1
|
Kim SM, Forsburg SL. Determinants of RPA megafoci localization to the nuclear periphery in response to replication stress. G3 (BETHESDA, MD.) 2022; 12:jkac116. [PMID: 35567482 PMCID: PMC9258583 DOI: 10.1093/g3journal/jkac116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Upon replication stress, ssDNA, coated by the ssDNA-binding protein RPA, accumulates and generates a signal to activate the replication stress response. Severe replication stress induced by the loss of minichromosome maintenance helicase subunit Mcm4 in the temperature-sensitive Schizosaccharomyces pombe degron mutant (mcm4-dg) results in the formation of a large RPA focus that is translocated to the nuclear periphery. We show that resection and repair processes and chromatin remodeler Swr1/Ino80 are involved in the large RPA foci formation and its relocalization to nuclear periphery. This concentrated accumulation of RPA increases the recruitment of Cds1 to chromatin and results in an aberrant cell cycle that lacks MBF-mediated G1/S accumulation of Tos4. These findings reveal a distinct replication stress response mediated by localized accumulation of RPA that allows the evasion of cell cycle arrest.
Collapse
Affiliation(s)
- Seong Min Kim
- Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA
| | - Susan L Forsburg
- Corresponding author: Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90007, USA.
| |
Collapse
|
2
|
Takahashi N, Kim S, Schultz CW, Rajapakse VN, Zhang Y, Redon CE, Fu H, Pongor L, Kumar S, Pommier Y, Aladjem MI, Thomas A. Replication stress defines distinct molecular subtypes across cancers. CANCER RESEARCH COMMUNICATIONS 2022; 2:503-517. [PMID: 36381660 PMCID: PMC9648410 DOI: 10.1158/2767-9764.crc-22-0168] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Endogenous replication stress is a major driver of genomic instability. Current assessments of replication stress are low throughput precluding its comprehensive assessment across tumors. Here we develop and validate a transcriptional profile of replication stress by leveraging established cellular characteristics that portend replication stress. The repstress gene signature defines a subset of tumors across lineages characterized by activated oncogenes, aneuploidy, extrachromosomal DNA amplification, immune evasion, high genomic instability, and poor survival, and importantly predicts response to agents targeting replication stress more robustly than previously reported transcriptomic measures of replication stress. Repstress score profiles the dual roles of replication stress during tumorigenesis and in established cancers and defines distinct molecular subtypes within cancers that may be more vulnerable to drugs targeting this dependency. Altogether, our study provides a molecular profile of replication stress, providing novel biological insights of the replication stress phenotype, with clinical implications.
Collapse
Affiliation(s)
- Nobuyuki Takahashi
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Medical Oncology Branch, Center Hospital, National Center for Global Health and Medicine, Tokyo, Japan
- Department of Medical Oncology, National Cancer Center East Hospital, Chiba, Japan
| | - Sehyun Kim
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | | | - Vinodh N. Rajapakse
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yang Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Lorinc Pongor
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Suresh Kumar
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Anish Thomas
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, Bethesda, Maryland
- Corresponding Author: Anish Thomas, Developmental Therapeutics Branch, NCI, Building 10 Center Drive, Bethesda, MD 20814. Phone: 240-760-7343; Fax: 954-827-0184; E-mail:
| |
Collapse
|
3
|
Yao M, Wu Y, Cao Y, Liu H, Ma N, Chai Y, Zhang S, Zhang H, Nong L, Liang L, Zhang B. Autophagy-Mediated Clearance of Free Genomic DNA in the Cytoplasm Protects the Growth and Survival of Cancer Cells. Front Oncol 2021; 11:667920. [PMID: 34123836 PMCID: PMC8189927 DOI: 10.3389/fonc.2021.667920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/06/2021] [Indexed: 01/22/2023] Open
Abstract
The cGAS (GMP-AMP synthase)-mediated senescence-associated secretory phenotype (SASP) and DNA-induced autophagy (DNA autophagy) have been extensively investigated in recent years. However, cGAS-mediated autophagy has not been elucidated in cancer cells. The described investigation revealed that active DNA autophagy but not SASP activity could be detected in the BT-549 breast cancer cell line with high micronucleus (MN) formation. DNA autophagy was identified as selective autophagy of free genomic DNA in the cytoplasm but not nucleophagy. The process of DNA autophagy in the cytosol could be initiate by cGAS and usually cooperates with SQSTM1-mediated autophagy of ubiquitinated histones. Cytoplasmic DNA, together with nuclear proteins such as histones, could be derived from DNA replication-induced nuclear damage and MN collapse. The inhibition of autophagy through chemical inhibitors as well as the genomic silencing of cGAS or SQSTM1 could suppress the growth and survival of cancer cells, and induced DNA damage could increase the sensitivity to these inhibitors. Furthermore, expanded observations of several other kinds of human cancer cells indicated that high relative DNA autophagy or enhancement of DNA damage could also increase or sensitize these cells to inhibition of DNA autophagy.
Collapse
Affiliation(s)
- Mengfei Yao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yaqian Wu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yanan Cao
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Haijing Liu
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ningning Ma
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yijie Chai
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Shuang Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Hong Zhang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Lin Nong
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Li Liang
- Department of Pathology, Peking University First Hospital, Beijing, China
| | - Bo Zhang
- Department of Pathology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
4
|
Lee SR, Pollard DA, Galati DF, Kelly ML, Miller B, Mong C, Morris MN, Roberts-Nygren K, Kapler GM, Zinkgraf M, Dang HQ, Branham E, Sasser J, Tessier E, Yoshiyama C, Matsumoto M, Turman G. Disruption of a ∼23-24 nucleotide small RNA pathway elevates DNA damage responses in Tetrahymena thermophila. Mol Biol Cell 2021; 32:1335-1346. [PMID: 34010017 PMCID: PMC8694037 DOI: 10.1091/mbc.e20-10-0631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Endogenous RNA interference (RNAi) pathways regulate a wide range of cellular processes in diverse eukaryotes, yet in the ciliated eukaryote, Tetrahymena thermophila, the cellular purpose of RNAi pathways that generate ∼23–24 nucleotide (nt) small (s)RNAs has remained unknown. Here, we investigated the phenotypic and gene expression impacts on vegetatively growing cells when genes involved in ∼23–24 nt sRNA biogenesis are disrupted. We observed slower proliferation and increased expression of genes involved in DNA metabolism and chromosome organization and maintenance in sRNA biogenesis mutants RSP1Δ, RDN2Δ, and RDF2Δ. In addition, RSP1Δ and RDN2Δ cells frequently exhibited enlarged chromatin extrusion bodies, which are nonnuclear, DNA-containing structures that may be akin to mammalian micronuclei. Expression of homologous recombination factor Rad51 was specifically elevated in RSP1Δ and RDN2Δ strains, with Rad51 and double-stranded DNA break marker γ-H2A.X localized to discrete macronuclear foci. In addition, an increase in Rad51 and γ-H2A.X foci was also found in knockouts of TWI8, a macronucleus-localized PIWI protein. Together, our findings suggest that an evolutionarily conserved role for RNAi pathways in maintaining genome integrity may be extended even to the early branching eukaryotic lineage that gave rise to Tetrahymena thermophila.
Collapse
Affiliation(s)
- Suzanne R Lee
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Daniel A Pollard
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Domenico F Galati
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan L Kelly
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Brian Miller
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Christina Mong
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Megan N Morris
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Geoffrey M Kapler
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Matthew Zinkgraf
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Hung Q Dang
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Erica Branham
- Molecular and Cellular Medicine, Texas A&M University, College Station, TX 77843
| | - Jason Sasser
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Erin Tessier
- Biology Department, Western Washington University, Bellingham, WA 98225
| | | | - Maya Matsumoto
- Biology Department, Western Washington University, Bellingham, WA 98225
| | - Gaea Turman
- Biology Department, Western Washington University, Bellingham, WA 98225
| |
Collapse
|
5
|
Escorcia W, Tripathi VP, Yuan JP, Forsburg SL. A visual atlas of meiotic protein dynamics in living fission yeast. Open Biol 2021; 11:200357. [PMID: 33622106 PMCID: PMC8061692 DOI: 10.1098/rsob.200357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Meiosis is a carefully choreographed dynamic process that re-purposes proteins from somatic/vegetative cell division, as well as meiosis-specific factors, to carry out the differentiation and recombination pathway common to sexually reproducing eukaryotes. Studies of individual proteins from a variety of different experimental protocols can make it difficult to compare details between them. Using a consistent protocol in otherwise wild-type fission yeast cells, this report provides an atlas of dynamic protein behaviour of representative proteins at different stages during normal zygotic meiosis in fission yeast. This establishes common landmarks to facilitate comparison of different proteins and shows that initiation of S phase likely occurs prior to nuclear fusion/karyogamy.
Collapse
Affiliation(s)
- Wilber Escorcia
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA.,Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 45207, USA
| | - Vishnu P Tripathi
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Ji-Ping Yuan
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| | - Susan L Forsburg
- Molecular and Computational Biology Program, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
6
|
Cararo-Lopes E, Dias MH, da Silva MS, Zeidler JD, Vessoni AT, Reis MS, Boccardo E, Armelin HA. Autophagy buffers Ras-induced genotoxic stress enabling malignant transformation in keratinocytes primed by human papillomavirus. Cell Death Dis 2021; 12:194. [PMID: 33602932 PMCID: PMC7892846 DOI: 10.1038/s41419-021-03476-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 01/31/2023]
Abstract
Malignant transformation involves an orchestrated rearrangement of cell cycle regulation mechanisms that must balance autonomic mitogenic impulses and deleterious oncogenic stress. Human papillomavirus (HPV) infection is highly prevalent in populations around the globe, whereas the incidence of cervical cancer is 0.15%. Since HPV infection primes cervical keratinocytes to undergo malignant transformation, we can assume that the balance between transforming mitogenic signals and oncogenic stress is rarely attained. We showed that highly transforming mitogenic signals triggered by HRasG12V activity in E6E7-HPV-keratinocytes generate strong replication and oxidative stresses. These stresses are counteracted by autophagy induction that buffers the rapid increase of ROS that is the main cause of genotoxic stress promoted by the oncoprotein. As a result, autophagy creates a narrow window of opportunity for malignant keratinocytes to emerge. This work shows that autophagy is crucial to allow the transition of E6E7 keratinocytes from an immortalized to a malignant state caused by HRasG12V.
Collapse
Affiliation(s)
- Eduardo Cararo-Lopes
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| | - Matheus H Dias
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Marcelo S da Silva
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
- Department of Chemical and Biological Sciences, Instituto de Biociência, Universidade do Estado de São Paulo, Botucatu, SP, 18618-689, Brazil
| | - Julianna D Zeidler
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
- Kogod Aging Center, Department of Anesthesiology and Perioperative Medicine, Mayo Clinic College of Medicine, Rochester, MN, 55905, USA
| | - Alexandre T Vessoni
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Marcelo S Reis
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Enrique Boccardo
- Department of Microbiology, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Hugo A Armelin
- Center of Toxins, Immune-response and Cell Signaling, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-000, Brazil.
| |
Collapse
|
7
|
Warecki B, Ling X, Bast I, Sullivan W. ESCRT-III-mediated membrane fusion drives chromosome fragments through nuclear envelope channels. J Cell Biol 2020; 219:133702. [PMID: 32032426 PMCID: PMC7054997 DOI: 10.1083/jcb.201905091] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 11/05/2019] [Accepted: 12/18/2019] [Indexed: 12/24/2022] Open
Abstract
Mitotic cells must form a single nucleus during telophase or exclude part of their genome as damage-prone micronuclei. While research has detailed how micronuclei arise from cells entering anaphase with lagging chromosomes, cellular mechanisms allowing late-segregating chromosomes to rejoin daughter nuclei remain underexplored. Here, we find that late-segregating acentric chromosome fragments that rejoin daughter nuclei are associated with nuclear membrane but devoid of lamin and nuclear pore complexes in Drosophila melanogaster. We show that acentrics pass through membrane-, lamin-, and nuclear pore-based channels in the nuclear envelope that extend and retract as acentrics enter nuclei. Membrane encompassing the acentrics fuses with the nuclear membrane, facilitating integration of the acentrics into newly formed nuclei. Fusion, mediated by the membrane fusion protein Comt/NSF and ESCRT-III components Shrub/CHMP4B and CHMP2B, facilitates reintegration of acentrics into nuclei. These results suggest a previously unsuspected role for membrane fusion, similar to nuclear repair, in the formation of a single nucleus during mitotic exit and the maintenance of genomic integrity.
Collapse
Affiliation(s)
- Brandt Warecki
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Xi Ling
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - Ian Bast
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| | - William Sullivan
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA
| |
Collapse
|
8
|
Huang TT, Brill E, Nair JR, Zhang X, Wilson KM, Chen L, Thomas CJ, Lee JM. Targeting the PI3K/mTOR Pathway Augments CHK1 Inhibitor-Induced Replication Stress and Antitumor Activity in High-Grade Serous Ovarian Cancer. Cancer Res 2020; 80:5380-5392. [PMID: 32998994 DOI: 10.1158/0008-5472.can-20-1439] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 08/04/2020] [Accepted: 09/18/2020] [Indexed: 01/08/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal gynecologic malignancy in industrialized countries and has limited treatment options. Targeting ataxia-telangiectasia and Rad3-related/cell-cycle checkpoint kinase 1 (CHK1)-mediated S-phase and G2-M-phase cell-cycle checkpoints has been a promising therapeutic strategy in HGSOC. To improve the efficacy of CHK1 inhibitor (CHK1i), we conducted a high-throughput drug combination screening in HGSOC cells. PI3K/mTOR pathway inhibitors (PI3K/mTORi) showed supra-additive cytotoxicity with CHK1i. Combined treatment with CHK1i and PI3K/mTORi significantly attenuated cell viability and increased DNA damage, chromosomal breaks, and mitotic catastrophe compared with monotherapy. PI3K/mTORi decelerated fork speed by promoting new origin firing via increased CDC45, thus potentiating CHK1i-induced replication stress. PI3K/mTORi also augmented CHK1i-induced DNA damage by attenuating DNA homologous recombination repair activity and RAD51 foci formation. High expression of replication stress markers was associated with poor prognosis in patients with HGSOC. Our findings indicate that combined PI3K/mTORi and CHK1i induces greater cell death in HGSOC cells and in vivo models by causing lethal replication stress and DNA damage. This insight can be translated therapeutically by further developing combinations of PI3K and cell-cycle pathway inhibitors in HGSOC. SIGNIFICANCE: Dual inhibition of CHK1 and PI3K/mTOR pathways yields potent synthetic lethality by causing lethal replication stress and DNA damage in HGSOC, warranting further clinical development.
Collapse
Affiliation(s)
- Tzu-Ting Huang
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland.
| | - Ethan Brill
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jayakumar R Nair
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Kelli M Wilson
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Lu Chen
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, NIH, Bethesda, Maryland.,Lymphoid Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| | - Jung-Min Lee
- Women's Malignancies Branch, Center for Cancer Research, NCI, Bethesda, Maryland
| |
Collapse
|
9
|
Active Replication Checkpoint Drives Genome Instability in Fission Yeast mcm4 Mutant. Mol Cell Biol 2020; 40:MCB.00033-20. [PMID: 32341083 DOI: 10.1128/mcb.00033-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/17/2020] [Indexed: 02/07/2023] Open
Abstract
Upon replication fork arrest, the replication checkpoint kinase Cds1 is stimulated to preserve genome integrity. Robust activation of Cds1 in response to hydroxyurea prevents the endonuclease Mus81 from cleaving the stalled replication fork inappropriately. However, we find that the response is different in temperature-sensitive mcm4 mutants, affecting a subunit of the MCM replicative helicase. We show that Cds1 inhibition of Mus81 promotes genomic instability and allows mcm4-dg cells to evade cell cycle arrest. Cds1 regulation of Mus81 activity also contributes to the formation of the replication stress-induced DNA damage markers replication protein A (RPA) and Ku. These results identify a surprising role for Cds1 in driving DNA damage and disrupted chromosomal segregation under certain conditions of replication stress.
Collapse
|
10
|
Kim SM, Tripathi VP, Shen KF, Forsburg SL. Checkpoint Regulation of Nuclear Tos4 Defines S Phase Arrest in Fission Yeast. G3 (BETHESDA, MD.) 2020; 10:255-266. [PMID: 31719112 PMCID: PMC6945033 DOI: 10.1534/g3.119.400726] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
From yeast to humans, the cell cycle is tightly controlled by regulatory networks that regulate cell proliferation and can be monitored by dynamic visual markers in living cells. We have observed S phase progression by monitoring nuclear accumulation of the FHA-containing DNA binding protein Tos4, which is expressed in the G1/S phase transition. We use Tos4 localization to distinguish three classes of DNA replication mutants: those that arrest with an apparent 1C DNA content and accumulate Tos4 at the restrictive temperature; those that arrest with an apparent 2C DNA content, that do not accumulate Tos4; and those that proceed into mitosis despite a 1C DNA content, again without Tos4 accumulation. Our data indicate that Tos4 localization in these conditions is responsive to checkpoint kinases, with activation of the Cds1 checkpoint kinase promoting Tos4 retention in the nucleus, and activation of the Chk1 damage checkpoint promoting its turnover. Tos4 localization therefore allows us to monitor checkpoint-dependent activation that responds to replication failure in early vs. late S phase.
Collapse
Affiliation(s)
- Seong M Kim
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Vishnu P Tripathi
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles CA 90089
| |
Collapse
|
11
|
Escorcia W, Shen KF, Yuan JP, Forsburg SL. Examination of Mitotic and Meiotic Fission Yeast Nuclear Dynamics by Fluorescence Live-cell Microscopy. J Vis Exp 2019:10.3791/59822. [PMID: 31282894 PMCID: PMC6701690 DOI: 10.3791/59822] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Live-cell imaging is a microscopy technique used to examine cell and protein dynamics in living cells. This imaging method is not toxic, generally does not interfere with cell physiology, and requires minimal experimental handling. The low levels of technical interference enable researchers to study cells across multiple cycles of mitosis and to observe meiosis from beginning to end. Using fluorescent tags such as Green Fluorescent Protein (GFP) and Red Fluorescent Protein (RFP), researchers can analyze different factors whose functions are important for processes like transcription, DNA replication, cohesion, and segregation. Coupled with data analysis using Fiji (a free, optimized ImageJ version), live-cell imaging offers various ways of assessing protein movement, localization, stability, and timing, as well as nuclear dynamics and chromosome segregation. However, as is the case with other microscopy methods, live-cell imaging is limited by the intrinsic properties of light, which put a limit to the resolution power at high magnifications, and is also sensitive to photobleaching or phototoxicity at high wavelength frequencies. However, with some care, investigators can bypass these physical limitations by carefully choosing the right conditions, strains, and fluorescent markers to allow for the appropriate visualization of mitotic and meiotic events.
Collapse
Affiliation(s)
- Wilber Escorcia
- Program in Molecular and Computational Biology, University of Southern California; Leonard Davis School of Gerontology, University of Southern California
| | - Kuo-Fang Shen
- Program in Molecular and Computational Biology, University of Southern California
| | - Ji-Ping Yuan
- Program in Molecular and Computational Biology, University of Southern California
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California;
| |
Collapse
|
12
|
Willan J, Cleasby AJ, Flores-Rodriguez N, Stefani F, Rinaldo C, Pisciottani A, Grant E, Woodman P, Bryant HE, Ciani B. ESCRT-III is necessary for the integrity of the nuclear envelope in micronuclei but is aberrant at ruptured micronuclear envelopes generating damage. Oncogenesis 2019; 8:29. [PMID: 30988276 PMCID: PMC6465242 DOI: 10.1038/s41389-019-0136-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/28/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Micronuclei represent the cellular attempt to compartmentalize DNA to maintain genomic integrity threatened by mitotic errors and genotoxic events. Some micronuclei show aberrant nuclear envelopes (NEs) that collapse, generating damaged DNA that can promote complex genome alterations. However, ruptured micronuclei also provide a pool of cytosolic DNA that can stimulate antitumor immunity, revealing the complexity of micronuclear impact on tumor progression. The ESCRT-III (Endosomal Sorting Complex Required for Transport-III) complex ensures NE reseals during late mitosis and is repaired in interphase. Therefore, ESCRT-III activity maybe crucial for maintaining the integrity of other genomic structures enclosed by a NE. ESCRT-III activity at the NE is coordinated by the subunit CHMP7. We show that CHMP7 and ESCRT-III protect against the genomic instability associated with micronuclei formation. Loss of ESCRT-III activity increases the population of micronuclei with ruptured NEs, revealing that its NE repair activity is also necessary to maintain micronuclei integrity. Surprisingly, aberrant accumulation of ESCRT-III are found at the envelope of most acentric collapsed micronuclei, suggesting that ESCRT-III is not recycled efficiently from these structures. Moreover, CHMP7 depletion relieves micronuclei from the aberrant accumulations of ESCRT-III. CHMP7-depleted cells display a reduction in micronuclei containing the DNA damage marker RPA and a sensor of cytosolic DNA. Thus, ESCRT-III activity appears to protect from the consequence of genomic instability in a dichotomous fashion: ESCRT-III membrane repair activity prevents the occurrence of micronuclei with weak envelopes, but the aberrant accumulation of ESCRT-III on a subset of micronuclei appears to exacerbate DNA damage and sustain proinflammatory pathways.
Collapse
Affiliation(s)
- Jessica Willan
- Department of Chemistry, Centre for Membrane Interactions and Dynamics (CMIAD), Krebs Institute, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom.,Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Alexa J Cleasby
- Department of Chemistry, Centre for Membrane Interactions and Dynamics (CMIAD), Krebs Institute, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom
| | | | - Flavia Stefani
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom
| | - Cinzia Rinaldo
- IBPM-CNR c/o Universita' degli Studi di Roma Sapienza, Rome, Italy.,Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | | | - Emma Grant
- Department of Chemistry, Centre for Membrane Interactions and Dynamics (CMIAD), Krebs Institute, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom.,Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom
| | - Philip Woodman
- School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, M13 9PT, United Kingdom.
| | - Helen E Bryant
- Academic Unit of Molecular Oncology, Sheffield Institute for Nucleic Acids (SInFoNiA), Department of Oncology and Metabolism, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, United Kingdom.
| | - Barbara Ciani
- Department of Chemistry, Centre for Membrane Interactions and Dynamics (CMIAD), Krebs Institute, University of Sheffield, Brook Hill, Sheffield, S3 7HF, United Kingdom.
| |
Collapse
|
13
|
Kim SM, Forsburg SL. Regulation of Structure-Specific Endonucleases in Replication Stress. Genes (Basel) 2018; 9:genes9120634. [PMID: 30558228 PMCID: PMC6316474 DOI: 10.3390/genes9120634] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/16/2022] Open
Abstract
Replication stress results in various forms of aberrant replication intermediates that need to be resolved for faithful chromosome segregation. Structure-specific endonucleases (SSEs) recognize DNA secondary structures rather than primary sequences and play key roles during DNA repair and replication stress. Holliday junction resolvase MUS81 (methyl methane sulfonate (MMS), and UV-sensitive protein 81) and XPF (xeroderma pigmentosum group F-complementing protein) are a subset of SSEs that resolve aberrant replication structures. To ensure genome stability and prevent unnecessary DNA breakage, these SSEs are tightly regulated by the cell cycle and replication checkpoints. We discuss the regulatory network that control activities of MUS81 and XPF and briefly mention other SSEs involved in the resolution of replication intermediates.
Collapse
Affiliation(s)
- Seong Min Kim
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
14
|
Guo X, Ni J, Liang Z, Xue J, Fenech MF, Wang X. The molecular origins and pathophysiological consequences of micronuclei: New insights into an age-old problem. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2018; 779:1-35. [PMID: 31097147 DOI: 10.1016/j.mrrev.2018.11.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
Abstract
Micronuclei (MN), the small nucleus-like bodies separated from the primary nucleus, can exist in cells with numerical and/or structural chromosomal aberrations in apparently normal tissues and more so in tumors in humans. While MN have been observed for over 100 years, they were merely and constantly considered as passive indicators of chromosome instability (CIN) for a long time. Relatively little is known about the molecular origins and biological consequences of MN. Rapid technological advances are helping to close these gaps. Very recent studies provide exciting evidence that MN act as key platform for chromothripsis and a trigger of innate immune response, suggesting that MN could affect cellular functions by both genetic and nongenetic means. These previously unappreciated findings have reawakened widespread interests in MN. In this review, the diverse mechanisms leading to MN generation and the complex fate profiles of MN are discussed, together with the evidence for their contribution to CIN, inflammation, senescence and cell death. Moreover, we put this knowledge together into a speculative perspective on how MN may be responsible for cancer development and how their presence may influence the choice of treatment. We suggest that the heterogeneous responses to MN may function physiological to ensure the arrestment, elimination and immune clearance of damaged cells, but pathologically, may enable the survival and oncogenic transformation of cells bearing CIN. These insights not only underscore the complexity of MN biology, but also raise a host of new questions and provide fertile ground for future research.
Collapse
Affiliation(s)
- Xihan Guo
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Juan Ni
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Ziqing Liang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China
| | - Jinglun Xue
- State Key Laboratory of Genetic Engineering, Institute of Genetics, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Michael F Fenech
- University of South Australia, Adelaide, SA, 5000, Australia; Genome Health Foundation, North Brighton, SA, 5048, Australia.
| | - Xu Wang
- School of Life Sciences, The Engineering Research Center of Sustainable Development and Utilization of Biomass Energy, Yunnan Normal University, Kunming, Yunnan, 650500, China.
| |
Collapse
|
15
|
Micronuclei Formation Is Prevented by Aurora B-Mediated Exclusion of HP1a from Late-Segregating Chromatin in Drosophila. Genetics 2018; 210:171-187. [PMID: 29986897 PMCID: PMC6116970 DOI: 10.1534/genetics.118.301031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 07/03/2018] [Indexed: 11/18/2022] Open
Abstract
While it is known that micronuclei pose a serious risk to genomic integrity by undergoing chromothripsis, mechanisms preventing micronucleus formation remain poorly understood. Here, we investigate how late-segregating acentric chromosomes that would otherwise form micronuclei instead reintegrate into daughter nuclei by passing through Aurora B kinase-dependent channels in the nuclear envelope of Drosophila melanogaster neuroblasts. We find that localized concentrations of Aurora B preferentially phosphorylate H3(S10) on acentrics and their associated DNA tethers. This phosphorylation event prevents HP1a from associating with heterochromatin and results in localized inhibition of nuclear envelope reassembly on endonuclease- and X-irradiation-induced acentrics, promoting channel formation. Finally, we find that HP1a also specifies initiation sites of nuclear envelope reassembly on undamaged chromatin. Taken together, these results demonstrate that Aurora B-mediated regulation of HP1a-chromatin interaction plays a key role in maintaining genome integrity by locally preventing nuclear envelope assembly and facilitating the incorporation of late-segregating acentrics into daughter nuclei.
Collapse
|
16
|
Oo ZY, Stevenson AJ, Proctor M, Daignault SM, Walpole S, Lanagan C, Chen J, Škalamera D, Spoerri L, Ainger SA, Sturm RA, Haass NK, Gabrielli B. Endogenous Replication Stress Marks Melanomas Sensitive to CHEK1 Inhibitors In Vivo. Clin Cancer Res 2018. [PMID: 29535131 DOI: 10.1158/1078-0432.ccr-17-2701] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose: Checkpoint kinase 1 inhibitors (CHEK1i) have single-agent activity in vitro and in vivo Here, we have investigated the molecular basis of this activity.Experimental Design: We have assessed a panel of melanoma cell lines for their sensitivity to the CHEK1i GNE-323 and GDC-0575 in vitro and in vivo The effects of these compounds on responses to DNA replication stress were analyzed in the hypersensitive cell lines.Results: A subset of melanoma cell lines is hypersensitive to CHEK1i-induced cell death in vitro, and the drug effectively inhibits tumor growth in vivo In the hypersensitive cell lines, GNE-323 triggers cell death without cells entering mitosis. CHEK1i treatment triggers strong RPA2 hyperphosphorylation and increased DNA damage in only hypersensitive cells. The increased replication stress was associated with a defective S-phase cell-cycle checkpoint. The number and intensity of pRPA2 Ser4/8 foci in untreated tumors appeared to be a marker of elevated replication stress correlated with sensitivity to CHEK1i.Conclusions: CHEK1i have single-agent activity in a subset of melanomas with elevated endogenous replication stress. CHEK1i treatment strongly increased this replication stress and DNA damage, and this correlated with increased cell death. The level of endogenous replication is marked by the pRPA2Ser4/8 foci in the untreated tumors, and may be a useful marker of replication stress in vivoClin Cancer Res; 24(12); 2901-12. ©2018 AACR.
Collapse
Affiliation(s)
- Zay Yar Oo
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia.,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Alexander J Stevenson
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Martina Proctor
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Sheena M Daignault
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Sebastian Walpole
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Catherine Lanagan
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - James Chen
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Dubravka Škalamera
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Stephen A Ainger
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Richard A Sturm
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| | - Brian Gabrielli
- Mater Research Institute, The University of Queensland, Brisbane, Queensland, Australia. .,The University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland. Australia
| |
Collapse
|
17
|
Takenaka K, Tanabe T, Kawamukai M, Matsuo Y. Overexpression of the transcription factor Rst2 in Schizosaccharomyces pombe indicates growth defect, mitotic defects, and microtubule disorder. Biosci Biotechnol Biochem 2018; 82:247-257. [PMID: 29316864 DOI: 10.1080/09168451.2017.1415126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In Schizosaccharomyces pombe, the transcription factor Rst2 regulates ste11 in meiosis and fbp1 in glucogenesis downstream of the cyclic adenosine monophosphate (cAMP)-dependent protein kinase (PKA) pathway. Here, we demonstrate that Rst2 regulates additional cellular events. Overexpressed Rst2 elevated the frequency of oval, bent, branched, septated, and multi-septated cells. Cells showed normal nuclear divisions but exhibited abnormal nuclear organization at low frequency. In oval cells, microtubules were curved but they were rescued by the deletion of mal3. Since growth defect was not rescued by mal3 deletion, we argue that it is regulated independently. Loss of functional Pka1 exaggerated growth defect upon Rst2 overexpression because its downregulation by Pka1 was lost. Overexpression of Rst2 also caused sensitivity to KCl and CaCl2. These findings suggest that, in addition to meiosis and glucogenesis, Rst2 is involved in cellular events such as regulation of cell growth, cell morphology, mitosis progression, microtubules structure, nuclear structure, and stress response.
Collapse
Affiliation(s)
- Kouhei Takenaka
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Takuma Tanabe
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Makoto Kawamukai
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| | - Yasuhiro Matsuo
- a Department of Life Science and Biotechnology, Faculty of Life and Environmental Science , Shimane University , Matsue , Japan
| |
Collapse
|
18
|
Ly P, Cleveland DW. Rebuilding Chromosomes After Catastrophe: Emerging Mechanisms of Chromothripsis. Trends Cell Biol 2017; 27:917-930. [PMID: 28899600 DOI: 10.1016/j.tcb.2017.08.005] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/03/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Cancer genome sequencing has identified chromothripsis, a complex class of structural genomic rearrangements involving the apparent shattering of an individual chromosome into tens to hundreds of fragments. An initial error during mitosis, producing either chromosome mis-segregation into a micronucleus or chromatin bridge interconnecting two daughter cells, can trigger the catastrophic pulverization of the spatially isolated chromosome. The resultant chromosomal fragments are religated in random order by DNA double-strand break repair during the subsequent interphase. Chromothripsis scars the cancer genome with localized DNA rearrangements that frequently generate extensive copy number alterations, oncogenic gene fusion products, and/or tumor suppressor gene inactivation. Here we review emerging mechanisms underlying chromothripsis with a focus on the contribution of cell division errors caused by centromere dysfunction.
Collapse
Affiliation(s)
- Peter Ly
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| | - Don W Cleveland
- Ludwig Institute for Cancer Research, Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
19
|
Ait Saada A, Teixeira-Silva A, Iraqui I, Costes A, Hardy J, Paoletti G, Fréon K, Lambert SAE. Unprotected Replication Forks Are Converted into Mitotic Sister Chromatid Bridges. Mol Cell 2017; 66:398-410.e4. [PMID: 28475874 DOI: 10.1016/j.molcel.2017.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Revised: 03/08/2017] [Accepted: 04/03/2017] [Indexed: 01/23/2023]
Abstract
Replication stress and mitotic abnormalities are key features of cancer cells. Temporarily paused forks are stabilized by the intra-S phase checkpoint and protected by the association of Rad51, which prevents Mre11-dependent resection. However, if a fork becomes dysfunctional and cannot resume, this terminally arrested fork is rescued by a converging fork to avoid unreplicated parental DNA during mitosis. Alternatively, dysfunctional forks are restarted by homologous recombination. Using fission yeast, we report that Rad52 and the DNA binding activity of Rad51, but not its strand-exchange activity, act to protect terminally arrested forks from unrestrained Exo1-nucleolytic activity. In the absence of recombination proteins, large ssDNA gaps, up to 3 kb long, occur behind terminally arrested forks, preventing efficient fork merging and leading to mitotic sister chromatid bridging. Thus, Rad52 and Rad51 prevent temporarily and terminally arrested forks from degrading and, despite the availability of converging forks, converting to anaphase bridges causing aneuploidy and cell death.
Collapse
Affiliation(s)
- Anissia Ait Saada
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Ana Teixeira-Silva
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Ismail Iraqui
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Audrey Costes
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Julien Hardy
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Giulia Paoletti
- Institut Curie, PSL Research University, CNRS, UMR144, F-75248 Paris, France
| | - Karine Fréon
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France
| | - Sarah A E Lambert
- Institut Curie, PSL Research University, CNRS, UMR3348, F-91405 Orsay, France; University Paris Sud, Paris-Saclay University, CNRS, UMR3348, F-91405 Orsay, France; Labeled Team Fondation pour la Recherche Médicale, UMR3348, F-91405 Orsay, France.
| |
Collapse
|
20
|
Escorcia W, Forsburg SL. Destabilization of the replication fork protection complex disrupts meiotic chromosome segregation. Mol Biol Cell 2017; 28:2978-2997. [PMID: 28855376 PMCID: PMC5662257 DOI: 10.1091/mbc.e17-02-0101] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 08/21/2017] [Accepted: 08/23/2017] [Indexed: 12/17/2022] Open
Abstract
The replication fork protection complex (FPC) coordinates multiple processes that are crucial for unimpeded passage of the replisome through various barriers and difficult to replicate areas of the genome. We examine the function of Swi1 and Swi3, fission yeast's primary FPC components, to elucidate how replication fork stability contributes to DNA integrity in meiosis. We report that destabilization of the FPC results in reduced spore viability, delayed replication, changes in recombination, and chromosome missegregation in meiosis I and meiosis II. These phenotypes are linked to accumulation and persistence of DNA damage markers in meiosis and to problems with cohesion stability at the centromere. These findings reveal an important connection between meiotic replication fork stability and chromosome segregation, two processes with major implications to human reproductive health.
Collapse
Affiliation(s)
- Wilber Escorcia
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| | - Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910
| |
Collapse
|
21
|
Forsburg SL, Shen KF. Centromere Stability: The Replication Connection. Genes (Basel) 2017; 8:genes8010037. [PMID: 28106789 PMCID: PMC5295031 DOI: 10.3390/genes8010037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/10/2017] [Accepted: 01/12/2017] [Indexed: 11/16/2022] Open
Abstract
The fission yeast centromere, which is similar to metazoan centromeres, contains highly repetitive pericentromere sequences that are assembled into heterochromatin. This is required for the recruitment of cohesin and proper chromosome segregation. Surprisingly, the pericentromere replicates early in the S phase. Loss of heterochromatin causes this domain to become very sensitive to replication fork defects, leading to gross chromosome rearrangements. This review examines the interplay between components of DNA replication, heterochromatin assembly, and cohesin dynamics that ensures maintenance of genome stability and proper chromosome segregation.
Collapse
Affiliation(s)
- Susan L Forsburg
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| | - Kuo-Fang Shen
- Program in Molecular & Computational Biology, University of Southern California, Los Angeles, CA 90089-2910, USA.
| |
Collapse
|
22
|
Ly P, Teitz LS, Kim DH, Shoshani O, Skaletsky H, Fachinetti D, Page DC, Cleveland DW. Selective Y centromere inactivation triggers chromosome shattering in micronuclei and repair by non-homologous end joining. Nat Cell Biol 2016; 19:68-75. [PMID: 27918550 DOI: 10.1038/ncb3450] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 11/02/2016] [Indexed: 12/14/2022]
Abstract
Chromosome missegregation into a micronucleus can cause complex and localized genomic rearrangements known as chromothripsis, but the underlying mechanisms remain unresolved. Here we developed an inducible Y centromere-selective inactivation strategy by exploiting a CENP-A/histone H3 chimaera to directly examine the fate of missegregated chromosomes in otherwise diploid human cells. Using this approach, we identified a temporal cascade of events that are initiated following centromere inactivation involving chromosome missegregation, fragmentation, and re-ligation that span three consecutive cell cycles. Following centromere inactivation, a micronucleus harbouring the Y chromosome is formed in the first cell cycle. Chromosome shattering, producing up to 53 dispersed fragments from a single chromosome, is triggered by premature micronuclear condensation prior to or during mitotic entry of the second cycle. Lastly, canonical non-homologous end joining (NHEJ), but not homology-dependent repair, is shown to facilitate re-ligation of chromosomal fragments in the third cycle. Thus, initial errors in cell division can provoke further genomic instability through fragmentation of micronuclear DNAs coupled to NHEJ-mediated reassembly in the subsequent interphase.
Collapse
Affiliation(s)
- Peter Ly
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Levi S Teitz
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Dong H Kim
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Ofer Shoshani
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - Helen Skaletsky
- Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Daniele Fachinetti
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | - David C Page
- Department of Biology, Massachusetts Institute of Technology and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA.,Howard Hughes Medical Institute and Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - Don W Cleveland
- Ludwig Institute for Cancer Research and Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, California 92093, USA
| |
Collapse
|
23
|
Ranatunga NS, Forsburg SL. Characterization of a Novel MMS-Sensitive Allele of Schizosaccharomyces pombe mcm4. G3 (BETHESDA, MD.) 2016; 6:3049-3063. [PMID: 27473316 PMCID: PMC5068930 DOI: 10.1534/g3.116.033571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 07/20/2016] [Indexed: 12/17/2022]
Abstract
The minichromosome maintenance (MCM) complex is the conserved helicase motor of the eukaryotic replication fork. Mutations in the Mcm4 subunit are associated with replication stress and double strand breaks in multiple systems. In this work, we characterize a new temperature-sensitive allele of Schizosaccharomyces pombe mcm4+ Uniquely among known mcm4 alleles, this mutation causes sensitivity to the alkylation damaging agent methyl methanesulfonate (MMS). Even in the absence of treatment or temperature shift, mcm4-c106 cells show increased repair foci of RPA and Rad52, and require the damage checkpoint for viability, indicating genome stress. The mcm4-c106 mutant is synthetically lethal with mutations disrupting fork protection complex (FPC) proteins Swi1 and Swi3. Surprisingly, we found that the deletion of rif1+ suppressed the MMS-sensitive phenotype without affecting temperature sensitivity. Together, these data suggest that mcm4-c106 destabilizes replisome structure.
Collapse
Affiliation(s)
- Nimna S Ranatunga
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| | - Susan L Forsburg
- Program in Molecular and Computational Biology, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
24
|
Lewis CW, Golsteyn RM. Cancer cells that survive checkpoint adaptation contain micronuclei that harbor damaged DNA. Cell Cycle 2016; 15:3131-3145. [PMID: 27636097 DOI: 10.1080/15384101.2016.1231287] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
We have examined the relationship between checkpoint adaptation (mitosis with damaged DNA) and micronuclei. Micronuclei in cancer cells are linked to genomic change, and may induce chromothripsis (chromosome shattering). We measured the cytotoxicity of the cancer drug cisplatin in M059K (glioma fibroblasts, IC50 15 μM). Nearly 100% of M059K cells were positive for histone γH2AX staining after 48 h treatment with a cytotoxic concentration of cisplatin. The proportion of micronucleated cells, as confirmed by microscopy using DAPI and lamin A/C staining, increased from 24% to 48%, and the total micronuclei in surviving cells accumulated over time. Promoting entry into mitosis with a checkpoint inhibitor increased the number of micronuclei in cells whereas blocking checkpoint adaptation with a Cdk inhibitor reduced the number of micronuclei. Interestingly, some micronuclei underwent asynchronous DNA replication, relative to the main nuclei, as measured by deoxy-bromo-uracil (BrdU) staining. These micronuclei stained positive for histone γH2AX, which was linked to DNA replication, suggesting that micronuclei arise from checkpoint adaptation and that micronuclei may continue to damage DNA. By contrast the normal cell line WI-38 did not undergo checkpoint adaptation when treated with cisplatin and did not show changes in micronuclei number. These data reveal that the production of micronuclei by checkpoint adaptation is part of a process that contributes to genomic change.
Collapse
Affiliation(s)
- Cody W Lewis
- a Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge , Lethbridge , AB , Canada
| | - Roy M Golsteyn
- a Cancer Cell Laboratory, Department of Biological Sciences, University of Lethbridge , Lethbridge , AB , Canada
| |
Collapse
|
25
|
Huang S. An exciting time to study the nucleus. Mol Biol Cell 2016; 27:880. [PMID: 26976932 PMCID: PMC4791130 DOI: 10.1091/mbc.e15-11-0765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Sui Huang
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60614
| |
Collapse
|
26
|
Managing Single-Stranded DNA during Replication Stress in Fission Yeast. Biomolecules 2015; 5:2123-39. [PMID: 26393661 PMCID: PMC4598791 DOI: 10.3390/biom5032123] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 08/28/2015] [Accepted: 09/01/2015] [Indexed: 01/27/2023] Open
Abstract
Replication fork stalling generates a variety of responses, most of which cause an increase in single-stranded DNA. ssDNA is a primary signal of replication distress that activates cellular checkpoints. It is also a potential source of genome instability and a substrate for mutation and recombination. Therefore, managing ssDNA levels is crucial to chromosome integrity. Limited ssDNA accumulation occurs in wild-type cells under stress. In contrast, cells lacking the replication checkpoint cannot arrest forks properly and accumulate large amounts of ssDNA. This likely occurs when the replication fork polymerase and helicase units are uncoupled. Some cells with mutations in the replication helicase (mcm-ts) mimic checkpoint-deficient cells, and accumulate extensive areas of ssDNA to trigger the G2-checkpoint. Another category of helicase mutant (mcm4-degron) causes fork stalling in early S-phase due to immediate loss of helicase function. Intriguingly, cells realize that ssDNA is present, but fail to detect that they accumulate ssDNA, and continue to divide. Thus, the cellular response to replication stalling depends on checkpoint activity and the time that replication stress occurs in S-phase. In this review we describe the signs, signals, and symptoms of replication arrest from an ssDNA perspective. We explore the possible mechanisms for these effects. We also advise the need for caution when detecting and interpreting data related to the accumulation of ssDNA.
Collapse
|