Dandekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, India
| |
Collapse
|
15
|
Bhattacharyya R, Black SE, Lotlikar MS, Fenn RH, Jorfi M, Kovacs DM, Tanzi RE. Axonal generation of amyloid-β from palmitoylated APP in mitochondria-associated endoplasmic reticulum membranes. Cell Rep 2021; 35:109134. [PMID: 34010653 PMCID: PMC8287518 DOI: 10.1016/j.celrep.2021.109134] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 11/14/2022] Open
Abstract
Axonal generation of Alzheimer’s disease (AD)-associated amyloid-β (Aβ) plays a key role in AD neuropathology, but the cellular mechanisms involved in its release have remained elusive. We previously reported that palmitoylated APP (palAPP) partitions to lipid rafts where it serves as a preferred substrate for β-secretase. Mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) are cholesterol-rich lipid rafts that are upregulated in AD. Here, we show that downregulating MAM assembly by either RNA silencing or pharmacological modulation of the MAM-resident sigma1 receptor (S1R) leads to attenuated β-secretase cleavage of palAPP. Upregulation of MAMs promotes trafficking of palAPP to the cell surface, β-secretase cleavage, and Aβ generation. We develop a microfluidic device and use it to show that MAM levels alter Aβ generation specifically in neuronal processes and axons, but not in cell bodies. These data suggest therapeutic strategies for reducing axonal release of Aβ and attenuating β-amyloid pathology in AD. Bhattacharyya et al. show that the modulation of mitochondrial-associated endoplasmic reticulum membranes (MAMs) via sigma-1 receptor regulates Aβ generation from axons via cell surface trafficking and β-secretase cleavage of MAM-resident palmitoylated APP (palAPP).
Collapse
Affiliation(s)
- Raja Bhattacharyya
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Sophia E Black
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Madhura S Lotlikar
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rebecca H Fenn
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mehdi Jorfi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dora M Kovacs
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Dual-target compounds for Alzheimer's disease: Natural and synthetic AChE and BACE-1 dual-inhibitors and their structure-activity relationship (SAR). Eur J Med Chem 2021; 221:113492. [PMID: 33984802 DOI: 10.1016/j.ejmech.2021.113492] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 03/17/2021] [Accepted: 04/18/2021] [Indexed: 12/19/2022]
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disease and represents the major cause of dementia worldwide. Currently, there are no available treatments capable to deliver disease-modifying effects, and the available drugs can only alleviate the symptoms. The exact pathology of AD is not yet fully understood and several hallmarks such as the presence of amyloid-β (Aβ) senile plaques, neurofibrillary tangles (NFTs) as well as the loss of cholinergic function have been associated to AD. Distinct pharmacological targets have been validated to address AD, with acetylcholinesterase (AChE) and β-secretase-1 (BACE-1) being two of the most explored ones. A great deal of research has been devoted to the development of new AChE and BACE-1 effective inhibitors, tackled separately or in combination of both. The multi-factorial nature of AD conducted to the development of multi-target directed ligands (MTDLs), defined as single molecules capable to modulate more than one biological target, as an alternative approach to the old paradigm one-target one-drug. In this context, this review describes a collection of natural and synthetic compounds with dual-inhibitory properties towards both AChE and BACE-1 in the MTDLs context. Furthermore, this review also provides a critical comprehensive analysis of structure-activity relationships (SAR) of the synthetic compounds.
Collapse
|
17
|
Chen XQ, Das U, Park G, Mobley WC. Normal levels of KIF5 but reduced KLC1 levels in both Alzheimer disease and Alzheimer disease in Down syndrome: evidence suggesting defects in anterograde transport. Alzheimers Res Ther 2021; 13:59. [PMID: 33691783 PMCID: PMC7945332 DOI: 10.1186/s13195-021-00796-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/22/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Impaired axonal transport may contribute to the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD) and Down syndrome (DS). Axonal transport is a complex process in which specific motor proteins move cargoes to and from neuronal cell bodies and their processes. Inconsistent reports point to the changes in AD in the levels of the classical anterograde motor protein kinesin family member 5 (KIF5) and the primary neuronal KIF regulator kinesin light chain 1 (KLC1), raising the possibility that anterograde transport is compromised in AD. METHODS AND MATERIALS To address inconsistencies and determine if the shared pathologies in AD and elderly DS subjects with dementia (AD in DS; AD-DS) extend to the changes in KIF5 and KLC1, we measured the levels of all the three KIF5 family members and KLC1 in the AD and AD-DS frontal cortex and AD temporal cortex and cerebellum in samples taken with a short postmortem interval. To support future studies to explore the cell biological basis for any changes detected, we also examined the levels of these proteins in the brains of young and aged adult mice in the Dp (16)1Yey/+ (Dp16) mouse model of DS and J20 mouse model of AD. RESULTS There were no changes in comparison with controls in KIF5 family members in either the AD or AD-DS samples when normalized to either β-actin or glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Interestingly, however, samples from control brains as well as from AD and AD-DS demonstrated strong positive correlations between the levels of KIF5 family members, suggesting positive co-regulated expression. Importantly, while earlier reports pointed to a negative correlation between the levels of the amyloid precursor protein (APP) and KIF5A levels, we found the opposite to be true in AD-DS; this was especially striking given triplication of the APP gene, with increased APP protein levels. AD and control samples showed positive correlations between fl-hAPP and KIF5 members, but they were less consistent. In contrast to the findings for KIF5, the levels of KLC1 were downregulated in the frontal cortex of both AD and AD-DS brains; interestingly, this change was not seen in the AD temporal cortex or cerebellum. As postmortem interval has a negative effect on the levels of KLC1, but not KIF5 members, we analyzed a subset of samples with a very short postmortem interval (PMI) (≤ 6 h), a PMI that was not significantly correlated with the levels of KLC1 in either AD or AD-DS samples; we confirmed the presence of a statistically significant reduction of KLC1 in AD and AD-DS brains as compared with control brains. Studies comparing Dp16 to its euploid control recapitulated human studies in demonstrating no change in KIF5 levels and a positive correlation between the levels of KIF5 family members. J20 mice also showed normal KIF5 levels. However, unlike the AD and AD-DS frontal cortex, KLC1 levels were not reduced in the brains of Dp16 or J20 mice. CONCLUSION These data point to significant reductions in KLC1 in AD and AD-DS. In so doing, they raise the possibility of compromised KLC1-mediated axonal transport in these conditions, a posit that can now be pursued in model systems in which KLC1 expression is reduced.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Utpal Das
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| | - Gooho Park
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| | - William C. Mobley
- grid.266100.30000 0001 2107 4242Department of Neurosciences, University of California San Diego, La Jolla, CA 92093 USA
| |
Collapse
|
18
|
Chen X, Salehi A, Pearn ML, Overk C, Nguyen PD, Kleschevnikov AM, Maccecchini M, Mobley WC. Targeting increased levels of APP in Down syndrome: Posiphen-mediated reductions in APP and its products reverse endosomal phenotypes in the Ts65Dn mouse model. Alzheimers Dement 2021; 17:271-292. [PMID: 32975365 PMCID: PMC7984396 DOI: 10.1002/alz.12185] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/07/2020] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Recent clinical trials targeting amyloid beta (Aβ) and tau in Alzheimer's disease (AD) have yet to demonstrate efficacy. Reviewing the hypotheses for AD pathogenesis and defining possible links between them may enhance insights into both upstream initiating events and downstream mechanisms, thereby promoting discovery of novel treatments. Evidence that in Down syndrome (DS), a population markedly predisposed to develop early onset AD, increased APP gene dose is necessary for both AD neuropathology and dementia points to normalization of the levels of the amyloid precursor protein (APP) and its products as a route to further define AD pathogenesis and discovering novel treatments. BACKGROUND AD and DS share several characteristic manifestations. DS is caused by trisomy of whole or part of chromosome 21; this chromosome contains about 233 protein-coding genes, including APP. Recent evidence points to a defining role for increased expression of the gene for APP and for its 99 amino acid C-terminal fragment (C99, also known as β-CTF) in dysregulating the endosomal/lysosomal system. The latter is critical for normal cellular function and in neurons for transmitting neurotrophic signals. NEW/UPDATED HYPOTHESIS We hypothesize that the increase in APP gene dose in DS initiates a process in which increased levels of full-length APP (fl-APP) and its products, including β-CTF and possibly Aβ peptides (Aβ42 and Aβ40), drive AD pathogenesis through an endosome-dependent mechanism(s), which compromises transport of neurotrophic signals. To test this hypothesis, we carried out studies in the Ts65Dn mouse model of DS and examined the effects of Posiphen, an orally available small molecule shown in prior studies to reduce fl-APP. In vitro, Posiphen lowered fl-APP and its C-terminal fragments, reversed Rab5 hyperactivation and early endosome enlargement, and restored retrograde transport of neurotrophin signaling. In vivo, Posiphen treatment (50 mg/kg/d, 26 days, intraperitoneal [i.p.]) of Ts65Dn mice was well tolerated and demonstrated no adverse effects in behavior. Treatment resulted in normalization of the levels of fl-APP, C-terminal fragments and small reductions in Aβ species, restoration to normal levels of Rab5 activity, reduced phosphorylated tau (p-tau), and reversed deficits in TrkB (tropomyosin receptor kinase B) activation and in the Akt (protein kinase B [PKB]), ERK (extracellular signal-regulated kinase), and CREB (cAMP response element-binding protein) signaling pathways. Remarkably, Posiphen treatment also restored the level of choline acetyltransferase protein to 2N levels. These findings support the APP gene dose hypothesis, point to the need for additional studies to explore the mechanisms by which increased APP gene expression acts to increase the risk for AD in DS, and to possible utility of treatments to normalize the levels of APP and its products for preventing AD in those with DS. MAJOR CHALLENGES FOR THE HYPOTHESIS Important unanswered questions are: (1) When should one intervene in those with DS; (2) would an APP-based strategy have untoward consequences on possible adaptive changes induced by chronically increased APP gene dose; (3) do other genes present on chromosome 21, or on other chromosomes whose expression is dysregulated in DS, contribute to AD pathogenesis; and (4) can one model strategies that combine the use of an APP-based treatment with those directed at other AD phenotypes including p-tau and inflammation. LINKAGE TO OTHER MAJOR THEORIES The APP gene dose hypothesis interfaces with the amyloid cascade hypothesis of AD as well as with the genetic and cell biological observations that support it. Moreover, upregulation of fl-APP protein and products may drive downstream events that dysregulate tau homeostasis and inflammatory responses that contribute to propagation of AD pathogenesis.
Collapse
Affiliation(s)
- Xu‐Qiao Chen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Ahmad Salehi
- Department of Psychiatry & Behavioral SciencesStanford Medical SchoolPalo AltoCaliforniaUSA
| | - Matthew L. Pearn
- Department of AnesthesiologyUniversity of California San Diego, School of MedicineLa JollaCaliforniaUSA
- V.A. San Diego Healthcare SystemSan DiegoCaliforniaUSA
| | - Cassia Overk
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Phuong D. Nguyen
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | | | - William C. Mobley
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
19
|
Thangavelu B, Wilfred BS, Johnson D, Gilsdorf JS, Shear DA, Boutté AM. Penetrating Ballistic-Like Brain Injury Leads to MicroRNA Dysregulation, BACE1 Upregulation, and Amyloid Precursor Protein Loss in Lesioned Rat Brain Tissues. Front Neurosci 2020; 14:915. [PMID: 33071724 PMCID: PMC7530327 DOI: 10.3389/fnins.2020.00915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/07/2020] [Indexed: 12/22/2022] Open
Abstract
Severe traumatic brain injury (TBI) is a risk factor for neurodegenerative diseases. Yet, the molecular events involving dysregulated miRNAs that may be associated with protein degradation in the brain remains elusive. Quantitation of more than 800 miRNAs was conducted using rat ipsilateral coronal brain tissues collected 1, 3, or 7 days after penetrating ballistic-like brain injury (PBBI). As a control for each time-point, Sham-operated animals received craniotomy alone. Microarray and systems biology analysis indicated that the amplitude and complexity of miRNAs affected were greatest 7 day after PBBI. Arrays and Q-PCR inferred that dysregulation of miR-135a, miR-328, miR-29c, and miR-21 were associated with altered levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), PSEN1, PSEN2, and amyloid precursor protein (APP) genes. These events were followed by increased levels of mature BACE1 protein and concomitant loss of full length APP within 3–7 days, then elevation of amyloid beta (Aβ)-40 7 days after PBBI. This study indicates that miRNA arrays, coupled with systems biology, may be used to guide study design prior validation of miRNA dysregulation. Associative analysis of miRNAs, mRNAs, and proteins within a proposed pathway are poised for further validation as biomarkers and therapeutic targets relevant to TBI-induced APP loss and subsequent Aβ peptide generation during neurodegeneration.
Collapse
Affiliation(s)
- Bharani Thangavelu
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Bernard S Wilfred
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - David Johnson
- Department of Pathology and Area Laboratory Services, Landstuhl Regional Medical Center, Landstuhl, Germany
| | - Janice S Gilsdorf
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Deborah A Shear
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela M Boutté
- Brain Trauma Neuroprotection Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
20
|
Bruyère J, Abada YS, Vitet H, Fontaine G, Deloulme JC, Cès A, Denarier E, Pernet-Gallay K, Andrieux A, Humbert S, Potier MC, Delatour B, Saudou F. Presynaptic APP levels and synaptic homeostasis are regulated by Akt phosphorylation of huntingtin. eLife 2020; 9:56371. [PMID: 32452382 PMCID: PMC7269668 DOI: 10.7554/elife.56371] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Studies have suggested that amyloid precursor protein (APP) regulates synaptic homeostasis, but the evidence has not been consistent. In particular, signaling pathways controlling APP transport to the synapse in axons and dendrites remain to be identified. Having previously shown that Huntingtin (HTT), the scaffolding protein involved in Huntington’s disease, regulates neuritic transport of APP, we used a microfluidic corticocortical neuronal network-on-a-chip to examine APP transport and localization to the pre- and post-synaptic compartments. We found that HTT, upon phosphorylation by the Ser/Thr kinase Akt, regulates APP transport in axons but not dendrites. Expression of an unphosphorylatable HTT decreased axonal anterograde transport of APP, reduced presynaptic APP levels, and increased synaptic density. Ablating in vivo HTT phosphorylation in APPPS1 mice, which overexpress APP, reduced presynaptic APP levels, restored synapse number and improved learning and memory. The Akt-HTT pathway and axonal transport of APP thus regulate APP presynaptic levels and synapse homeostasis.
Collapse
Affiliation(s)
- Julie Bruyère
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Yah-Se Abada
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Hélène Vitet
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Gaëlle Fontaine
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Jean-Christophe Deloulme
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Aurélia Cès
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Eric Denarier
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Karin Pernet-Gallay
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Annie Andrieux
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| | - Marie-Claude Potier
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Benoît Delatour
- Institut du Cerveau et de la Moelle épinière, ICM, Inserm U1127, CNRS UMR 7225, Sorbonne Université, Paris, France
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, CEA, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
21
|
The Role of Secretase Pathway in Long-term Brain Inflammation and Cognitive Impairment in an Animal Model of Severe Sepsis. Mol Neurobiol 2019; 57:1159-1169. [DOI: 10.1007/s12035-019-01808-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 09/30/2019] [Indexed: 01/17/2023]
|
22
|
The Endolysosomal System and Proteostasis: From Development to Degeneration. J Neurosci 2019; 38:9364-9374. [PMID: 30381428 DOI: 10.1523/jneurosci.1665-18.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/20/2018] [Indexed: 12/12/2022] Open
Abstract
How do neurons adapt their endolysosomal system to address the particular challenge of membrane transport across their elaborate cellular landscape and to maintain proteostasis for the lifetime of the organism? Here we review recent findings that address this central question. We discuss the cellular and molecular mechanisms of endolysosomal trafficking and the autophagy pathway in neurons, as well as their role in neuronal development and degeneration. These studies highlight the importance of understanding the basic cell biology of endolysosomal trafficking and autophagy and their roles in the maintenance of proteostasis within the context of neurons, which will be critical for developing effective therapies for various neurodevelopmental and neurodegenerative disorders.
Collapse
|
23
|
Gaudreault R, Mousseau N. Mitigating Alzheimer’s Disease with Natural Polyphenols: A Review. Curr Alzheimer Res 2019; 16:529-543. [DOI: 10.2174/1567205016666190315093520] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/14/2019] [Accepted: 03/13/2019] [Indexed: 11/22/2022]
Abstract
:According to Alzheimer’s Disease International (ADI), nearly 50 million people worldwide were living with dementia in 2017, and this number is expected to triple by 2050. Despite years of research in this field, the root cause and mechanisms responsible for Alzheimer’s disease (AD) have not been fully elucidated yet. Moreover, promising preclinical results have repeatedly failed to translate into patient treatments. Until now, none of the molecules targeting AD has successfully passed the Phase III trial. Although natural molecules have been extensively studied, they normally require high concentrations to be effective; alternately, they are too large to cross the blood-brain barrier (BBB).:In this review, we report AD treatment strategies, with a virtually exclusive focus on green chemistry (natural phenolic molecules). These include therapeutic strategies for decreasing amyloid-β (Aβ) production, preventing and/or altering Aβ aggregation, and reducing oligomers cytotoxicity such as curcumin, (-)-epigallocatechin-3-gallate (EGCG), morin, resveratrol, tannic acid, and other natural green molecules. We also examine whether consideration should be given to potential candidates used outside of medicine and nutrition, through a discussion of two intermediate-sized green molecules, with very similar molecular structures and key properties, which exhibit potential in mitigating Alzheimer’s disease.
Collapse
Affiliation(s)
- Roger Gaudreault
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| | - Normand Mousseau
- Department of Physics, Universit�© de Montr�©al, Case Postale 6128, Succursale Centre-ville, Montreal (QC), Canada
| |
Collapse
|
24
|
Zhang X, Huang TY, Yancey J, Luo H, Zhang YW. Role of Rab GTPases in Alzheimer's Disease. ACS Chem Neurosci 2019; 10:828-838. [PMID: 30261139 DOI: 10.1021/acschemneuro.8b00387] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) comprises two major pathological hallmarks: extraneuronal deposition of β-amyloid (Aβ) peptides ("senile plaques") and intraneuronal aggregation of the microtubule-associated protein tau ("neurofibrillary tangles"). Aβ is derived from sequential cleavage of the β-amyloid precursor protein by β- and γ-secretases, while aggregated tau is hyperphosphorylated in AD. Mounting evidence suggests that dysregulated trafficking of these AD-related proteins contributes to AD pathogenesis. Rab proteins are small GTPases that function as master regulators of vesicular transport and membrane trafficking. Multiple Rab GTPases have been implicated in AD-related protein trafficking, and their expression has been observed to be altered in postmortem AD brain. Here we review current implicated roles of Rab GTPase dysregulation in AD pathogenesis. Further elucidation of the pathophysiological role of Rab GTPases will likely reveal novel targets for AD therapeutics.
Collapse
Affiliation(s)
- Xian Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Timothy Y. Huang
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Joel Yancey
- Neuroscience Initiative, Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California 92037, United States
| | - Hong Luo
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| | - Yun-wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Medical College of Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
25
|
Sun M, Huang C, Wang H, Zhang H. Par3 regulates polarized convergence between APP and BACE1 in hippocampal neurons. Neurobiol Aging 2019; 77:87-93. [PMID: 30784815 DOI: 10.1016/j.neurobiolaging.2019.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 01/07/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The convergence between amyloid precursor protein (APP) and its β-secretase β-site APP cleaving enzyme 1 (BACE1) is a prerequisite for the generation of β-amyloid peptide, a key pathogenic agent for Alzheimer's disease. Yet the underlying molecular mechanisms regulating their convergence remain unclear. Here, we show that the polarity protein partitioning-defective 3 (Par3) regulates the polarized convergence between APP and BACE1 in hippocampal neurons. Par3 forms a complex with BACE1 through its first PDZ domain, which is important for regulating BACE1 endosome-to-TGN trafficking. In the absence of Par3, there is an increase in the convergence between internalized APP and BACE1. In hippocampal neurons, loss of Par3 leads to increased APP and BACE1 convergence in axons but not in dendrites. This polarized convergence mainly occurs in retrograde or stalled axonal late endocytic organelles and is likely due to compartment-specific regulation of APP trafficking by Par3. Together, our data show a novel function for Par3 in regulating polarized convergence between APP and BACE1 in hippocampal neurons.
Collapse
Affiliation(s)
- Miao Sun
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | - Chengyu Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Hui Wang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA; Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, Jiangsu, China
| | - Huaye Zhang
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| |
Collapse
|
26
|
Kuznetsov IA, Kuznetsov AV. Simulating the effect of formation of amyloid plaques on aggregation of tau protein. Proc Math Phys Eng Sci 2018; 474:20180511. [PMID: 30602936 PMCID: PMC6304026 DOI: 10.1098/rspa.2018.0511] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022] Open
Abstract
In this paper, we develop a mathematical model that enables the investigation of the production and intracellular transport of amyloid precursor protein (APP) and tau protein in a neuron. We also investigate the aggregation of APP fragments into amyloid-β (Aβ) as well as tau aggregation into tau oligomers and neurofibrillary tangles. Using the developed model, we investigate how Aβ aggregation can influence tau transport and aggregation in both the soma and the axon. We couple the Aβ and tau agglomeration processes by assuming that the value of the kinetic constant that describes the autocatalytic growth (self-replication) reaction step of tau aggregation is proportional to the Aβ concentration. The model predicts that APP and tau are distributed differently in the axon. While APP has a uniform distribution along the axon, tau's concentration first decreases and then increases towards the synapse. Aβ is uniformly produced along the axon while misfolded tau protein is mostly produced in the proximal axon. The number of Aβ and tau polymers originating from the axon is much smaller than the number of Aβ and tau polymers originating from the soma. The rate of production of misfolded tau polymers depends on how strongly their production is facilitated by Aβ.
Collapse
Affiliation(s)
- I. A. Kuznetsov
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - A. V. Kuznetsov
- Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC 27695-7910, USA
| |
Collapse
|
27
|
López-Erauskin J, Tadokoro T, Baughn MW, Myers B, McAlonis-Downes M, Chillon-Marinas C, Asiaban JN, Artates J, Bui AT, Vetto AP, Lee SK, Le AV, Sun Y, Jambeau M, Boubaker J, Swing D, Qiu J, Hicks GG, Ouyang Z, Fu XD, Tessarollo L, Ling SC, Parone PA, Shaw CE, Marsala M, Lagier-Tourenne C, Cleveland DW, Da Cruz S. ALS/FTD-Linked Mutation in FUS Suppresses Intra-axonal Protein Synthesis and Drives Disease Without Nuclear Loss-of-Function of FUS. Neuron 2018; 100:816-830.e7. [PMID: 30344044 PMCID: PMC6277851 DOI: 10.1016/j.neuron.2018.09.044] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/13/2022]
Abstract
Through the generation of humanized FUS mice expressing full-length human FUS, we identify that when expressed at near endogenous murine FUS levels, both wild-type and ALS-causing and frontotemporal dementia (FTD)-causing mutations complement the essential function(s) of murine FUS. Replacement of murine FUS with mutant, but not wild-type, human FUS causes stress-mediated induction of chaperones, decreased expression of ion channels and transporters essential for synaptic function, and reduced synaptic activity without loss of nuclear FUS or its cytoplasmic aggregation. Most strikingly, accumulation of mutant human FUS is shown to activate an integrated stress response and to inhibit local, intra-axonal protein synthesis in hippocampal neurons and sciatic nerves. Collectively, our evidence demonstrates that human ALS/FTD-linked mutations in FUS induce a gain of toxicity that includes stress-mediated suppression in intra-axonal translation, synaptic dysfunction, and progressive age-dependent motor and cognitive disease without cytoplasmic aggregation, altered nuclear localization, or aberrant splicing of FUS-bound pre-mRNAs. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jone López-Erauskin
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Takahiro Tadokoro
- Department of Anesthesiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Michael W Baughn
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Brian Myers
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Melissa McAlonis-Downes
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Carlos Chillon-Marinas
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Joshua N Asiaban
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jonathan Artates
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anh T Bui
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Anne P Vetto
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Sandra K Lee
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ai Vy Le
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Ying Sun
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Mélanie Jambeau
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Jihane Boubaker
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Deborah Swing
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Jinsong Qiu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Geoffrey G Hicks
- Regenerative Medicine Program and Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Zhengyu Ouyang
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA
| | - Lino Tessarollo
- Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, 21702, USA
| | - Shuo-Chien Ling
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Philippe A Parone
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA
| | - Christopher E Shaw
- United Kingdom Dementia Research Institute Centre, Maurice Wohl Clinical Neuroscience Institute, Institute of Psychiatry, Psychology and Neuroscience, King's College London, SE5 9NU London, U.K; Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Martin Marsala
- Department of Anesthesiology, University of California at San Diego, La Jolla, CA 92093, USA
| | - Clotilde Lagier-Tourenne
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Sandrine Da Cruz
- Ludwig Institute for Cancer Research, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
28
|
DelBove CE, Deng XZ, Zhang Q. The Fate of Nascent APP in Hippocampal Neurons: A Live Cell Imaging Study. ACS Chem Neurosci 2018; 9:2225-2232. [PMID: 29869871 DOI: 10.1021/acschemneuro.8b00226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Amyloid precursor protein (APP) is closely associated with Alzheimer's disease (AD) because its proteolytic products form amyloid plaques and its mutations are linked to familial AD patients. As a membrane protein, APP is involved in neuronal development and plasticity. However, it remains unclear how nascent APP is distributed and transported to designated membrane compartments to execute its diverse functions. Here, we employed a dual-tagged APP fusion protein in combination with a synaptic vesicle marker to study the surface trafficking and cleavage of APP in hippocampal neurons immediately after its synthesis. Using long-term time-lapse imaging, we found that a considerable amount of nascent APP was directly transported to the somatodendritic surface, from which it propagates to distal neurites. Some APP in the plasma membrane was endocytosed and some was cleaved by α-secretase. Hence, we conclude that surface transportation of APP is a major step preceding its proteolytic processing and neuritic distribution.
Collapse
Affiliation(s)
- Claire E. DelBove
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Xian-zhen Deng
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232-6600, United States
| |
Collapse
|
29
|
Tortosa E, Hoogenraad CC. Polarized trafficking: the palmitoylation cycle distributes cytoplasmic proteins to distinct neuronal compartments. Curr Opin Cell Biol 2018; 50:64-71. [DOI: 10.1016/j.ceb.2018.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/24/2018] [Accepted: 02/07/2018] [Indexed: 12/28/2022]
|
30
|
Otero MG, Bessone IF, Hallberg AE, Cromberg LE, De Rossi MC, Saez TM, Levi V, Almenar-Queralt A, Falzone TL. Proteasome stress leads to APP axonal transport defects by promoting its amyloidogenic processing in lysosomes. J Cell Sci 2018; 131:jcs.214536. [DOI: 10.1242/jcs.214536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 04/25/2018] [Indexed: 01/25/2023] Open
Abstract
Alzheimer Disease (AD) pathology includes the accumulation of poly-ubiquitinated proteins and failures in proteasome-dependent degradation. Whereas the distribution of proteasomes and its role in synaptic function have been studied, whether proteasome activity regulates the axonal transport and metabolism of the amyloid precursor protein (APP), remains elusive. Using live imaging in primary hippocampal neurons, we showed that proteasome inhibition rapidly and severely impairs the axonal transport of APP. Fluorescent cross-correlation analyses and membrane internalization blockage showed that plasma membrane APP do not contribute to transport defects. Moreover, by western blots and double-color APP imaging we demonstrated that proteasome inhibition precludes APP axonal transport by enhancing its endo-lysosomal delivery where β-cleavage is induced. Together, we found that proteasomes controls the distal transport of APP and can re-distribute Golgi-derived vesicles to the endo-lysosomal pathway. This crosstalk between proteasomes and lysosomes regulates APP intracellular dynamics, and defects in proteasome activity can be considered a contributing factor that lead to abnormal APP metabolism in AD.
Collapse
Affiliation(s)
- María Gabriela Otero
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Ivan Fernandez Bessone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Alan Earle Hallberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - Lucas Eneas Cromberg
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
| | - María Cecilia De Rossi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Trinidad M. Saez
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| | - Valeria Levi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica-IQUIBICEN UBA-CONICET, CP1428EGA, Argentina
| | - Angels Almenar-Queralt
- Department of Cellular and Molecular Medicine, School of Medicine, University of California San Diego, La Jolla, California 92093, USA
| | - Tomás Luis Falzone
- Instituto de Biología Celular y Neurociencias, IBCN (CONICET-UBA), Facultad de Medicina, Universidad de Buenos Aires. Paraguay 2155, Buenos Aires, CP1121, Argentina
- Instituto de Biología y Medicina Experimental, IBYME (CONICET). Vuelta de obligado 2490, Buenos Aires, CP 1428, Argentina
| |
Collapse
|
31
|
Polanco JC, Li C, Bodea LG, Martinez-Marmol R, Meunier FA, Götz J. Amyloid-β and tau complexity — towards improved biomarkers and targeted therapies. Nat Rev Neurol 2017; 14:22-39. [DOI: 10.1038/nrneurol.2017.162] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Copenhaver PF, Ramaker JM. Neuronal migration during development and the amyloid precursor protein. CURRENT OPINION IN INSECT SCIENCE 2016; 18:1-10. [PMID: 27939704 PMCID: PMC5157842 DOI: 10.1016/j.cois.2016.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 08/06/2016] [Indexed: 06/06/2023]
Abstract
The Amyloid Precursor Protein (APP) is the source of amyloid peptides that accumulate in Alzheimer's disease. However, members of the APP family are strongly expressed in the developing nervous systems of invertebrates and vertebrates, where they regulate neuronal guidance, synaptic remodeling, and injury responses. In contrast to mammals, insects express only one APP ortholog (APPL), simplifying investigations into its normal functions. Recent studies have shown that APPL regulates neuronal migration in the developing insect nervous system, analogous to the roles ascribed to APP family proteins in the mammalian cortex. The comparative simplicity of insect systems offers new opportunities for deciphering the signaling mechanisms by which this enigmatic class of proteins contributes to the formation and function of the nervous system.
Collapse
Affiliation(s)
- Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Pathology, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
33
|
Ramaker JM, Cargill RS, Swanson TL, Quirindongo H, Cassar M, Kretzschmar D, Copenhaver PF. Amyloid Precursor Proteins Are Dynamically Trafficked and Processed during Neuronal Development. Front Mol Neurosci 2016; 9:130. [PMID: 27932950 PMCID: PMC5122739 DOI: 10.3389/fnmol.2016.00130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 11/10/2016] [Indexed: 01/10/2023] Open
Abstract
Proteolytic processing of the Amyloid Precursor Protein (APP) produces beta-amyloid (Aβ) peptide fragments that accumulate in Alzheimer's Disease (AD), but APP may also regulate multiple aspects of neuronal development, albeit via mechanisms that are not well understood. APP is a member of a family of transmembrane glycoproteins expressed by all higher organisms, including two mammalian orthologs (APLP1 and APLP2) that have complicated investigations into the specific activities of APP. By comparison, insects express only a single APP-related protein (APP-Like, or APPL) that contains the same protein interaction domains identified in APP. However, unlike its mammalian orthologs, APPL is only expressed by neurons, greatly simplifying an analysis of its functions in vivo. Like APP, APPL is processed by secretases to generate a similar array of extracellular and intracellular cleavage fragments, as well as an Aβ-like fragment that can induce neurotoxic responses in the brain. Exploiting the complementary advantages of two insect models (Drosophila melanogaster and Manduca sexta), we have investigated the regulation of APPL trafficking and processing with respect to different aspects of neuronal development. By comparing the behavior of endogenously expressed APPL with fluorescently tagged versions of APPL and APP, we have shown that some full-length protein is consistently trafficked into the most motile regions of developing neurons both in vitro and in vivo. Concurrently, much of the holoprotein is rapidly processed into N- and C-terminal fragments that undergo bi-directional transport within distinct vesicle populations. Unexpectedly, we also discovered that APPL can be transiently sequestered into an amphisome-like compartment in developing neurons, while manipulations targeting APPL cleavage altered their motile behavior in cultured embryos. These data suggest that multiple mechanisms restrict the bioavailability of the holoprotein to regulate APPL-dependent responses within the nervous system. Lastly, targeted expression of our double-tagged constructs (combined with time-lapse imaging) revealed that APP family proteins are subject to complex patterns of trafficking and processing that vary dramatically between different neuronal subtypes. In combination, our results provide a new perspective on how the regulation of APP family proteins can be modulated to accommodate a variety of cell type-specific responses within the embryonic and adult nervous system.
Collapse
Affiliation(s)
- Jenna M Ramaker
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science UniversityPortland, OR, USA; Neuroscience Graduate Program, Oregon Health and Science UniversityPortland, OR, USA
| | - Robert S Cargill
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Tracy L Swanson
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| | - Hanil Quirindongo
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Marlène Cassar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Doris Kretzschmar
- Oregon Institute of Occupational Health Sciences, Oregon Health and Science University Portland, OR, USA
| | - Philip F Copenhaver
- Department of Cell, Developmental and Cancer Biology, Oregon Health and Science University Portland, OR, USA
| |
Collapse
|
34
|
Woodruff G, Reyna SM, Dunlap M, Van Der Kant R, Callender JA, Young JE, Roberts EA, Goldstein LSB. Defective Transcytosis of APP and Lipoproteins in Human iPSC-Derived Neurons with Familial Alzheimer's Disease Mutations. Cell Rep 2016; 17:759-773. [PMID: 27732852 PMCID: PMC5796664 DOI: 10.1016/j.celrep.2016.09.034] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 07/22/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022] Open
Abstract
We investigated early phenotypes caused by familial Alzheimer's disease (fAD) mutations in isogenic human iPSC-derived neurons. Analysis of neurons carrying fAD PS1 or APP mutations introduced using genome editing technology at the endogenous loci revealed that fAD mutant neurons had previously unreported defects in the recycling state of endocytosis and soma-to-axon transcytosis of APP and lipoproteins. The endocytosis reduction could be rescued through treatment with a β-secretase inhibitor. Our data suggest that accumulation of β-CTFs of APP, but not Aβ, slow vesicle formation from an endocytic recycling compartment marked by the transcytotic GTPase Rab11. We confirm previous results that endocytosis is affected in AD and extend these to uncover a neuron-specific defect. Decreased lipoprotein endocytosis and transcytosis to the axon suggest that a neuron-specific impairment in endocytic axonal delivery of lipoproteins and other key materials might compromise synaptic maintenance in fAD.
Collapse
Affiliation(s)
- Grace Woodruff
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sol M Reyna
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Mariah Dunlap
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Rik Van Der Kant
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Julia A Callender
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica E Young
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Elizabeth A Roberts
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
35
|
Zheng BW, Yang L, Dai XL, Jiang ZF, Huang HC. Roles of O-GlcNAcylation on amyloid-β precursor protein processing, tau phosphorylation, and hippocampal synapses dysfunction in Alzheimer’s disease. Neurol Res 2016; 38:177-86. [DOI: 10.1080/01616412.2015.1133485] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
van der Kant R, Goldstein LSB. Cellular functions of the amyloid precursor protein from development to dementia. Dev Cell 2015; 32:502-15. [PMID: 25710536 DOI: 10.1016/j.devcel.2015.01.022] [Citation(s) in RCA: 158] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Amyloid precursor protein (APP) is a key player in Alzheimer's disease (AD). The Aβ fragments of APP are the major constituent of AD-associated amyloid plaques, and mutations or duplications of the gene coding for APP can cause familial AD. Here we review the roles of APP in neuronal development, signaling, intracellular transport, and other aspects of neuronal homeostasis. We suggest that APP acts as a signaling nexus that transduces information about a range of extracellular conditions, including neuronal damage, to induction of intracellular signaling events. Subtle disruptions of APP signaling functions may be major contributors to AD-causing neuronal dysfunction.
Collapse
Affiliation(s)
- Rik van der Kant
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| | - Lawrence S B Goldstein
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
37
|
Muresan V, Ladescu Muresan Z. Amyloid-β precursor protein: Multiple fragments, numerous transport routes and mechanisms. Exp Cell Res 2015; 334:45-53. [PMID: 25573596 DOI: 10.1016/j.yexcr.2014.12.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 12/26/2014] [Indexed: 02/01/2023]
Abstract
This review provides insight into the intraneuronal transport of the Amyloid-β Precursor Protein (APP), the prototype of an extensively posttranslationally modified and proteolytically cleaved transmembrane protein. Uncovering the intricacies of APP transport proves to be a challenging endeavor of cell biology research, deserving increased priority, since APP is at the core of the pathogenic process in Alzheimer's disease. After being synthesized in the endoplasmic reticulum in the neuronal soma, APP enters the intracellular transport along the secretory, endocytic, and recycling routes. Along these routes, APP undergoes cleavage into defined sets of fragments, which themselves are transported - mostly independently - to distinct sites in neurons, where they exert their functions. We review the currently known routes and mechanisms of transport of full-length APP, and of APP fragments, commenting largely on the experimental challenges posed by studying transport of extensively cleaved proteins. The review emphasizes the interrelationships between the proteolytic and posttranslational modifications, the intracellular transport, and the functions of the APP species. A goal remaining to be addressed in the future is the incorporation of the various views on APP transport into a coherent picture. In this review, the disease context is only marginally addressed; the focus is on the basic biology of APP transport under normal conditions. As shown, the studies of APP transport uncovered numerous mechanisms of transport, some of them conventional, and others, novel, awaiting exploration.
Collapse
Affiliation(s)
- Virgil Muresan
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101-1709, USA.
| | - Zoia Ladescu Muresan
- Department of Pharmacology and Physiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ 07101-1709, USA.
| |
Collapse
|
38
|
Selfridge A, Hyun N, Chiang CC, Reyna SM, Weissmiller AM, Shi LZ, Preece D, Mobley WC, Berns MW. Rat embryonic hippocampus and induced pluripotent stem cell derived cultured neurons recover from laser-induced subaxotomy. NEUROPHOTONICS 2015; 2:015006. [PMID: 26157985 PMCID: PMC4487718 DOI: 10.1117/1.nph.2.1.015006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Accepted: 01/12/2015] [Indexed: 06/04/2023]
Abstract
Axonal injury and stress have long been thought to play a pathogenic role in a variety of neurodegenerative diseases. However, a model for studying single-cell axonal injury in mammalian cells and the processes of repair has not been established. The purpose of this study was to examine the response of neuronal growth cones to laser-induced axonal damage in cultures of embryonic rat hippocampal neurons and induced pluripotent stem cell (iPSC) derived human neurons. A 532-nm pulsed [Formula: see text] picosecond laser was focused to a diffraction limited spot at a precise location on an axon using a laser energy/power that did not rupture the cell membrane (subaxotomy). Subsequent time series images were taken to follow axonal recovery and growth cone dynamics. After laser subaxotomy, axons thinned at the damage site and initiated a dynamic cytoskeletal remodeling process to restore axonal thickness. The growth cone was observed to play a role in the repair process in both hippocampal and iPSC-derived neurons. Immunofluorescence staining confirmed structural tubulin damage and revealed initial phases of actin-based cytoskeletal remodeling at the damage site. The results of this study indicate that there is a repeatable and cross-species repair response of axons and growth cones after laser-induced damage.
Collapse
Affiliation(s)
- Aaron Selfridge
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Nicholas Hyun
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Chai-Chun Chiang
- University of California, San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Sol M. Reyna
- University of California, San Diego, Department of Biomedical Sciences, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - April M. Weissmiller
- University of California, San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Linda Z. Shi
- University of California, San Diego, Institute of Engineering in Medicine, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Daryl Preece
- University of California, San Diego, Department of NanoEngineering, 9500 Gilman Drive La Jolla, California 92093, United States
| | - William C. Mobley
- University of California, San Diego, Department of Neurosciences, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Michael W. Berns
- University of California, San Diego, Department of Bioengineering, 9500 Gilman Drive, La Jolla, California 92093, United States
- University of California, San Diego, Institute of Engineering in Medicine, 9500 Gilman Drive, La Jolla, California 92093, United States
- University of California, Irvine, Beckman Laser Institute, 1002 Health Sciences Road, Irvine, California 92612, United States
| |
Collapse
|