1
|
Goychuk A, Kannan D, Kardar M. Delayed Excitations Induce Polymer Looping and Coherent Motion. PHYSICAL REVIEW LETTERS 2024; 133:078101. [PMID: 39213554 DOI: 10.1103/physrevlett.133.078101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/25/2024] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
We consider inhomogeneous polymers driven by energy-consuming active processes which encode temporal patterns of athermal kicks. We find that such temporal excitation programs, propagated by tension along the polymer, can effectively couple distinct polymer loci. Consequently, distant loci exhibit correlated motions that fold the polymer into specific conformations, as set by the local actions of the active processes and their distribution along the polymer. Interestingly, active kicks that are canceled out by a time-delayed echo can induce strong compaction of the active polymer.
Collapse
|
2
|
Hsiao YT, Liao IH, Wu BK, Chu HPC, Hsieh CL. Probing chromatin condensation dynamics in live cells using interferometric scattering correlation spectroscopy. Commun Biol 2024; 7:763. [PMID: 38914653 PMCID: PMC11196589 DOI: 10.1038/s42003-024-06457-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
Chromatin organization and dynamics play important roles in governing the regulation of nuclear processes of biological cells. However, due to the constant diffusive motion of chromatin, examining chromatin nanostructures in living cells has been challenging. In this study, we introduce interferometric scattering correlation spectroscopy (iSCORS) to spatially map nanoscopic chromatin configurations within unlabeled live cell nuclei. This label-free technique captures time-varying linear scattering signals generated by the motion of native chromatin on a millisecond timescale, allowing us to deduce chromatin condensation states. Using iSCORS imaging, we quantitatively examine chromatin dynamics over extended periods, revealing spontaneous fluctuations in chromatin condensation and heterogeneous compaction levels in interphase cells, independent of cell phases. Moreover, we observe changes in iSCORS signals of chromatin upon transcription inhibition, indicating that iSCORS can probe nanoscopic chromatin structures and dynamics associated with transcriptional activities. Our scattering-based optical microscopy, which does not require labeling, serves as a powerful tool for visualizing dynamic chromatin nano-arrangements in live cells. This advancement holds promise for studying chromatin remodeling in various crucial cellular processes, such as stem cell differentiation, mechanotransduction, and DNA repair.
Collapse
Affiliation(s)
- Yi-Teng Hsiao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | - I-Hsin Liao
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Bo-Kuan Wu
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan
| | | | - Chia-Lung Hsieh
- Institute of Atomic and Molecular Sciences (IAMS), Academia Sinica, Taipei, Taiwan.
- Department of Physics, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
3
|
Liu S, Chen J, Hellgoth J, Müller LR, Ferdman B, Karras C, Xiao D, Lidke KA, Heintzmann R, Shechtman Y, Li Y, Ries J. Universal inverse modeling of point spread functions for SMLM localization and microscope characterization. Nat Methods 2024; 21:1082-1093. [PMID: 38831208 DOI: 10.1038/s41592-024-02282-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/16/2024] [Indexed: 06/05/2024]
Abstract
The point spread function (PSF) of a microscope describes the image of a point emitter. Knowing the accurate PSF model is essential for various imaging tasks, including single-molecule localization, aberration correction and deconvolution. Here we present universal inverse modeling of point spread functions (uiPSF), a toolbox to infer accurate PSF models from microscopy data, using either image stacks of fluorescent beads or directly images of blinking fluorophores, the raw data in single-molecule localization microscopy (SMLM). Our modular framework is applicable to a variety of microscope modalities and the PSF model incorporates system- or sample-specific characteristics, for example, the bead size, field- and depth- dependent aberrations, and transformations among channels. We demonstrate its application in single or multiple channels or large field-of-view SMLM systems, 4Pi-SMLM, and lattice light-sheet microscopes using either bead data or single-molecule blinking data.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
| | - Jianwei Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
- Collaboration for joint PhD degree between Southern University of Science and Technology and Harbin Institute of Technology, Harbin, China
| | - Jonas Hellgoth
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
- Faculty of Biosciences, Collaboration for joint PhD degree from EMBL and Heidelberg University, Heidelberg, Germany
| | - Lucas-Raphael Müller
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
- Machine Learning in Science, Excellence Cluster Machine Learning, University of Tübingen, Tübingen, Germany
| | - Boris Ferdman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Christian Karras
- Leibniz Institute of Photonic Technology, Jena, Germany
- JENOPTIK Optical Systems, Jena, Germany
| | - Dafei Xiao
- Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, Israel
| | - Keith A Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Rainer Heintzmann
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yiming Li
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China.
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany.
- Max Perutz Labs, Vienna Biocenter Campus, Vienna, Austria.
- Department of Structural and Computational Biology, Center for Molecular Biology, University of Vienna, Vienna, Austria.
- Faculty of Physics, University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Yuan T, Yan H, Bailey MLP, Williams JF, Surovtsev I, King MC, Mochrie SGJ. Effect of loops on the mean-square displacement of Rouse-model chromatin. Phys Rev E 2024; 109:044502. [PMID: 38755928 DOI: 10.1103/physreve.109.044502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024]
Abstract
Chromatin polymer dynamics are commonly described using the classical Rouse model. The subsequent discovery, however, of intermediate-scale chromatin organization known as topologically associating domains (TADs) in experimental Hi-C contact maps for chromosomes across the tree of life, together with the success of loop extrusion factor (LEF) model in explaining TAD formation, motivates efforts to understand the effect of loops and loop extrusion on chromatin dynamics. This paper seeks to fulfill this need by combining LEF-model simulations with extended Rouse-model polymer simulations to investigate the dynamics of chromatin with loops and dynamic loop extrusion. We show that loops significantly suppress the averaged mean-square displacement (MSD) of a gene locus, consistent with recent experiments that track fluorescently labeled chromatin loci. We also find that loops reduce the MSD's stretching exponent from the classical Rouse-model value of 1/2 to a loop-density-dependent value in the 0.45-0.40 range. Remarkably, stretching exponent values in this range have also been observed in recent experiments [Weber et al., Phys. Rev. Lett. 104, 238102 (2010)0031-900710.1103/PhysRevLett.104.238102; Bailey et al., Mol. Biol. Cell 34, ar78 (2023)1059-152410.1091/mbc.E23-04-0119]. We also show that the dynamics of loop extrusion itself negligibly affects chromatin mobility. By studying static "rosette" loop configurations, we also demonstrate that chromatin MSDs and stretching exponents depend on the location of the locus in question relative to the position of the loops and on the local friction environment.
Collapse
Affiliation(s)
- Tianyu Yuan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Hao Yan
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Mary Lou P Bailey
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| | - Jessica F Williams
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Ivan Surovtsev
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
| | - Megan C King
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Cell Biology, Yale School of Medicine, New Haven, Connecticut 06520, USA
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Simon G J Mochrie
- Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, Connecticut 06520, USA
- Department of Physics, Yale University, New Haven, Connecticut 06520, USA
- Department of Applied Physics, Yale University, New Haven, Connecticut 06520, USA
| |
Collapse
|
5
|
Liu S, Chen J, Hellgoth J, Müller LR, Ferdman B, Karras C, Xiao D, Lidke KA, Heintzmann R, Shechtman Y, Li Y, Ries J. Universal inverse modelling of point spread functions for SMLM localization and microscope characterization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564064. [PMID: 37961269 PMCID: PMC10634843 DOI: 10.1101/2023.10.26.564064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The point spread function (PSF) of a microscope describes the image of a point emitter. Knowing the accurate PSF model is essential for various imaging tasks, including single molecule localization, aberration correction and deconvolution. Here we present uiPSF (universal inverse modelling of Point Spread Functions), a toolbox to infer accurate PSF models from microscopy data, using either image stacks of fluorescent beads or directly images of blinking fluorophores, the raw data in single molecule localization microscopy (SMLM). The resulting PSF model enables accurate 3D super-resolution imaging using SMLM. Additionally, uiPSF can be used to characterize and optimize a microscope system by quantifying the aberrations, including field-dependent aberrations, and resolutions. Our modular framework is applicable to a variety of microscope modalities and the PSF model incorporates system or sample specific characteristics, e.g., the bead size, depth dependent aberrations and transformations among channels. We demonstrate its application in single or multiple channels or large field-of-view SMLM systems, 4Pi-SMLM, and lattice light-sheet microscopes using either bead data or single molecule blinking data.
Collapse
Affiliation(s)
- Sheng Liu
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Jianwei Chen
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
- Collaboration for joint PhD degree between Southern University of Science and Technology and Harbin Institute of Technology, Harbin, 150001, China
| | - Jonas Hellgoth
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
| | - Lucas-Raphael Müller
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
| | - Boris Ferdman
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Christian Karras
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
- Currently at JENOPTIK Optical Systems GmbH, Jena, Germany
| | - Dafei Xiao
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
| | - Keith A. Lidke
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | - Rainer Heintzmann
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich-Schiller-University Jena, Jena, Germany
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Yoav Shechtman
- Department of Biomedical Engineering, Technion–Israel Institute of Technology, Haifa, Israel
- Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yiming Li
- Department of Biomedical Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, China
| | - Jonas Ries
- European Molecular Biology Laboratory, Cell Biology and Biophysics, Heidelberg, Germany
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Dr.-Bohr-Gasse 9, 1030, Vienna, Austria
- University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria
| |
Collapse
|
6
|
Goychuk A, Kannan D, Chakraborty AK, Kardar M. Polymer folding through active processes recreates features of genome organization. Proc Natl Acad Sci U S A 2023; 120:e2221726120. [PMID: 37155885 PMCID: PMC10194017 DOI: 10.1073/pnas.2221726120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 04/02/2023] [Indexed: 05/10/2023] Open
Abstract
From proteins to chromosomes, polymers fold into specific conformations that control their biological function. Polymer folding has long been studied with equilibrium thermodynamics, yet intracellular organization and regulation involve energy-consuming, active processes. Signatures of activity have been measured in the context of chromatin motion, which shows spatial correlations and enhanced subdiffusion only in the presence of adenosine triphosphate. Moreover, chromatin motion varies with genomic coordinate, pointing toward a heterogeneous pattern of active processes along the sequence. How do such patterns of activity affect the conformation of a polymer such as chromatin? We address this question by combining analytical theory and simulations to study a polymer subjected to sequence-dependent correlated active forces. Our analysis shows that a local increase in activity (larger active forces) can cause the polymer backbone to bend and expand, while less active segments straighten out and condense. Our simulations further predict that modest activity differences can drive compartmentalization of the polymer consistent with the patterns observed in chromosome conformation capture experiments. Moreover, segments of the polymer that show correlated active (sub)diffusion attract each other through effective long-ranged harmonic interactions, whereas anticorrelations lead to effective repulsions. Thus, our theory offers nonequilibrium mechanisms for forming genomic compartments, which cannot be distinguished from affinity-based folding using structural data alone. As a first step toward exploring whether active mechanisms contribute to shaping genome conformations, we discuss a data-driven approach.
Collapse
Affiliation(s)
- Andriy Goychuk
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Deepti Kannan
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Arup K. Chakraborty
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA02139
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Mehran Kardar
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
7
|
Wang F, Lai J, Liu H, Zhao M, Zhang Y, Xu J, Yu Y, Wang C. Double helix point spread function with variable spacing for precise 3D particle localization. OPTICS EXPRESS 2023; 31:11680-11694. [PMID: 37155797 DOI: 10.1364/oe.482390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
To extend the axial depth of nanoscale 3D-localization microscopy, we propose here a splicing-type vortex singularities (SVS) phase mask, which has been meticulously optimized with a Fresnel approximation imaging inverse operation. The optimized SVS DH-PSF has proven to have high transfer function efficiency with adjustable performance in its axial range. The axial position of the particle was computed by using both the main lobes' spacing and the rotation angle, an improvement of the localization precision of the particle. Concretely, the proposed optimized SVS DH-PSF, with a smaller spatial extent, can effectively reduce the overlap of nanoparticle images and realize the 3D localization of multiple nanoparticles with small spacing, with respect to PSFs for large axial 3D localization. Finally, we successfully conducted extensive experiments on 3D localization for tracking dense nanoparticles at 8µm depth with a numerical aperture of 1.4, demonstrating its great potential.
Collapse
|
8
|
Bonin K, Prasad S, Caulkins W, Holzwarth G, Baker SR, Vidi PA. Three-dimensional tracking using a single-spot rotating point spread function created by a multiring spiral phase plate. JOURNAL OF BIOMEDICAL OPTICS 2022; 27:126501. [PMID: 36590978 PMCID: PMC9799159 DOI: 10.1117/1.jbo.27.12.126501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Significance Three-dimensional (3D) imaging and object tracking is critical for medical and biological research and can be achieved by multifocal imaging with diffractive optical elements (DOEs) converting depth ( z ) information into a modification of the two-dimensional image. Physical insight into DOE designs will spur this expanding field. Aim To precisely track microscopic fluorescent objects in biological systems in 3D with a simple low-cost DOE system. Approach We designed a multiring spiral phase plate (SPP) generating a single-spot rotating point spread function (SS-RPSF) in a microscope. Our simple, analytically transparent design process uses Bessel beams to avoid rotational ambiguities and achieve a significant depth range. The SPP was inserted into the Nomarski prism slider of a standard microscope. Performance was evaluated using fluorescent beads and in live cells expressing a fluorescent chromatin marker. Results Bead localization precision was < 25 nm in the transverse dimensions and ≤ 70 nm along the axial dimension over an axial range of 6 μ m . Higher axial precision ( ≤ 50 nm ) was achieved over a shallower focal depth of 2.9 μ m . 3D diffusion constants of chromatin matched expected values. Conclusions Precise 3D localization and tracking can be achieved with a SS-RPSF SPP in a standard microscope with minor modifications.
Collapse
Affiliation(s)
- Keith Bonin
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
- Atrium Health/Wake Forest Baptist, Comprehensive Cancer Center, Winston-Salem, North Carolina, United States
| | - Sudhakar Prasad
- University of Minnesota, Department of Physics, Minneapolis, Minnesota, United States
| | - Will Caulkins
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
| | - George Holzwarth
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
| | - Stephen R. Baker
- Wake Forest University, Department of Physics, Winston-Salem, North Carolina, United States
| | - Pierre-Alexandre Vidi
- Atrium Health/Wake Forest Baptist, Comprehensive Cancer Center, Winston-Salem, North Carolina, United States
- Wake Forest School of Medicine, Department of Cancer Biology, Winston-Salem, North Carolina, United States
- Institut de Cancérologie de l’Ouest, Angers, France
| |
Collapse
|
9
|
Mehra D, Adhikari S, Banerjee C, Puchner EM. Characterizing locus specific chromatin structure and dynamics with correlative conventional and super-resolution imaging in living cells. Nucleic Acids Res 2022; 50:e78. [PMID: 35524554 PMCID: PMC9303368 DOI: 10.1093/nar/gkac314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/08/2022] [Accepted: 05/02/2022] [Indexed: 11/23/2022] Open
Abstract
The dynamic rearrangement of chromatin is critical for gene regulation, but mapping both the spatial organization of chromatin and its dynamics remains a challenge. Many structural conformations are too small to be resolved via conventional fluorescence microscopy and the long acquisition time of super-resolution photoactivated localization microscopy (PALM) precludes the structural characterization of chromatin below the optical diffraction limit in living cells due to chromatin motion. Here we develop a correlative conventional fluorescence and PALM imaging approach to quantitatively map time-averaged chromatin structure and dynamics below the optical diffraction limit in living cells. By assigning localizations to a locus as it moves, we reliably discriminate between bound and unbound dCas9 molecules, whose mobilities overlap. Our approach accounts for changes in DNA mobility and relates local chromatin motion to larger scale domain movement. In our experimental system, we show that compacted telomeres move faster and have a higher density of bound dCas9 molecules, but the relative motion of those molecules is more restricted than in less compacted telomeres. Correlative conventional and PALM imaging therefore improves the ability to analyze the mobility and time-averaged nanoscopic structural features of locus specific chromatin with single molecule sensitivity and yields unprecedented insights across length and time scales.
Collapse
Affiliation(s)
- Dushyant Mehra
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester MN, USA
| | - Santosh Adhikari
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| | - Chiranjib Banerjee
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| | - Elias M Puchner
- School of Physics and Astronomy, University of Minnesota, Minneapolis MN, USA
| |
Collapse
|
10
|
Gustavsson AK, Ghosh RP, Petrov PN, Liphardt JT, Moerner WE. Fast and parallel nanoscale 3D tracking of heterogeneous mammalian chromatin dynamics. Mol Biol Cell 2022; 33:ar47. [PMID: 35352962 PMCID: PMC9265149 DOI: 10.1091/mbc.e21-10-0514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Chromatin organization and dynamics are critical for gene regulation. In this work we present a methodology for fast and parallel three-dimensional (3D) tracking of multiple chromosomal loci of choice over many thousands of frames on various timescales. We achieved this by developing and combining fluorogenic and replenishable nanobody arrays, engineered point spread functions, and light sheet illumination. The result is gentle live-cell 3D tracking with excellent spatiotemporal resolution throughout the mammalian cell nucleus. Correction for both sample drift and nuclear translation facilitated accurate long-term tracking of the chromatin dynamics. We demonstrate tracking both of fast dynamics (50 Hz) and over timescales extending to several hours, and we find both large heterogeneity between cells and apparent anisotropy in the dynamics in the axial direction. We further quantify the effect of inhibiting actin polymerization on the dynamics and find an overall increase in both the apparent diffusion coefficient D* and anomalous diffusion exponent α and a transition to more-isotropic dynamics in 3D after such treatment. We think that in the future our methodology will allow researchers to obtain a better fundamental understanding of chromatin dynamics and how it is altered during disease progression and after perturbations of cellular function.
Collapse
Affiliation(s)
- Anna-Karin Gustavsson
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Department of Chemistry, Rice University, Houston, TX, USA.,Department of Biosciences, Rice University, Houston, TX, USA.,Smalley-Curl Institute, Rice University, Houston, TX, USA.,Institute of Biosciences and Bioengineering, Rice University, Houston, TX, USA
| | - Rajarshi P Ghosh
- Bioengineering, Stanford University, Stanford, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Petar N Petrov
- Department of Chemistry, Stanford University, Stanford, CA, USA.,Department of Physics, University of California, Berkeley, CA, USA
| | | | - W E Moerner
- Department of Chemistry, Stanford University, Stanford, CA, USA
| |
Collapse
|
11
|
Diffusion and distal linkages govern interchromosomal dynamics during meiotic prophase. Proc Natl Acad Sci U S A 2022; 119:e2115883119. [PMID: 35302885 PMCID: PMC8944930 DOI: 10.1073/pnas.2115883119] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEssential for sexual reproduction, meiosis is a specialized cell division required for the production of haploid gametes. Critical to this process are the pairing, recombination, and segregation of homologous chromosomes (homologs). While pairing and recombination are linked, it is not known how many linkages are sufficient to hold homologs in proximity. Here, we reveal that random diffusion and the placement of a small number of linkages are sufficient to establish the apparent "pairing" of homologs. We also show that colocalization between any two loci is more dynamic than anticipated. Our study provides observations of live interchromosomal dynamics during meiosis and illustrates the power of combining single-cell measurements with theoretical polymer modeling.
Collapse
|
12
|
García Fernández F, Fabre E. The Dynamic Behavior of Chromatin in Response to DNA Double-Strand Breaks. Genes (Basel) 2022; 13:genes13020215. [PMID: 35205260 PMCID: PMC8872016 DOI: 10.3390/genes13020215] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 02/05/2023] Open
Abstract
The primary functions of the eukaryotic nucleus as a site for the storage, retrieval, and replication of information require a highly dynamic chromatin organization, which can be affected by the presence of DNA damage. In response to double-strand breaks (DSBs), the mobility of chromatin at the break site is severely affected and, to a lesser extent, that of other chromosomes. The how and why of such movement has been widely studied over the last two decades, leading to different mechanistic models and proposed potential roles underlying both local and global mobility. Here, we review the state of the knowledge on current issues affecting chromatin mobility upon DSBs, and highlight its role as a crucial step in the DNA damage response (DDR).
Collapse
Affiliation(s)
- Fabiola García Fernández
- Institut Curie, CNRS UMR3664, Sorbonne Université, F-75005 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| | - Emmanuelle Fabre
- Génomes Biologie Cellulaire et Thérapeutiques, CNRS UMR7212, INSERM U944, Université de Paris, F-75010 Paris, France
- Correspondence: (F.G.F.); (E.F.)
| |
Collapse
|
13
|
Zhang M, Seitz C, Chang G, Iqbal F, Lin H, Liu J. A guide for single-particle chromatin tracking in live cell nuclei. Cell Biol Int 2022; 46:683-700. [PMID: 35032142 PMCID: PMC9035067 DOI: 10.1002/cbin.11762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 11/09/2022]
Abstract
The emergence of labeling strategies and live cell imaging methods enables the imaging of chromatin in living cells at single digit nanometer resolution as well as milliseconds temporal resolution. These technical breakthroughs revolutionize our understanding of chromatin structure, dynamics and functions. Single molecule tracking algorithms are usually preferred to quantify the movement of these intranucleus elements to interpret the spatiotemporal evolution of the chromatin. In this review, we will first summarize the fluorescent labeling strategy of chromatin in live cells which will be followed by a sys-tematic comparison of live cell imaging instrumentation. With the proper microscope, we will discuss the image analysis pipelines to extract the biophysical properties of the chromatin. Finally, we expect to give practical suggestions to broad biologists on how to select methods and link to the model properly according to different investigation pur-poses. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Mengdi Zhang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Clayton Seitz
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Garrick Chang
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Fadil Iqbal
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hua Lin
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA
| | - Jing Liu
- Department of Physics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.,Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.,Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
14
|
Gagliano G, Nelson T, Saliba N, Vargas-Hernández S, Gustavsson AK. Light Sheet Illumination for 3D Single-Molecule Super-Resolution Imaging of Neuronal Synapses. Front Synaptic Neurosci 2021; 13:761530. [PMID: 34899261 PMCID: PMC8651567 DOI: 10.3389/fnsyn.2021.761530] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/27/2021] [Indexed: 01/02/2023] Open
Abstract
The function of the neuronal synapse depends on the dynamics and interactions of individual molecules at the nanoscale. With the development of single-molecule super-resolution microscopy over the last decades, researchers now have a powerful and versatile imaging tool for mapping the molecular mechanisms behind the biological function. However, imaging of thicker samples, such as mammalian cells and tissue, in all three dimensions is still challenging due to increased fluorescence background and imaging volumes. The combination of single-molecule imaging with light sheet illumination is an emerging approach that allows for imaging of biological samples with reduced fluorescence background, photobleaching, and photodamage. In this review, we first present a brief overview of light sheet illumination and previous super-resolution techniques used for imaging of neurons and synapses. We then provide an in-depth technical review of the fundamental concepts and the current state of the art in the fields of three-dimensional single-molecule tracking and super-resolution imaging with light sheet illumination. We review how light sheet illumination can improve single-molecule tracking and super-resolution imaging in individual neurons and synapses, and we discuss emerging perspectives and new innovations that have the potential to enable and improve single-molecule imaging in brain tissue.
Collapse
Affiliation(s)
- Gabriella Gagliano
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Tyler Nelson
- Department of Chemistry, Rice University, Houston, TX, United States
- Applied Physics Program, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
| | - Nahima Saliba
- Department of Chemistry, Rice University, Houston, TX, United States
| | - Sofía Vargas-Hernández
- Department of Chemistry, Rice University, Houston, TX, United States
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
| | - Anna-Karin Gustavsson
- Department of Chemistry, Rice University, Houston, TX, United States
- Smalley-Curl Institute, Rice University, Houston, TX, United States
- Institute of Biosciences & Bioengineering, Rice University, Houston, TX, United States
- Department of Biosciences, Rice University, Houston, TX, United States
- Laboratory for Nanophotonics, Rice University, Houston, TX, United States
| |
Collapse
|
15
|
Opatovski N, Shalev Ezra Y, Weiss LE, Ferdman B, Orange-Kedem R, Shechtman Y. Multiplexed PSF Engineering for Three-Dimensional Multicolor Particle Tracking. NANO LETTERS 2021; 21:5888-5895. [PMID: 34213332 DOI: 10.1021/acs.nanolett.1c02068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Three-dimensional spatiotemporal tracking of microscopic particles in multiple colors is a challenging optical imaging task. Existing approaches require a trade-off between photon efficiency, field of view, mechanical complexity, spectral specificity, and speed. Here, we introduce multiplexed point-spread-function engineering that achieves photon-efficient, 3D multicolor particle tracking over a large field of view. This is accomplished by first chromatically splitting the emission path of a microscope to different channels, engineering the point-spread function of each, and then recombining them onto the same region of the camera. We demonstrate our technique for simultaneously tracking five types of emitters in vitro as well as colocalization of DNA loci in live yeast cells.
Collapse
|
16
|
Sumner MC, Torrisi SB, Brickner DG, Brickner JH. Random sub-diffusion and capture of genes by the nuclear pore reduces dynamics and coordinates inter-chromosomal movement. eLife 2021; 10:66238. [PMID: 34002694 PMCID: PMC8195609 DOI: 10.7554/elife.66238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/17/2021] [Indexed: 11/13/2022] Open
Abstract
Hundreds of genes interact with the yeast nuclear pore complex (NPC), localizing at the nuclear periphery and clustering with co-regulated genes. Dynamic tracking of peripheral genes shows that they cycle on and off the NPC and that interaction with the NPC slows their sub-diffusive movement. Furthermore, NPC-dependent inter-chromosomal clustering leads to coordinated movement of pairs of loci separated by hundreds of nanometers. We developed fractional Brownian motion simulations for chromosomal loci in the nucleoplasm and interacting with NPCs. These simulations predict the rate and nature of random sub-diffusion during repositioning from nucleoplasm to periphery and match measurements from two different experimental models, arguing that recruitment to the nuclear periphery is due to random sub-diffusion and transient capture by NPCs. Finally, the simulations do not lead to inter-chromosomal clustering or coordinated movement, suggesting that interaction with the NPC is necessary, but not sufficient, to cause clustering.
Collapse
Affiliation(s)
- Michael Chas Sumner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Steven B Torrisi
- Department of Physics, Harvard University, Cambridge, United States
| | - Donna G Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, United States
| |
Collapse
|
17
|
Black L, Tollis S, Fu G, Fiche JB, Dorsey S, Cheng J, Ghazal G, Notley S, Crevier B, Bigness J, Nollmann M, Tyers M, Royer CA. G1/S transcription factors assemble in increasing numbers of discrete clusters through G1 phase. J Cell Biol 2020; 219:151997. [PMID: 32744610 PMCID: PMC7480102 DOI: 10.1083/jcb.202003041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 02/03/2023] Open
Abstract
In budding yeast, the transcription factors SBF and MBF activate a large program of gene expression in late G1 phase that underlies commitment to cell division, termed Start. SBF/MBF are limiting with respect to target promoters in small G1 phase cells and accumulate as cells grow, raising the questions of how SBF/MBF are dynamically distributed across the G1/S regulon and how this impacts the Start transition. Super-resolution Photo-Activatable Localization Microscopy (PALM) mapping of the static positions of SBF/MBF subunits in fixed cells revealed each transcription factor was organized into discrete clusters containing approximately eight copies regardless of cell size and that the total number of clusters increased as cells grew through G1 phase. Stochastic modeling using reasonable biophysical parameters recapitulated growth-dependent SBF/MBF clustering and predicted TF dynamics that were confirmed in live cell PALM experiments. This spatio-temporal organization of SBF/MBF may help coordinate activation of G1/S regulon and the Start transition.
Collapse
Affiliation(s)
- Labe Black
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Sylvain Tollis
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Guo Fu
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Jean-Bernard Fiche
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique UMR5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, Montpellier, France
| | - Savanna Dorsey
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Jing Cheng
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Ghada Ghazal
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Stephen Notley
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Benjamin Crevier
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Jeremy Bigness
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| | - Marcelo Nollmann
- Centre de Biochimie Structurale, Centre National de la Recherche Scientifique UMR5048, Institut National de la Santé et de la Recherche Médicale U1054, Université de Montpellier, Montpellier, France
| | - Mike Tyers
- Institute for Research in Immunology and Cancer, Université de Montréal, Montréal, Canada
| | - Catherine Ann Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY
| |
Collapse
|
18
|
Chowdhary S, Kainth AS, Pincus D, Gross DS. Heat Shock Factor 1 Drives Intergenic Association of Its Target Gene Loci upon Heat Shock. Cell Rep 2020; 26:18-28.e5. [PMID: 30605674 PMCID: PMC6435272 DOI: 10.1016/j.celrep.2018.12.034] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/27/2018] [Accepted: 12/07/2018] [Indexed: 12/22/2022] Open
Abstract
Transcriptional induction of heat shock protein (HSP) genes is accompanied by dynamic changes in their 3D structure and spatial organization, yet the molecular basis for these phenomena remains unknown. Using chromosome conformation capture and single-cell imaging, we show that genes transcriptionally activated by Hsf1 specifically interact across chromosomes and coalesce into diffraction-limited intranuclear foci. Genes activated by the alternative stress regulators Msn2/Msn4, in contrast, do not interact among themselves nor with Hsf1 targets. Likewise, constitutively expressed genes, even those interposed between HSP genes, show no detectable interaction. Hsf1 forms discrete subnuclear puncta when stress activated, and these puncta dissolve in concert with transcriptional attenuation, paralleling the kinetics of HSP gene coalescence and dissolution. Nuclear Hsf1 and RNA Pol II are both necessary for intergenic HSP gene interactions, while DNA-bound Hsf1 is necessary and sufficient to drive heterologous gene coalescence. Our findings demonstrate that Hsf1 can dynamically restructure the yeast genome. While gene repositioning is thought to be a general feature of transcription, Chowdhary et al. provide evidence that argues against this concept. The authors demonstrate that Hsf1-regulated genes in Saccharomyces cerevisiae distinctively coalesce into intranuclear foci upon their transcriptional activation, while those activated by alternative transcription factors do not.
Collapse
Affiliation(s)
- Surabhi Chowdhary
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - Amoldeep S Kainth
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | - David Pincus
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - David S Gross
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
19
|
Abstract
Maintaining the integrity of the genome in the face of DNA damage is crucial to ensure the survival of the cell and normal development. DNA lesions and repair occur in the context of the chromatin fiber, whose 3D organization and movements in the restricted volume of the nucleus are under intense scrutiny. Here, we highlight work from our and other labs that addresses how the dynamic organization of the chromatin fiber affects the repair of damaged DNA and how, conversely, DNA damage and repair affect the structure and dynamics of chromatin in the budding yeast nucleus.
Collapse
Affiliation(s)
- Emmanuelle Fabre
- a Equipe Biologie et Dynamique des Chromosomes , Institut Universitaire d'Hématologie, Hôpital St. Louis , Paris , France.,b CNRS, UMR 7212 INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité , Paris , France
| | - Christophe Zimmer
- c Institut Pasteur, Unité Imagerie et Modélisation , 25 rue du Docteur Roux, 75015 , Paris , France.,d UMR 3691, CNRS; C3BI, USR 3756, IP CNRS , Paris , France
| |
Collapse
|
20
|
Shukron O, Seeber A, Amitai A, Holcman D. Advances Using Single-Particle Trajectories to Reconstruct Chromatin Organization and Dynamics. Trends Genet 2019; 35:685-705. [PMID: 31371030 DOI: 10.1016/j.tig.2019.06.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/12/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022]
Abstract
Chromatin organization remains complex and far from understood. In this article, we review recent statistical methods of extracting biophysical parameters from in vivo single-particle trajectories of loci to reconstruct chromatin reorganization in response to cellular stress such as DNA damage. We look at methods for analyzing both single locus and multiple loci tracked simultaneously and explain how to quantify and describe chromatin motion using a combination of extractable parameters. These parameters can be converted into information about chromatin dynamics and function. Furthermore, we discuss how the timescale of recurrent encounter between loci can be extracted and interpreted. We also discuss the effect of sampling rate on the estimated parameters. Finally, we review a polymer method to reconstruct chromatin structure using crosslinkers between chromatin sites. We list and refer to some software packages that are now publicly available to simulate polymer motion. To conclude, chromatin organization and dynamics can be reconstructed from locus trajectories and predicted based on polymer models.
Collapse
Affiliation(s)
- O Shukron
- Group of Data Modeling, Computational Biology and Predictive Medicine, Institut de Biologie, CNRS/INSERM/PSL Ecole Normale Supérieure, Paris, 75005, France
| | - A Seeber
- Center for Advanced Imaging, Northwest Building, 52 Oxford St, Suite 147, Harvard University, Cambridge, MA, 02138, USA
| | - A Amitai
- Department of Chemical Engineering, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA; The Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA
| | - D Holcman
- Group of Data Modeling, Computational Biology and Predictive Medicine, Institut de Biologie, CNRS/INSERM/PSL Ecole Normale Supérieure, Paris, 75005, France.
| |
Collapse
|
21
|
Socol M, Wang R, Jost D, Carrivain P, Vaillant C, Le Cam E, Dahirel V, Normand C, Bystricky K, Victor JM, Gadal O, Bancaud A. Rouse model with transient intramolecular contacts on a timescale of seconds recapitulates folding and fluctuation of yeast chromosomes. Nucleic Acids Res 2019; 47:6195-6207. [PMID: 31114898 PMCID: PMC6614813 DOI: 10.1093/nar/gkz374] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/25/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023] Open
Abstract
DNA folding and dynamics along with major nuclear functions are determined by chromosome structural properties, which remain, thus far, elusive in vivo. Here, we combine polymer modeling and single particle tracking experiments to determine the physico-chemical parameters of chromatin in vitro and in living yeast. We find that the motion of reconstituted chromatin fibers can be recapitulated by the Rouse model using mechanical parameters of nucleosome arrays deduced from structural simulations. Conversely, we report that the Rouse model shows some inconsistencies to analyze the motion and structural properties inferred from yeast chromosomes determined with chromosome conformation capture techniques (specifically, Hi-C). We hence introduce the Rouse model with Transient Internal Contacts (RouseTIC), in which random association and dissociation occurs along the chromosome contour. The parametrization of this model by fitting motion and Hi-C data allows us to measure the kinetic parameters of the contact formation reaction. Chromosome contacts appear to be transient; associated to a lifetime of seconds and characterized by an attractive energy of -0.3 to -0.5 kBT. We suggest attributing this energy to the occurrence of histone tail-DNA contacts and notice that its amplitude sets chromosomes in 'theta' conditions, in which they are poised for compartmentalization and phase separation.
Collapse
Affiliation(s)
- Marius Socol
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
- IRIM, CNRS, University of Montpellier, France
| | - Renjie Wang
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
- Material Science & Engineering School, Henan University of Technology, 450001 Zhengzhou, P.R. China
| | - Daniel Jost
- Univ. Grenoble Alpes, CNRS, CHU Grenoble Alpes, Grenoble INP, TIMC-IMAG, F-38000 Grenoble, France
| | - Pascal Carrivain
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS UMR 5672, Lyon 69007, France
| | - Cédric Vaillant
- Laboratoire de Physique, Ecole Normale Supérieure de Lyon, CNRS UMR 5672, Lyon 69007, France
| | - Eric Le Cam
- Genome Maintenance and Molecular Microscopy UMR8126, CNRS, Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, F-94805 Villejuif Cedex France
| | - Vincent Dahirel
- Sorbonne Université, CNRS, Physicochimie des Electrolytes et Nanosystèmes interfaciaux, laboratoire PHENIX, F-75005 Paris, France
| | - Christophe Normand
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Kerstin Bystricky
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Jean-Marc Victor
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, LPTMC, F-75005 Paris, France
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote (LBME), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, F-31062 Toulouse, France
| | - Aurélien Bancaud
- LAAS-CNRS, Université de Toulouse, CNRS, F-31400 Toulouse, France
| |
Collapse
|
22
|
Abstract
Recent advances in both the technologies used to measure chromatin movement and the biophysical analysis used to model them have yielded a fuller understanding of chromatin dynamics and the polymer structure that underlies it. Changes in nucleosome packing, checkpoint kinase activation, the cell cycle, chromosomal tethers, and external forces acting on nuclei in response to external and internal stimuli can alter the basal mobility of DNA in interphase nuclei of yeast or mammalian cells. Although chromatin movement is assumed to be necessary for many DNA-based processes, including gene activation by distal enhancer–promoter interaction or sequence-based homology searches during double-strand break repair, experimental evidence supporting an essential role in these activities is sparse. Nonetheless, high-resolution tracking of chromatin dynamics has led to instructive models of the higher-order folding and flexibility of the chromatin polymer. Key regulators of chromatin motion in physiological conditions or after damage induction are reviewed here.
Collapse
Affiliation(s)
- Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
- Current affiliation: Harvard Center for Advanced Imaging, Cambridge, MA 02138, USA
| | - Michael H. Hauer
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Susan M. Gasser
- Friedrich Miescher Institute for Biomedical Research, 4058 Basel, Switzerland
- Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
23
|
Abstract
In the past decades, advances in microscopy have made it possible to study the dynamics of individual biomolecules in vitro and resolve intramolecular kinetics that would otherwise be hidden in ensemble averages. More recently, single-molecule methods have been used to image, localize, and track individually labeled macromolecules in the cytoplasm of living cells, allowing investigations of intermolecular kinetics under physiologically relevant conditions. In this review, we illuminate the particular advantages of single-molecule techniques when studying kinetics in living cells and discuss solutions to specific challenges associated with these methods.
Collapse
Affiliation(s)
- Johan Elf
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| | - Irmeli Barkefors
- Department of Cell and Molecular Biology, Uppsala University, 75124 Uppsala, Sweden;
| |
Collapse
|
24
|
Dultz E, Mancini R, Polles G, Vallotton P, Alber F, Weis K. Quantitative imaging of chromatin decompaction in living cells. Mol Biol Cell 2018; 29:1763-1777. [PMID: 29771637 DOI: 10.1101/219253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023] Open
Abstract
Chromatin organization is highly dynamic and regulates transcription. Upon transcriptional activation, chromatin is remodeled and referred to as "open," but quantitative and dynamic data of this decompaction process are lacking. Here, we have developed a quantitative high resolution-microscopy assay in living yeast cells to visualize and quantify chromatin dynamics using the GAL7-10-1 locus as a model system. Upon transcriptional activation of these three clustered genes, we detect an increase of the mean distance across this locus by >100 nm. This decompaction is linked to active transcription but is not sensitive to the histone deacetylase inhibitor trichostatin A or to deletion of the histone acetyl transferase Gcn5. In contrast, the deletion of SNF2 (encoding the ATPase of the SWI/SNF chromatin remodeling complex) or the deactivation of the histone chaperone complex FACT lead to a strongly reduced decompaction without significant effects on transcriptional induction in FACT mutants. Our findings are consistent with nucleosome remodeling and eviction activities being major contributors to chromatin reorganization during transcription but also suggest that transcription can occur in the absence of detectable decompaction.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberta Mancini
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Guido Polles
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Pascal Vallotton
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Frank Alber
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
25
|
Zimmer C, Fabre E. Chromatin mobility upon DNA damage: state of the art and remaining questions. Curr Genet 2018; 65:1-9. [DOI: 10.1007/s00294-018-0852-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/14/2022]
|
26
|
Observing DNA in live cells. Biochem Soc Trans 2018; 46:729-740. [PMID: 29871877 DOI: 10.1042/bst20170301] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/26/2018] [Accepted: 05/01/2018] [Indexed: 12/17/2022]
Abstract
The structural organization and dynamics of DNA are known to be of paramount importance in countless cellular processes, but capturing these events poses a unique challenge. Fluorescence microscopy is well suited for these live-cell investigations, but requires attaching fluorescent labels to the species under investigation. Over the past several decades, a suite of techniques have been developed for labeling and imaging DNA, each with various advantages and drawbacks. Here, we provide an overview of the labeling and imaging tools currently available for visualizing DNA in live cells, and discuss their suitability for various applications.
Collapse
|
27
|
Dultz E, Mancini R, Polles G, Vallotton P, Alber F, Weis K. Quantitative imaging of chromatin decompaction in living cells. Mol Biol Cell 2018; 29:1763-1777. [PMID: 29771637 PMCID: PMC6080713 DOI: 10.1091/mbc.e17-11-0648] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Chromatin organization is highly dynamic and regulates transcription. Upon transcriptional activation, chromatin is remodeled and referred to as “open,” but quantitative and dynamic data of this decompaction process are lacking. Here, we have developed a quantitative high resolution–microscopy assay in living yeast cells to visualize and quantify chromatin dynamics using the GAL7-10-1 locus as a model system. Upon transcriptional activation of these three clustered genes, we detect an increase of the mean distance across this locus by >100 nm. This decompaction is linked to active transcription but is not sensitive to the histone deacetylase inhibitor trichostatin A or to deletion of the histone acetyl transferase Gcn5. In contrast, the deletion of SNF2 (encoding the ATPase of the SWI/SNF chromatin remodeling complex) or the deactivation of the histone chaperone complex FACT lead to a strongly reduced decompaction without significant effects on transcriptional induction in FACT mutants. Our findings are consistent with nucleosome remodeling and eviction activities being major contributors to chromatin reorganization during transcription but also suggest that transcription can occur in the absence of detectable decompaction.
Collapse
Affiliation(s)
- Elisa Dultz
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Roberta Mancini
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Guido Polles
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Pascal Vallotton
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| | - Frank Alber
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089
| | - Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
28
|
Shechtman Y, Gustavsson AK, Petrov PN, Dultz E, Lee MY, Weis K, Moerner WE. Observation of live chromatin dynamics in cells via 3D localization microscopy using Tetrapod point spread functions. BIOMEDICAL OPTICS EXPRESS 2017; 8:5735-5748. [PMID: 29296501 PMCID: PMC5745116 DOI: 10.1364/boe.8.005735] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/11/2017] [Accepted: 11/11/2017] [Indexed: 05/15/2023]
Abstract
We report the observation of chromatin dynamics in living budding yeast (Saccharomyces cerevisiae) cells, in three-dimensions (3D). Using dual color localization microscopy and employing a Tetrapod point spread function, we analyze the spatio-temporal dynamics of two fluorescently labeled DNA loci surrounding the GAL locus. From the measured trajectories, we obtain different dynamical characteristics in terms of inter-loci distance and temporal variance; when the GAL locus is activated, the 3D inter-loci distance and temporal variance increase compared to the inactive state. These changes are visible in spite of the large thermally- and biologically-driven heterogeneity in the relative motion of the two loci. Our observations are consistent with current euchromatin vs. heterochromatin models.
Collapse
Affiliation(s)
- Yoav Shechtman
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
- Currently with the Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, 32000 Israel
| | - Anna-Karin Gustavsson
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, SE-171 77, Sweden
| | - Petar N Petrov
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
| | - Elisa Dultz
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - Maurice Y Lee
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule Zurich, 8093 Zurich, Switzerland
| | - W E Moerner
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
| |
Collapse
|
29
|
Amitai A, Seeber A, Gasser SM, Holcman D. Visualization of Chromatin Decompaction and Break Site Extrusion as Predicted by Statistical Polymer Modeling of Single-Locus Trajectories. Cell Rep 2017; 18:1200-1214. [PMID: 28147275 DOI: 10.1016/j.celrep.2017.01.018] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 12/02/2016] [Accepted: 01/10/2017] [Indexed: 12/15/2022] Open
Abstract
Chromatin moves with subdiffusive and spatially constrained dynamics within the cell nucleus. Here, we use single-locus tracking by time-lapse fluorescence microscopy to uncover information regarding the forces that influence chromatin movement following the induction of a persistent DNA double-strand break (DSB). Using improved time-lapse imaging regimens, we monitor trajectories of tagged DNA loci at a high temporal resolution, which allows us to extract biophysical parameters through robust statistical analysis. Polymer modeling based on these parameters predicts chromatin domain expansion near a DSB and damage extrusion from the domain. Both phenomena are confirmed by live imaging in budding yeast. Calculation of the anomalous exponent of locus movement allows us to differentiate forces imposed on the nucleus through the actin cytoskeleton from those that arise from INO80 remodeler-dependent changes in nucleosome organization. Our analytical approach can be applied to high-density single-locus trajectories obtained in any cell type.
Collapse
Affiliation(s)
- Assaf Amitai
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France; Institute for Medical Engineering & Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Andrew Seeber
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland
| | - Susan M Gasser
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland; Faculty of Natural Sciences, University of Basel, 4056 Basel, Switzerland.
| | - David Holcman
- Institut de Biologie de l'École Normale Supérieure, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France; Department of Applied Mathematics and Theoretical Physics, University of Cambridge and Churchill College, Cambridge CB30DS, UK.
| |
Collapse
|
30
|
Herbert S, Brion A, Arbona JM, Lelek M, Veillet A, Lelandais B, Parmar J, Fernández FG, Almayrac E, Khalil Y, Birgy E, Fabre E, Zimmer C. Chromatin stiffening underlies enhanced locus mobility after DNA damage in budding yeast. EMBO J 2017; 36:2595-2608. [PMID: 28694242 PMCID: PMC5579376 DOI: 10.15252/embj.201695842] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 05/15/2017] [Accepted: 05/18/2017] [Indexed: 12/31/2022] Open
Abstract
DNA double-strand breaks (DSBs) induce a cellular response that involves histone modifications and chromatin remodeling at the damaged site and increases chromosome dynamics both locally at the damaged site and globally in the nucleus. In parallel, it has become clear that the spatial organization and dynamics of chromosomes can be largely explained by the statistical properties of tethered, but randomly moving, polymer chains, characterized mainly by their rigidity and compaction. How these properties of chromatin are affected during DNA damage remains, however, unclear. Here, we use live cell microscopy to track chromatin loci and measure distances between loci on yeast chromosome IV in thousands of cells, in the presence or absence of genotoxic stress. We confirm that DSBs result in enhanced chromatin subdiffusion and show that intrachromosomal distances increase with DNA damage all along the chromosome. Our data can be explained by an increase in chromatin rigidity, but not by chromatin decondensation or centromeric untethering only. We provide evidence that chromatin stiffening is mediated in part by histone H2A phosphorylation. Our results support a genome-wide stiffening of the chromatin fiber as a consequence of DNA damage and as a novel mechanism underlying increased chromatin mobility.
Collapse
Affiliation(s)
- Sébastien Herbert
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Alice Brion
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Jean-Michel Arbona
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Mickaël Lelek
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Adeline Veillet
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Benoît Lelandais
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Jyotsana Parmar
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Fabiola García Fernández
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Etienne Almayrac
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Yasmine Khalil
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Eleonore Birgy
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Emmanuelle Fabre
- Equipe Biologie et Dynamique des Chromosomes, Institut Universitaire d'Hématologie, Hôpital St. Louis, Paris, France
- CNRS UMR 7212, INSERM U944, IUH, Université Paris Diderot Sorbonne Paris Cité, Paris, France
| | - Christophe Zimmer
- Unité Imagerie et Modélisation, Institut Pasteur, Paris, France
- CNRS UMR 3691, C3BI, USR 3756 IP CNRS, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
31
|
Miné-Hattab J, Recamier V, Izeddin I, Rothstein R, Darzacq X. Multi-scale tracking reveals scale-dependent chromatin dynamics after DNA damage. Mol Biol Cell 2017; 28:mbc.E17-05-0317. [PMID: 28794266 PMCID: PMC5687033 DOI: 10.1091/mbc.e17-05-0317] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/21/2017] [Accepted: 08/02/2017] [Indexed: 12/19/2022] Open
Abstract
The dynamic organization of genes inside the nucleus is an important determinant for their function. Using fast DNA tracking microscopy in S. cerevisiae cells and improved analysis of mean square displacements, we quantified DNA motion at time scales ranging from 10 milliseconds to minute and found that following DNA damage, DNA exhibits distinct sub-diffusive regimes. In response to double-strand breaks, chromatin is more mobile at large time scales but, surprisingly, its mobility is reduced at short time scales. This effect is even more pronounced at the site of damage. Such a pattern of dynamics is consistent with a global increase in chromatin persistence length in response to DNA damage. Scale-dependent nuclear exploration is regulated by the Rad51 repair protein, both at the break and throughout the genome. We propose a model in which stiffening of the damaged ends by the repair complex, combined with global increased stiffness, act like a "needle in a ball of yarn", enhancing the ability of the break to traverse the chromatin meshwork.
Collapse
Affiliation(s)
- Judith Miné-Hattab
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
- Nuclear Dynamics, CNRS UMR 3664, Institut Curie, Paris 75005, France
| | - Vincent Recamier
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
| | - Ignacio Izeddin
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
- Institut Langevin, CNRS, ESPCI Paris, PSL Research University, 75005 Paris, France
| | - Rodney Rothstein
- Department of Genetics & Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Xavier Darzacq
- Division of Genetics, Genomics & Development, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris 75005, France
| |
Collapse
|
32
|
Reduction in chromosome mobility accompanies nuclear organization during early embryogenesis in Caenorhabditis elegans. Sci Rep 2017. [PMID: 28623274 PMCID: PMC5473868 DOI: 10.1038/s41598-017-03483-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In differentiated cells, chromosomes are packed inside the cell nucleus in an organised fashion. In contrast, little is known about how chromosomes are packed in undifferentiated cells and how nuclear organization changes during development. To assess changes in nuclear organization during the earliest stages of development, we quantified the mobility of a pair of homologous chromosomal loci in the interphase nuclei of Caenorhabditis elegans embryos. The distribution of distances between homologous loci was consistent with a random distribution up to the 8-cell stage but not at later stages. The mobility of the loci was significantly reduced from the 2-cell to the 48-cell stage. Nuclear foci corresponding to epigenetic marks as well as heterochromatin and the nucleolus also appeared around the 8-cell stage. We propose that the earliest global transformation in nuclear organization occurs at the 8-cell stage during C. elegans embryogenesis.
Collapse
|
33
|
von Diezmann A, Shechtman Y, Moerner WE. Three-Dimensional Localization of Single Molecules for Super-Resolution Imaging and Single-Particle Tracking. Chem Rev 2017; 117:7244-7275. [PMID: 28151646 PMCID: PMC5471132 DOI: 10.1021/acs.chemrev.6b00629] [Citation(s) in RCA: 264] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-molecule super-resolution fluorescence microscopy and single-particle tracking are two imaging modalities that illuminate the properties of cells and materials on spatial scales down to tens of nanometers or with dynamical information about nanoscale particle motion in the millisecond range, respectively. These methods generally use wide-field microscopes and two-dimensional camera detectors to localize molecules to much higher precision than the diffraction limit. Given the limited total photons available from each single-molecule label, both modalities require careful mathematical analysis and image processing. Much more information can be obtained about the system under study by extending to three-dimensional (3D) single-molecule localization: without this capability, visualization of structures or motions extending in the axial direction can easily be missed or confused, compromising scientific understanding. A variety of methods for obtaining both 3D super-resolution images and 3D tracking information have been devised, each with their own strengths and weaknesses. These include imaging of multiple focal planes, point-spread-function engineering, and interferometric detection. These methods may be compared based on their ability to provide accurate and precise position information on single-molecule emitters with limited photons. To successfully apply and further develop these methods, it is essential to consider many practical concerns, including the effects of optical aberrations, field dependence in the imaging system, fluorophore labeling density, and registration between different color channels. Selected examples of 3D super-resolution imaging and tracking are described for illustration from a variety of biological contexts and with a variety of methods, demonstrating the power of 3D localization for understanding complex systems.
Collapse
Affiliation(s)
| | - Yoav Shechtman
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - W. E. Moerner
- Department of Chemistry, Stanford University, Stanford, CA 94305
| |
Collapse
|
34
|
Sugawara T, Kimura A. Physical properties of the chromosomes and implications for development. Dev Growth Differ 2017; 59:405-414. [PMID: 28573677 DOI: 10.1111/dgd.12363] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 04/13/2017] [Accepted: 04/13/2017] [Indexed: 01/15/2023]
Abstract
Remarkable progress has been made in understanding chromosome structures inside the cell nucleus. Recent advances in Hi-C technologies enable the detection of genome-wide chromatin interactions, providing insight into three-dimensional (3D) genome organization. Advancements in the spatial and temporal resolutions of imaging as well as in molecular biological techniques allow the tracking of specific chromosomal loci, improving our understanding of chromosome movements. From these data, we are beginning to understand how the intra-nuclear locations of chromatin loci and the 3D genome structure change during development and differentiation. This emerging field of genome structure and dynamics research requires an interdisciplinary approach including efficient collaborations between experimental biologists and physicists, informaticians, or engineers. Quantitative and mathematical analyses based on polymer physics are becoming increasingly important for processing and interpreting experimental data on 3D chromosome structures and dynamics. In this review, we aim to provide an overview of recent research on the physical aspects of chromosome structure and dynamics oriented for biologists. These studies have mainly focused on chromosomes at the cellular level, using unicellular organisms and cultured cells. However, physical parameters that change during development, such as nuclear size, may impact genome structure and dynamics. Here, we discuss how chromatin dynamics and genome structures in early embryos change during development, which we expect will be a hot topic in the field of chromatin dynamics in the near future. We hope this review helps developmental biologists to quantitatively investigate the physical natures of chromosomes in developmental biology research.
Collapse
Affiliation(s)
- Takeshi Sugawara
- Research Center for the Mathematics on Chromatin Live Dynamics (RcMcD), Hiroshima University, Higashi-Hiroshima, 739-8530, Japan.,Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, 411-8540, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, Structural Biology Center, National Institute of Genetics, Mishima, 411-8540, Japan.,Department of Genetics, School of Life Science, The Graduate University for Advanced Studies (Sokendai), Mishima, 411-8540, Japan
| |
Collapse
|
35
|
Lampo TJ, Stylianidou S, Backlund MP, Wiggins PA, Spakowitz AJ. Cytoplasmic RNA-Protein Particles Exhibit Non-Gaussian Subdiffusive Behavior. Biophys J 2017; 112:532-542. [PMID: 28088300 DOI: 10.1016/j.bpj.2016.11.3208] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 08/31/2016] [Accepted: 11/07/2016] [Indexed: 02/06/2023] Open
Abstract
The cellular cytoplasm is a complex, heterogeneous environment (both spatially and temporally) that exhibits viscoelastic behavior. To further develop our quantitative insight into cellular transport, we analyze data sets of mRNA molecules fluorescently labeled with MS2-GFP tracked in real time in live Escherichia coli and Saccharomyces cerevisiae cells. As shown previously, these RNA-protein particles exhibit subdiffusive behavior that is viscoelastic in its origin. Examining the ensemble of particle displacements reveals a Laplace distribution at all observed timescales rather than the Gaussian distribution predicted by the central limit theorem. This ensemble non-Gaussian behavior is caused by a combination of an exponential distribution in the time-averaged diffusivities and non-Gaussian behavior of individual trajectories. We show that the non-Gaussian behavior is a consequence of significant heterogeneity between trajectories and dynamic heterogeneity along single trajectories. Informed by theory and simulation, our work provides an in-depth analysis of the complex diffusive behavior of RNA-protein particles in live cells.
Collapse
Affiliation(s)
- Thomas J Lampo
- Department of Chemical Engineering, Stanford University, Stanford, California
| | | | | | - Paul A Wiggins
- Department of Physics, Washington University, Seattle, Washington; Department of Bioengineering, Washington University, Seattle, Washington; Department of Microbiology, Washington University, Seattle, Washington
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California; Department of Materials Science, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California.
| |
Collapse
|
36
|
Heinrich S, Derrer CP, Lari A, Weis K, Montpetit B. Temporal and spatial regulation of mRNA export: Single particle RNA-imaging provides new tools and insights. Bioessays 2017; 39. [PMID: 28052353 DOI: 10.1002/bies.201600124] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The transport of messenger RNAs (mRNAs) from the nucleus to cytoplasm is an essential step in the gene expression program of all eukaryotes. Recent technological advances in the areas of RNA-labeling, microscopy, and sequencing are leading to novel insights about mRNA biogenesis and export. This includes quantitative single molecule imaging (SMI) of RNA molecules in live cells, which is providing knowledge of the spatial and temporal dynamics of the export process. As this information becomes available, it leads to new questions, the reinterpretation of previous findings, and revised models of mRNA export. In this review, we will briefly highlight some of these recent findings and discuss how live cell SMI approaches may be used to further our current understanding of mRNA export and gene expression.
Collapse
Affiliation(s)
| | | | - Azra Lari
- Department of Cell Biology, University of Alberta, Edmonton, Canada
| | - Karsten Weis
- Institute of Biochemistry, ETH Zurich, Zurich, Switzerland
| | - Ben Montpetit
- Department of Cell Biology, University of Alberta, Edmonton, Canada.,Department of Viticulture and Enology, University of California, Davis, CA, USA
| |
Collapse
|
37
|
Sundaresan V, Marchuk K, Yu Y, Titus EJ, Wilson AJ, Armstrong CM, Zhang B, Willets KA. Visualizing and Calculating Tip–Substrate Distance in Nanoscale Scanning Electrochemical Microscopy Using 3-Dimensional Super-Resolution Optical Imaging. Anal Chem 2016; 89:922-928. [DOI: 10.1021/acs.analchem.6b04073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Vignesh Sundaresan
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Kyle Marchuk
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Yun Yu
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Eric J. Titus
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Andrew J. Wilson
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| | - Chadd M. Armstrong
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Bo Zhang
- Department
of Chemistry, University of Washington, Seattle, Washington 98195-1700, United States
| | - Katherine A. Willets
- Department
of Chemistry, Temple University, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
38
|
Abstract
Chromosomes are folded into cells in a nonrandom fashion, with particular genetic loci occupying distinct spatial regions. This observation raises the question of whether the spatial organization of a chromosome governs its functions, such as recombination or transcription. We consider this general question in the specific context of mating-type switching in budding yeast, which is a model system for homologous recombination. Mating-type switching is induced by a DNA double-strand break (DSB) at the MAT locus on chromosome III, followed by homologous recombination between the cut MAT locus and one of two donor loci (HMLα and HMRa), located on the same chromosome. Previous studies have suggested that in MATa cells after the DSB is induced chromosome III undergoes refolding, which directs the MAT locus to recombine with HMLα. Here, we propose a quantitative model of mating-type switching predicated on the assumption of DSB-induced chromosome refolding, which also takes into account the previously measured stochastic dynamics and polymer nature of yeast chromosomes. Using quantitative fluorescence microscopy, we measure changes in the distance between the donor (HMLα) and MAT loci after the DSB and find agreement with the theory. Predictions of the theory also agree with measurements of changes in the use of HMLα as the donor, when we perturb the refolding of chromosome III. These results establish refolding of yeast chromosome III as a key driving force in MAT switching and provide an example of a cell regulating the spatial organization of its chromosome so as to direct homology search during recombination.
Collapse
|
39
|
Lampo TJ, Kennard AS, Spakowitz AJ. Physical Modeling of Dynamic Coupling between Chromosomal Loci. Biophys J 2016; 110:338-347. [PMID: 26789757 DOI: 10.1016/j.bpj.2015.11.3520] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 11/15/2022] Open
Abstract
The motion of chromosomal DNA is essential to many biological processes, including segregation, transcriptional regulation, recombination, and packaging. Physical understanding of these processes would be dramatically enhanced through predictive, quantitative modeling of chromosome dynamics of multiple loci. Using a polymer dynamics framework, we develop a prediction for the correlation in the velocities of two loci on a single chromosome or otherwise connected by chromatin. These predictions reveal that the signature of correlated motion between two loci can be identified by varying the lag time between locus position measurements. In general, this theory predicts that as the lag time interval increases, the dual-loci dynamic behavior transitions from being completely uncorrelated to behaving as an effective single locus. This transition corresponds to the timescale of the stress communication between loci through the intervening segment. This relatively simple framework makes quantitative predictions based on a single timescale fit parameter that can be directly compared to the in vivo motion of fluorescently labeled chromosome loci. Furthermore, this theoretical framework enables the detection of dynamically coupled chromosome regions from the signature of their correlated motion.
Collapse
Affiliation(s)
- Thomas J Lampo
- Chemical Engineering, Stanford University, Stanford, California
| | | | - Andrew J Spakowitz
- Chemical Engineering, Stanford University, Stanford, California; Biophysics Program, Stanford University, Stanford, California; Department of Materials Science and Engineering, Stanford University, Stanford, California; Department of Applied Physics, Stanford University, Stanford, California.
| |
Collapse
|
40
|
Kepten E, Weron A, Bronstein I, Burnecki K, Garini Y. Uniform Contraction-Expansion Description of Relative Centromere and Telomere Motion. Biophys J 2016; 109:1454-62. [PMID: 26445446 PMCID: PMC4601005 DOI: 10.1016/j.bpj.2015.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/30/2015] [Accepted: 07/20/2015] [Indexed: 10/25/2022] Open
Abstract
Internal organization and dynamics of the eukaryotic nucleus have been at the front of biophysical research in recent years. It is believed that both dynamics and location of chromatin segments are crucial for genetic regulation. Here we study the relative motion between centromeres and telomeres at various distances and at times relevant for genetic activity. Using live-imaging fluorescent microscopy coupled to stochastic analysis of relative trajectories, we find that the interlocus motion is distance-dependent with a varying fractional memory. In addition to short-range constraining, we also observe long-range anisotropic-enhanced parallel diffusion, which contradicts the expectation for classic viscoelastic systems. This motion is linked to uniform expansion and contraction of chromatin in the nucleus, and leads us to define and measure a new (to our knowledge) uniform contraction-expansion diffusion coefficient that enriches the contemporary picture of nuclear behavior. Finally, differences between loci types suggest that different sites along the genome experience distinctive coupling to the nucleoplasm environment at all scales.
Collapse
Affiliation(s)
- Eldad Kepten
- Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel.
| | - Aleksander Weron
- Hugo Steinhaus Center, Department of Mathematics, Wroclaw University of Technology, Wroclaw, Poland
| | - Irena Bronstein
- Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel
| | - Krzysztof Burnecki
- Hugo Steinhaus Center, Department of Mathematics, Wroclaw University of Technology, Wroclaw, Poland
| | - Yuval Garini
- Physics Department & Institute of Nanotechnology, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
41
|
Brickner DG, Sood V, Tutucci E, Coukos R, Viets K, Singer RH, Brickner JH. Subnuclear positioning and interchromosomal clustering of the GAL1-10 locus are controlled by separable, interdependent mechanisms. Mol Biol Cell 2016; 27:2980-93. [PMID: 27489341 PMCID: PMC5042583 DOI: 10.1091/mbc.e16-03-0174] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/27/2016] [Indexed: 01/10/2023] Open
Abstract
“DNA zip codes” control positioning and interchromosomal clustering of GAL1-10 in yeast. However, these two phenomena have distinct molecular mechanisms, requiring different nuclear pore proteins, and are regulated differently by transcription and the cell cycle. On activation, the GAL genes in yeast are targeted to the nuclear periphery through interaction with the nuclear pore complex. Here we identify two cis-acting “DNA zip codes” from the GAL1-10 promoter that are necessary and sufficient to induce repositioning to the nuclear periphery. One of these zip codes, GRS4, is also necessary and sufficient to promote clustering of GAL1-10 alleles. GRS4, and to a lesser extent GRS5, contribute to stronger expression of GAL1 and GAL10 by increasing the fraction of cells that respond to the inducer. The molecular mechanism controlling targeting to the NPC is distinct from the molecular mechanism controlling interchromosomal clustering. Targeting to the nuclear periphery and interaction with the nuclear pore complex are prerequisites for gene clustering. However, once formed, clustering can be maintained in the nucleoplasm, requires distinct nuclear pore proteins, and is regulated differently through the cell cycle. In addition, whereas targeting of genes to the NPC is independent of transcription, interchromosomal clustering requires transcription. These results argue that zip code–dependent gene positioning at the nuclear periphery and interchromosomal clustering represent interdependent phenomena with distinct molecular mechanisms.
Collapse
Affiliation(s)
| | - Varun Sood
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Evelina Tutucci
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Robert Coukos
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Kayla Viets
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461 Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147
| | - Jason H Brickner
- Department of Molecular Biosciences, Northwestern University, Evanston, IL 60208
| |
Collapse
|
42
|
Calderon CP. Motion blur filtering: A statistical approach for extracting confinement forces and diffusivity from a single blurred trajectory. Phys Rev E 2016; 93:053303. [PMID: 27301001 DOI: 10.1103/physreve.93.053303] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 12/13/2022]
Abstract
Single particle tracking (SPT) can aid in understanding a variety of complex spatiotemporal processes. However, quantifying diffusivity and confinement forces from individual live cell trajectories is complicated by inter- and intratrajectory kinetic heterogeneity, thermal fluctuations, and (experimentally resolvable) statistical temporal dependence inherent to the underlying molecule's time correlated confined dynamics experienced in the cell. The problem is further complicated by experimental artifacts such as localization uncertainty and motion blur. The latter is caused by the tagged molecule emitting photons at different spatial positions during the exposure time of a single frame. The aforementioned experimental artifacts induce spurious time correlations in measured SPT time series that obscure the information of interest (e.g., confinement forces and diffusivity). We develop a maximum likelihood estimation (MLE) technique that decouples the above noise sources and systematically treats temporal correlation via time series methods. This ultimately permits a reliable algorithm for extracting diffusivity and effective forces in confined or unconfined environments. We illustrate how our approach avoids complications inherent to mean square displacement or autocorrelation techniques. Our algorithm modifies the established Kalman filter (which does not handle motion blur artifacts) to provide a likelihood based time series estimation procedure. The result extends A. J. Berglund's motion blur model [Phys. Rev. E 82, 011917 (2010)PLEEE81539-375510.1103/PhysRevE.82.011917] to handle confined dynamics. The approach can also systematically utilize (possibly time dependent) localization uncertainty estimates afforded by image analysis if available. This technique, which explicitly treats confinement and motion blur within a time domain MLE framework, uses an exact likelihood (time domain methods facilitate analyzing nonstationary signals). Our estimator is demonstrated to be consistent over a wide range of exposure times (5 to 100 ms), diffusion coefficients (1×10^{-3} to 1μm^{2}/s), and confinement widths (100 nm to 2μm). We demonstrate that neglecting motion blur or confinement can substantially bias estimation of kinetic parameters of interest to researchers. The technique also permits one to check statistical model assumptions against measured individual trajectories without "ground truth." The ability to reliably and consistently extract motion parameters in trajectories exhibiting confined and/or non-stationary dynamics, without exposure time artifacts corrupting estimates, is expected to aid in directly comparing trajectories obtained from different experiments or imaging modalities. A Python implementation is provided (open-source code will be maintained on GitHub; see also the Supplemental Material with this paper).
Collapse
|
43
|
Yu B, Yu J, Li W, Cao B, Li H, Chen D, Niu H. Nanoscale three-dimensional single particle tracking by light-sheet-based double-helix point spread function microscopy. APPLIED OPTICS 2016; 55:449-53. [PMID: 26835916 DOI: 10.1364/ao.55.000449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The double-helix point spread function (DH-PSF) microscopy has become an essential tool for nanoscale three-dimensional (3D) localization and tracking of single molecules in living cells. However, its localization precision is limited by fluorescent contrast in thick samples because the signal-to-noise ratio of the system is low due to the inherent low transfer function efficiency and background fluorescence. Here we combine DH-PSF microscopy with light-sheet illumination to eliminate out-of-focus background fluorescence for high-precision 3D single particle tracking. To demonstrate the capability of the method, we obtain the single fluorescent bead image with light-sheet illumination, with three-dimensional localization accuracy better than that of epi-illumination. We also show that the single fluorescent beads in agarose solution can be tracked, which demonstrates the possibility of our method for the study of dynamic processes in complex biological specimens.
Collapse
|
44
|
Wang R, Normand C, Gadal O. High-Throughput Live-Cell Microscopy Analysis of Association Between Chromosome Domains and the Nucleolus in S. cerevisiae. Methods Mol Biol 2016; 1455:41-57. [PMID: 27576709 DOI: 10.1007/978-1-4939-3792-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Spatial organization of the genome has important impacts on all aspects of chromosome biology, including transcription, replication, and DNA repair. Frequent interactions of some chromosome domains with specific nuclear compartments, such as the nucleolus, are now well documented using genome-scale methods. However, direct measurement of distance and interaction frequency between loci requires microscopic observation of specific genomic domains and the nucleolus, followed by image analysis to allow quantification. The fluorescent repressor operator system (FROS) is an invaluable method to fluorescently tag DNA sequences and investigate chromosome position and dynamics in living cells. This chapter describes a combination of methods to define motion and region of confinement of a locus relative to the nucleolus in cell's nucleus, from fluorescence acquisition to automated image analysis using two dedicated pipelines.
Collapse
Affiliation(s)
- Renjie Wang
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000, Toulouse, France
| | - Christophe Normand
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000, Toulouse, France
| | - Olivier Gadal
- Laboratoire de Biologie Moléculaire Eucaryote, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, 31000, Toulouse, France.
| |
Collapse
|
45
|
Shechtman Y, Weiss LE, Backer AS, Lee MY, Moerner WE. Multicolour localization microscopy by point-spread-function engineering. NATURE PHOTONICS 2016; 10:590-594. [PMID: 28413434 PMCID: PMC5391844 DOI: 10.1038/nphoton.2016.137] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Super-resolution microscopy has revolutionized cellular imaging in recent years1-4. Methods relying on sequential localization of single point emitters enable spatial tracking at ~10-40 nm resolution. Moreover, tracking and imaging in three dimensions is made possible by various techniques, including point-spread-function (PSF) engineering5-9 -namely, encoding the axial (z) position of a point source in the shape that it creates in the image plane. However, a remaining challenge for localization-microscopy is efficient multicolour imaging - a task of the utmost importance for contextualizing biological data. Normally, multicolour imaging requires sequential imaging10, 11, multiple cameras12, or segmented dedicated fields of view13, 14. Here, we demonstrate an alternate strategy, the encoding of spectral information (colour), in addition to 3D position, directly in the image. By exploiting chromatic dispersion, we design a new class of optical phase masks that simultaneously yield controllably different PSFs for different wavelengths, enabling simultaneous multicolour tracking or super-resolution imaging in a single optical path.
Collapse
Affiliation(s)
- Yoav Shechtman
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
| | - Lucien E Weiss
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
| | - Adam S Backer
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
- Institute for Computational and Mathematical Engineering, 475 Via Ortega, Stanford, California 94305, United States
| | - Maurice Y Lee
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
- Biophysics Program, Stanford University, Stanford, CA 94305, United States
| | - W E Moerner
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, United States
| |
Collapse
|
46
|
Backlund MP, Joyner R, Moerner WE. Chromosomal locus tracking with proper accounting of static and dynamic errors. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 91:062716. [PMID: 26172745 PMCID: PMC4533921 DOI: 10.1103/physreve.91.062716] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Indexed: 05/13/2023]
Abstract
The mean-squared displacement (MSD) and velocity autocorrelation (VAC) of tracked single particles or molecules are ubiquitous metrics for extracting parameters that describe the object's motion, but they are both corrupted by experimental errors that hinder the quantitative extraction of underlying parameters. For the simple case of pure Brownian motion, the effects of localization error due to photon statistics ("static error") and motion blur due to finite exposure time ("dynamic error") on the MSD and VAC are already routinely treated. However, particles moving through complex environments such as cells, nuclei, or polymers often exhibit anomalous diffusion, for which the effects of these errors are less often sufficiently treated. We present data from tracked chromosomal loci in yeast that demonstrate the necessity of properly accounting for both static and dynamic error in the context of an anomalous diffusion that is consistent with a fractional Brownian motion (FBM). We compare these data to analytical forms of the expected values of the MSD and VAC for a general FBM in the presence of these errors.
Collapse
Affiliation(s)
- Mikael P. Backlund
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
| | - Ryan Joyner
- Department of Cell and Developmental Biology, University of California, Berkeley, California, 94720, USA
| | - W. E. Moerner
- Department of Chemistry, Stanford University, 375 North-South Mall, Stanford, California 94305, USA
| |
Collapse
|
47
|
Wang R, Mozziconacci J, Bancaud A, Gadal O. Principles of chromatin organization in yeast: relevance of polymer models to describe nuclear organization and dynamics. Curr Opin Cell Biol 2015; 34:54-60. [PMID: 25956973 DOI: 10.1016/j.ceb.2015.04.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 03/17/2015] [Accepted: 04/15/2015] [Indexed: 11/29/2022]
Abstract
Nuclear organization can impact on all aspects of the genome life cycle. This organization is thoroughly investigated by advanced imaging and chromosome conformation capture techniques, providing considerable amount of datasets describing the spatial organization of chromosomes. In this review, we will focus on polymer models to describe chromosome statics and dynamics in the yeast Saccharomyces cerevisiae. We suggest that the equilibrium configuration of a polymer chain tethered at both ends and placed in a confined volume is consistent with the current literature, implying that local chromatin interactions play a secondary role in yeast nuclear organization. Future challenges are to reach an integrated multi-scale description of yeast chromosome organization, which is crucially needed to improve our understanding of the regulation of genomic transaction.
Collapse
Affiliation(s)
- Renjie Wang
- LBME du CNRS, France; Laboratoire de Biologie Moleculaire Eucaryote, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France
| | - Julien Mozziconacci
- Laboratory for Theoretical Physics of Condensed Matter UMR7600, Sorbonne University, UPMC, 75005 Paris, France; Groupement de recherche Architecture et Dynamique Nucléaire (GDR ADN), France
| | - Aurélien Bancaud
- Groupement de recherche Architecture et Dynamique Nucléaire (GDR ADN), France; CNRS, LAAS, 7 avenue du colonel Roche, F-31400 Toulouse, France; Univ de Toulouse, LAAS, F-31400 Toulouse, France
| | - Olivier Gadal
- LBME du CNRS, France; Laboratoire de Biologie Moleculaire Eucaryote, Université de Toulouse, 118 route de Narbonne, F-31000 Toulouse, France; Groupement de recherche Architecture et Dynamique Nucléaire (GDR ADN), France.
| |
Collapse
|