1
|
Choudhury S, Bajiya N, Patiyal S, Raghava GPS. MRSLpred-a hybrid approach for predicting multi-label subcellular localization of mRNA at the genome scale. FRONTIERS IN BIOINFORMATICS 2024; 4:1341479. [PMID: 38379813 PMCID: PMC10877048 DOI: 10.3389/fbinf.2024.1341479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/15/2024] [Indexed: 02/22/2024] Open
Abstract
In the past, several methods have been developed for predicting the single-label subcellular localization of messenger RNA (mRNA). However, only limited methods are designed to predict the multi-label subcellular localization of mRNA. Furthermore, the existing methods are slow and cannot be implemented at a transcriptome scale. In this study, a fast and reliable method has been developed for predicting the multi-label subcellular localization of mRNA that can be implemented at a genome scale. Machine learning-based methods have been developed using mRNA sequence composition, where the XGBoost-based classifier achieved an average area under the receiver operator characteristic (AUROC) of 0.709 (0.668-0.732). In addition to alignment-free methods, we developed alignment-based methods using motif search techniques. Finally, a hybrid technique that combines the XGBoost model and the motif-based approach has been developed, achieving an average AUROC of 0.742 (0.708-0.816). Our method-MRSLpred-outperforms the existing state-of-the-art classifier in terms of performance and computation efficiency. A publicly accessible webserver and a standalone tool have been developed to facilitate researchers (webserver: https://webs.iiitd.edu.in/raghava/mrslpred/).
Collapse
Affiliation(s)
| | | | | | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
2
|
Wang J, Horlacher M, Cheng L, Winther O. RNA trafficking and subcellular localization-a review of mechanisms, experimental and predictive methodologies. Brief Bioinform 2023; 24:bbad249. [PMID: 37466130 PMCID: PMC10516376 DOI: 10.1093/bib/bbad249] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/30/2023] [Accepted: 06/16/2023] [Indexed: 07/20/2023] Open
Abstract
RNA localization is essential for regulating spatial translation, where RNAs are trafficked to their target locations via various biological mechanisms. In this review, we discuss RNA localization in the context of molecular mechanisms, experimental techniques and machine learning-based prediction tools. Three main types of molecular mechanisms that control the localization of RNA to distinct cellular compartments are reviewed, including directed transport, protection from mRNA degradation, as well as diffusion and local entrapment. Advances in experimental methods, both image and sequence based, provide substantial data resources, which allow for the design of powerful machine learning models to predict RNA localizations. We review the publicly available predictive tools to serve as a guide for users and inspire developers to build more effective prediction models. Finally, we provide an overview of multimodal learning, which may provide a new avenue for the prediction of RNA localization.
Collapse
Affiliation(s)
- Jun Wang
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
| | - Marc Horlacher
- Computational Health Center, Helmholtz Center, Munich, Germany
| | - Lixin Cheng
- Shenzhen People’s Hospital, First Affiliated Hospital of Southern University of Science and Technology, Second Clinical Medicine College of Jinan University, Shenzhen 518020, China
| | - Ole Winther
- Bioinformatics Centre, Department of Biology, University of Copenhagen, København Ø 2100, Denmark
- Center for Genomic Medicine, Rigshospitalet (Copenhagen University Hospital), Copenhagen 2100, Denmark
- Section for Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby 2800, Denmark
| |
Collapse
|
3
|
Baldwin TA, Li Y, Marsden AN, Rinné S, Garza‐Carbajal A, Schindler RFR, Zhang M, Garcia MA, Venna VR, Decher N, Brand T, Dessauer CW. POPDC1 scaffolds a complex of adenylyl cyclase 9 and the potassium channel TREK-1 in heart. EMBO Rep 2022; 23:e55208. [PMID: 36254885 PMCID: PMC9724675 DOI: 10.15252/embr.202255208] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 09/23/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
The establishment of macromolecular complexes by scaffolding proteins is key to the local production of cAMP by anchored adenylyl cyclase (AC) and the subsequent cAMP signaling necessary for cardiac functions. We identify a novel AC scaffold, the Popeye domain-containing (POPDC) protein. The POPDC family of proteins is important for cardiac pacemaking and conduction, due in part to their cAMP-dependent binding and regulation of TREK-1 potassium channels. We show that TREK-1 binds the AC9:POPDC1 complex and copurifies in a POPDC1-dependent manner with AC9 activity in heart. Although the AC9:POPDC1 interaction is cAMP-independent, TREK-1 association with AC9 and POPDC1 is reduced upon stimulation of the β-adrenergic receptor (βAR). AC9 activity is required for βAR reduction of TREK-1 complex formation with AC9:POPDC1 and in reversing POPDC1 enhancement of TREK-1 currents. Finally, deletion of the gene-encoding AC9 (Adcy9) gives rise to bradycardia at rest and stress-induced heart rate variability, a milder phenotype than the loss of Popdc1 but similar to the loss of Kcnk2 (TREK-1). Thus, POPDC1 represents a novel adaptor for AC9 interactions with TREK-1 to regulate heart rate control.
Collapse
Affiliation(s)
- Tanya A Baldwin
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Yong Li
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Autumn N Marsden
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Susanne Rinné
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Anibal Garza‐Carbajal
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | | | - Musi Zhang
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Mia A Garcia
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Venugopal Reddy Venna
- Department NeurologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| | - Niels Decher
- Institute for Physiology and Pathophysiology, Vegetative Physiology and Marburg Center for Mind, Brain and Behavior MCMBBPhilipps‐University of MarburgMarburgGermany
| | - Thomas Brand
- National Heart and Lung Institute, Imperial College LondonLondonUK
| | - Carmen W Dessauer
- Department Integrative Biology and PharmacologyMcGovern Medical School, University of Texas Health Science CenterHoustonTXUSA
| |
Collapse
|
4
|
Iegorova V, Naraine R, Psenicka M, Zelazowska M, Sindelka R. Comparison of RNA localization during oogenesis within Acipenser ruthenus and Xenopus laevis. Front Cell Dev Biol 2022; 10:982732. [PMID: 36204678 PMCID: PMC9531136 DOI: 10.3389/fcell.2022.982732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
The oocyte is a unique cell, from which develops a complex organism comprising of germ layers, tissues and organs. In some vertebrate species it is known that the asymmetrical localization of biomolecules within the oocyte is what drives the spatial differentiation of the daughter cells required for embryogenesis. This asymmetry is first established to produce an animal-vegetal (A-V) axis which reflects the future specification of the ectoderm, mesoderm, and endoderm layers. Several pathways for localization of vegetal maternal transcripts have already been described using a few animal models. However, there is limited information about transcripts that are localized to the animal pole, even though there is accumulating evidence indicating its active establishment. Here, we performed comparative TOMO-Seq analysis on two holoblastic cleavage models: Xenopus laevis and Acipenser ruthenus oocytes during oogenesis. We found that there were many transcripts that have a temporal preference for the establishment of localization. In both models, we observed vegetal transcript gradients that were established during either the early or late oogenesis stages and transcripts that started their localization during the early stages but became more pronounced during the later stages. We found that some animal gradients were already established during the early stages, however the majority were formed during the later stages of oogenesis. Some of these temporally localized transcripts were conserved between the models, while others were species specific. Additionally, temporal de novo transcription and also degradation of transcripts within the oocyte were observed, pointing to an active remodeling of the maternal RNA pool.
Collapse
Affiliation(s)
- Viktoriia Iegorova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
| | - Martin Psenicka
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in Ceske Budejovice, Vodnany, Czechia
| | - Monika Zelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology and Biomedical Research, Faculty of Biology, Jagiellonian University, Krakow, Poland
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czechia
- *Correspondence: Radek Sindelka,
| |
Collapse
|
5
|
Evolutionary conservation of maternal RNA localization in fishes and amphibians revealed by TOMO-Seq. Dev Biol 2022; 489:146-160. [PMID: 35752299 DOI: 10.1016/j.ydbio.2022.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/18/2022] [Accepted: 06/19/2022] [Indexed: 11/24/2022]
Abstract
Asymmetrical localization of biomolecules inside the egg, results in uneven cell division and establishment of many biological processes, cell types and the body plan. However, our knowledge about evolutionary conservation of localized transcripts is still limited to a few models. Our goal was to compare localization profiles along the animal-vegetal axis of mature eggs from four vertebrate models, two amphibians (Xenopus laevis, Ambystoma mexicanum) and two fishes (Acipenser ruthenus, Danio rerio) using the spatial expression method called TOMO-Seq. We revealed that RNAs of many known important transcripts such as germ layer determinants, germ plasm factors and members of key signalling pathways, are localized in completely different profiles among the models. It was also observed that there was a poor correlation between the vegetally localized transcripts but a relatively good correlation between the animally localized transcripts. These findings indicate that the regulation of embryonic development within the animal kingdom is highly diverse and cannot be deduced based on a single model.
Collapse
|
6
|
Das S, Vera M, Gandin V, Singer RH, Tutucci E. Intracellular mRNA transport and localized translation. Nat Rev Mol Cell Biol 2021; 22:483-504. [PMID: 33837370 PMCID: PMC9346928 DOI: 10.1038/s41580-021-00356-8] [Citation(s) in RCA: 153] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2021] [Indexed: 02/08/2023]
Abstract
Fine-tuning cellular physiology in response to intracellular and environmental cues requires precise temporal and spatial control of gene expression. High-resolution imaging technologies to detect mRNAs and their translation state have revealed that all living organisms localize mRNAs in subcellular compartments and create translation hotspots, enabling cells to tune gene expression locally. Therefore, mRNA localization is a conserved and integral part of gene expression regulation from prokaryotic to eukaryotic cells. In this Review, we discuss the mechanisms of mRNA transport and local mRNA translation across the kingdoms of life and at organellar, subcellular and multicellular resolution. We also discuss the properties of messenger ribonucleoprotein and higher order RNA granules and how they may influence mRNA transport and local protein synthesis. Finally, we summarize the technological developments that allow us to study mRNA localization and local translation through the simultaneous detection of mRNAs and proteins in single cells, mRNA and nascent protein single-molecule imaging, and bulk RNA and protein detection methods.
Collapse
Affiliation(s)
- Sulagna Das
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Maria Vera
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | | | - Robert H Singer
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York, NY, USA.
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York, NY, USA.
- Janelia Research Campus of the HHMI, Ashburn, VA, USA.
| | - Evelina Tutucci
- Systems Biology Lab, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Holler K, Neuschulz A, Drewe-Boß P, Mintcheva J, Spanjaard B, Arsiè R, Ohler U, Landthaler M, Junker JP. Spatio-temporal mRNA tracking in the early zebrafish embryo. Nat Commun 2021; 12:3358. [PMID: 34099733 PMCID: PMC8184788 DOI: 10.1038/s41467-021-23834-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 05/18/2021] [Indexed: 01/17/2023] Open
Abstract
Early stages of embryogenesis depend on subcellular localization and transport of maternal mRNA. However, systematic analysis of these processes is hindered by a lack of spatio-temporal information in single-cell RNA sequencing. Here, we combine spatially-resolved transcriptomics and single-cell RNA labeling to perform a spatio-temporal analysis of the transcriptome during early zebrafish development. We measure spatial localization of mRNA molecules within the one-cell stage embryo, which allows us to identify a class of mRNAs that are specifically localized at an extraembryonic position, the vegetal pole. Furthermore, we establish a method for high-throughput single-cell RNA labeling in early zebrafish embryos, which enables us to follow the fate of individual maternal transcripts until gastrulation. This approach reveals that many localized transcripts are specifically transported to the primordial germ cells. Finally, we acquire spatial transcriptomes of two xenopus species and compare evolutionary conservation of localized genes as well as enriched sequence motifs.
Collapse
Affiliation(s)
- Karoline Holler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Anika Neuschulz
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Philipp Drewe-Boß
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Janita Mintcheva
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Bastiaan Spanjaard
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Roberto Arsiè
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Uwe Ohler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Department of Biology, Humboldt University, Berlin, Germany
| | - Markus Landthaler
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
- IRI Life Science, Institute of Biology, Humboldt University, Berlin, Germany
| | - Jan Philipp Junker
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany.
| |
Collapse
|
8
|
Naraine R, Abaffy P, Sidova M, Tomankova S, Pocherniaieva K, Smolik O, Kubista M, Psenicka M, Sindelka R. NormQ: RNASeq normalization based on RT-qPCR derived size factors. Comput Struct Biotechnol J 2020; 18:1173-1181. [PMID: 32514328 PMCID: PMC7264052 DOI: 10.1016/j.csbj.2020.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 02/04/2023] Open
Abstract
The merit of RNASeq data relies heavily on correct normalization. However, most methods assume that the majority of transcripts show no differential expression between conditions. This assumption may not always be correct, especially when one condition results in overexpression. We present a new method (NormQ) to normalize the RNASeq library size, using the relative proportion observed from RT-qPCR of selected marker genes. The method was compared against the popular median-of-ratios method, using simulated and real-datasets. NormQ produced more matches to differentially expressed genes in the simulated dataset and more distribution profile matches for both simulated and real datasets.
Collapse
Affiliation(s)
- Ravindra Naraine
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Monika Sidova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Silvie Tomankova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Kseniia Pocherniaieva
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic
| | - Ondrej Smolik
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| | - Martin Psenicka
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Vodnany, Czech Republic
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec 252 50, Czech Republic
| |
Collapse
|
9
|
Zheng L, Mao CZ, Bi YQ, Zhou YM, Zhang Z, Zhao H, Park KS, Huang R, Cai DQ, Qi XF. Differential expression of foxo genes during embryonic development and in adult tissues of Xenopus tropicalis. Gene Expr Patterns 2019; 35:119091. [PMID: 31770608 DOI: 10.1016/j.gep.2019.119091] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 10/06/2019] [Accepted: 11/22/2019] [Indexed: 01/17/2023]
Abstract
The forkhead-box transcription factors of O subfamily (FOXO) play important roles in regulation of various biological functions. We cloned foxo1, foxo3, foxo4, and foxo6 from Xenopus tropicalis (hereafter X. tropicalis), and examined their expression in embryos and adult tissues. Maternal transcripts of foxo1 and foxo3 genes are detected within the animal half of the early embryo, their zygotic transcripts show distinct patterns. At late tailbud stages, foxo1 expression is observed mainly in eye, brain, branchial arches, and pronephros. In addition to eye, brain, branchial arches and pronephros, foxo3 expression is also evident in heart and somites. Foxo4 expression was not detected in oocytes. At late tailbud stages, foxo4 is mainly expressed in eye, brain, branchial arches and otic vesicle. Foxo6 expression was not detectable until stage 36, with a specific expression in nasal pits. Obvious expression of foxo1, foxo3 and foxo4, but not foxo6, is detected by RT-PCR both in oocytes and in embryos at examined stages. The expression of foxo1, foxo3 and foxo4 is observed in all tested adult tissues including heart, muscle, liver, lung, stomach and small intestine, while foxo6 is only detectable in stomach and small intestine. The differential expression pattern of foxo genes suggests that they exert distinct functions during embryonic development and in various organs of X. tropicalis.
Collapse
Affiliation(s)
- Li Zheng
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Cheng-Zhou Mao
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Yun-Qian Bi
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi-Min Zhou
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Zhou Zhang
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Kyu-Sang Park
- Department of Physiology, Wonju College of Medicine, Yonsei University, Wonju, Gangwon 220-701, South Korea
| | - Ruijin Huang
- Institute of Anatomy, Department of Neuroanatomy, Medical Faculty Bonn, Rheinische Friedrich-Wilhelms-University of Bonn, Germany
| | - Dong-Qing Cai
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China
| | - Xu-Feng Qi
- Key Laboratory of Regenerative Medicine, Ministry of Education, Department of Developmental & Regenerative Biology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M. Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan. Sci Rep 2018; 8:8315. [PMID: 29844480 PMCID: PMC5974320 DOI: 10.1038/s41598-018-26592-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs. More than 98% of the maternal mRNAs could be categorized into four localization profile groups: animal, vegetal, extremely vegetal, and a newly described group of mRNAs that we call extremely animal, which are mRNAs enriched in the animal cortex region. 3′UTRs of localized mRNAs were analyzed for localization motifs. Several putative motifs were discovered for vegetal and extremely vegetal mRNAs, while no distinct conserved motifs for the extremely animal mRNAs were identified, suggesting different localization mechanisms. Asymmetric profiles were also found for proteins, with correlation to those of corresponding mRNAs. Based on unexpected observation of the profiles of the homoeologous genes exd2 we propose a possible mechanism of genetic evolution.
Collapse
Affiliation(s)
- Radek Sindelka
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Pavel Abaffy
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Silvie Tomankova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Monika Sidova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Michal Kolar
- Institute of Molecular Genetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Elizabeth Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Norman Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mikael Kubista
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.,TATAA Biocenter, Odinsgatan 28, Göteborg, 411 03, Sweden
| |
Collapse
|
11
|
Owens DA, Butler AM, Aguero TH, Newman KM, Van Booven D, King ML. High-throughput analysis reveals novel maternal germline RNAs crucial for primordial germ cell preservation and proper migration. Development 2017; 144:292-304. [PMID: 28096217 DOI: 10.1242/dev.139220] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
During oogenesis, hundreds of maternal RNAs are selectively localized to the animal or vegetal pole, including determinants of somatic and germline fates. Although microarray analysis has identified localized determinants, it is not comprehensive and is limited to known transcripts. Here, we utilized high-throughput RNA-sequencing analysis to comprehensively interrogate animal and vegetal pole RNAs in the fully grown Xenopus laevis oocyte. We identified 411 (198 annotated) and 27 (15 annotated) enriched mRNAs at the vegetal and animal pole, respectively. Ninety were novel mRNAs over 4-fold enriched at the vegetal pole and six were over 10-fold enriched at the animal pole. Unlike mRNAs, microRNAs were not asymmetrically distributed. Whole-mount in situ hybridization confirmed that all 17 selected mRNAs were localized. Biological function and network analysis of vegetally enriched transcripts identified protein-modifying enzymes, receptors, ligands, RNA-binding proteins, transcription factors and co-factors with five defining hubs linking 47 genes in a network. Initial functional studies of maternal vegetally localized mRNAs show that sox7 plays a novel and important role in primordial germ cell (PGC) development and that ephrinB1 (efnb1) is required for proper PGC migration. We propose potential pathways operating at the vegetal pole that highlight where future investigations might be most fruitful.
Collapse
Affiliation(s)
- Dawn A Owens
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Amanda M Butler
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Tristan H Aguero
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Karen M Newman
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Derek Van Booven
- The Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| | - Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|
12
|
Toombs JA, Sytnikova YA, Chirn GW, Ang I, Lau NC, Blower MD. Xenopus Piwi proteins interact with a broad proportion of the oocyte transcriptome. RNA (NEW YORK, N.Y.) 2017; 23:504-520. [PMID: 28031481 PMCID: PMC5340914 DOI: 10.1261/rna.058859.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Piwi proteins utilize small RNAs (piRNAs) to recognize target transcripts such as transposable elements (TE). However, extensive piRNA sequence diversity also suggests that Piwi/piRNA complexes interact with many transcripts beyond TEs. To determine Piwi target RNAs, we used ribonucleoprotein-immunoprecipitation (RIP) and cross-linking and immunoprecipitation (CLIP) to identify thousands of transcripts associated with the Piwi proteins XIWI and XILI (Piwi-protein-associated transcripts, PATs) from early stage oocytes of X. laevis and X. tropicalis Most PATs associate with both XIWI and XILI and include transcripts of developmentally important proteins in oogenesis and embryogenesis. Only a minor fraction of PATs in both frog species displayed near perfect matches to piRNAs. Since predicting imperfect pairing between all piRNAs and target RNAs remains intractable, we instead determined that PAT read counts correlate well with the lengths and expression levels of transcripts, features that have also been observed for oocyte mRNAs associated with Drosophila Piwi proteins. We used an in vitro assay with exogenous RNA to confirm that XIWI associates with RNAs in a length- and concentration-dependent manner. In this assay, noncoding transcripts with many perfectly matched antisense piRNAs were unstable, whereas coding transcripts with matching piRNAs were stable, consistent with emerging evidence that Piwi proteins both promote the turnover of TEs and other RNAs, and may also regulate mRNA localization and translation. Our study suggests that Piwi proteins play multiple roles in germ cells and establishes a tractable vertebrate system to study the role of Piwi proteins in transcript regulation.
Collapse
Affiliation(s)
- James A Toombs
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Yuliya A Sytnikova
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Gung-Wei Chirn
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Ignatius Ang
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Nelson C Lau
- Department of Biology and Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael D Blower
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| |
Collapse
|
13
|
King ML. Maternal messages to live by: a personal historical perspective. Genesis 2017; 55:10.1002/dvg.23007. [PMID: 28095642 PMCID: PMC5276792 DOI: 10.1002/dvg.23007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 11/22/2016] [Accepted: 11/24/2016] [Indexed: 12/17/2022]
Abstract
In the 1980s, the study of localized maternal mRNAs was just emerging as a new research area. Classic embryological studies had linked the inheritance of cytoplasmic domains with specific cell lineages, but the underlying molecular nature of these putative determinants remained a mystery. The model system Xenopus would play a pivotal role in the progress of this new field. In fact, the first localized maternal mRNA to be identified and cloned from any organism was Xenopus vg1, a TGF-beta family member. This seminal finding opened the door to many subsequent studies focused on how RNAs are localized and what functions they had in development. As the field moves into the future, Xenopus remains the system of choice for studies identifying RNA/protein transport particles and maternal RNAs through RNA-sequencing.
Collapse
Affiliation(s)
- Mary Lou King
- Department of Cell Biology, University of Miami Miller School of Medicine, 1011 NW 15th St, Miami, FL 33136, USA
| |
Collapse
|