1
|
Prozzillo Y, Fattorini G, Ferreri D, Leo M, Dimitri P, Messina G. Knockdown of DOM/Tip60 Complex Subunits Impairs Male Meiosis of Drosophila melanogaster. Cells 2023; 12:1348. [PMID: 37408183 DOI: 10.3390/cells12101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/22/2023] [Accepted: 05/02/2023] [Indexed: 07/07/2023] Open
Abstract
ATP-dependent chromatin remodeling complexes are involved in nucleosome sliding and eviction and/or the incorporation of histone variants into chromatin to facilitate several cellular and biological processes, including DNA transcription, replication and repair. The DOM/TIP60 chromatin remodeling complex of Drosophila melanogaster contains 18 subunits, including the DOMINO (DOM), an ATPase that catalyzes the exchange of the canonical H2A with its variant (H2A.V), and TIP60, a lysine-acetyltransferase that acetylates H4, H2A and H2A.V histones. In recent decades, experimental evidence has shown that ATP-dependent chromatin remodeling factors, in addition to their role in chromatin organization, have a functional relevance in cell division. In particular, emerging studies suggested the direct roles of ATP-dependent chromatin remodeling complex subunits in controlling mitosis and cytokinesis in both humans and D. melanogaster. However, little is known about their possible involvement during meiosis. The results of this work show that the knockdown of 12 of DOM/TIP60 complex subunits generates cell division defects that, in turn, cause total/partial sterility in Drosophila males, providing new insights into the functions of chromatin remodelers in cell division control during gametogenesis.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Gaia Fattorini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Institute of Molecular Biology and Pathology (IBPM), Consiglio Nazionale delle Ricerche (CNR), Sapienza University of Rome, 00185 Rome, Italy
| | - Diego Ferreri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Manuela Leo
- Department of Sciences and Technologies, University of Sannio, 82100 Benevento, Italy
| | - Patrizio Dimitri
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
| | - Giovanni Messina
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, 00185 Rome, Italy
- Pasteur Institute, Fondazione Cenci-Bolognetti, 00161 Rome, Italy
- Department of Biotechnology and Biosciences, Milano-Bicocca University, 20126 Milan, Italy
| |
Collapse
|
2
|
Ostalé CM, Vega-Cuesta P, González T, López-Varea A, de Celis JF. RNAi screen in the Drosophila wing of genes encoding proteins related to cytoskeleton organization and cell division. Dev Biol 2023; 498:61-76. [PMID: 37015290 DOI: 10.1016/j.ydbio.2023.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/28/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Cell division and cytoskeleton organization are fundamental processes participating in the development of Drosophila imaginal discs. In this manuscript we describe the phenotypes in the adult fly wing generated by knockdowns of 85% of Drosophila genes encoding proteins likely related to the regulation of cell division and cytoskeleton organization. We also compile a molecular classification of these proteins into classes that describe their expected or known main biochemical characteristics, as well as mRNA expression in the wing disc and likely protein subcellular localization for a subset of these genes. Finally, we analyze in more detail one protein family of cytoskeleton genes (Arp2/3 complex), and define the consequences of interfering with cell division for wing growth and patterning.
Collapse
|
3
|
The Green Valley of Drosophila melanogaster Constitutive Heterochromatin: Protein-Coding Genes Involved in Cell Division Control. Cells 2022; 11:cells11193058. [PMID: 36231024 PMCID: PMC9563267 DOI: 10.3390/cells11193058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/25/2022] Open
Abstract
Constitutive heterochromatin represents a significant fraction of eukaryotic genomes (10% in Arabidopsis, 20% in humans, 30% in D. melanogaster, and up to 85% in certain nematodes) and shares similar genetic and molecular properties in animal and plant species. Studies conducted over the last few years on D. melanogaster and other organisms led to the discovery of several functions associated with constitutive heterochromatin. This made it possible to revise the concept that this ubiquitous genomic territory is incompatible with gene expression. The aim of this review is to focus the attention on a group of protein-coding genes resident in D. melanogaster constitutive of heterochromatin, which are implicated in different steps of cell division.
Collapse
|
4
|
Vulliard L, Hancock J, Kamnev A, Fell CW, Ferreira da Silva J, Loizou JI, Nagy V, Dupré L, Menche J. BioProfiling.jl: profiling biological perturbations with high-content imaging in single cells and heterogeneous populations. Bioinformatics 2022; 38:1692-1699. [PMID: 34935929 PMCID: PMC8896612 DOI: 10.1093/bioinformatics/btab853] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION High-content imaging screens provide a cost-effective and scalable way to assess cell states across diverse experimental conditions. The analysis of the acquired microscopy images involves assembling and curating raw cellular measurements into morphological profiles suitable for testing biological hypotheses. Despite being a critical step, general-purpose and adaptable tools for morphological profiling are lacking and no solution is available for the high-performance Julia programming language. RESULTS Here, we introduce BioProfiling.jl, an efficient end-to-end solution for compiling and filtering informative morphological profiles in Julia. The package contains all the necessary data structures to curate morphological measurements and helper functions to transform, normalize and visualize profiles. Robust statistical distances and permutation tests enable quantification of the significance of the observed changes despite the high fraction of outliers inherent to high-content screens. This package also simplifies visual artifact diagnostics, thus streamlining a bottleneck of morphological analyses. We showcase the features of the package by analyzing a chemical imaging screen, in which the morphological profiles prove to be informative about the compounds' mechanisms of action and can be conveniently integrated with the network localization of molecular targets. AVAILABILITY AND IMPLEMENTATION The Julia package is available on GitHub: https://github.com/menchelab/BioProfiling.jl. We also provide Jupyter notebooks reproducing our analyses: https://github.com/menchelab/BioProfilingNotebooks. The data underlying this article are available from FigShare, at https://doi.org/10.6084/m9.figshare.14784678.v2. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Loan Vulliard
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna 1030, Austria
| | - Joel Hancock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Department of Structural and Computational Biology, Max Perutz Labs, University of Vienna, Vienna 1030, Austria
| | - Anton Kamnev
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
| | - Christopher W Fell
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Joana Ferreira da Silva
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Joanna I Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna 1090, Austria
| | - Vanja Nagy
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- Department of Neurology, Medical University of Vienna, Vienna 1090, Austria
| | - Loïc Dupré
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- Department of Dermatology, Medical University of Vienna, Vienna 1090, Austria
- Toulouse Institute for Infectious and Inflammatory Diseases (INFINITy), INSERM UMR1291, CNRS UMR5051, Toulouse III Paul Sabatier University, Toulouse 31024, France
| | | |
Collapse
|
5
|
Genetic Interaction between Mfrp and Adipor1 Mutations Affect Retinal Disease Phenotypes. Int J Mol Sci 2022; 23:ijms23031615. [PMID: 35163536 PMCID: PMC8835889 DOI: 10.3390/ijms23031615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/12/2022] Open
Abstract
Adipor1tm1Dgen and Mfrprd6 mutant mice share similar eye disease characteristics. Previously, studies established a functional relationship of ADIPOR1 and MFRP proteins in maintaining retinal lipidome homeostasis and visual function. However, the independent and/or interactive contribution of both genes to similar disease phenotypes, including fundus spots, decreased axial length, and photoreceptor degeneration has yet to be examined. We performed a gene-interaction study where homozygous Adipor1tm1Dgen and Mfrprd6 mice were bred together and the resulting doubly heterozygous F1 offspring were intercrossed to produce 210 F2 progeny. Four-month-old mice from all nine genotypic combinations obtained in the F2 generation were assessed for white spots by fundus photo documentation, for axial length by caliper measurements, and for photoreceptor degeneration by histology. Two-way factorial ANOVA was performed to study individual as well as gene interaction effects on each phenotype. Here, we report the first observation of reduced axial length in Adipor1tmlDgen homozygotes. We show that while Adipor1 and Mfrp interact to affect spotting and degeneration, they act independently to control axial length, highlighting the complex functional association between these two genes. Further examination of the molecular basis of this interaction may help in uncovering mechanisms by which these genes perturb ocular homeostasis.
Collapse
|
6
|
Itoh T, Inoue S, Sun X, Kusuda R, Hibi M, Shimizu T. Cfdp1 controls the cell cycle and neural differentiation in the zebrafish cerebellum and retina. Dev Dyn 2021; 250:1618-1633. [PMID: 33987914 DOI: 10.1002/dvdy.371] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Although the cell cycle and cell differentiation should be coordinately regulated to generate a variety of neurons in the brain, the molecules that are involved in this coordination still remain largely unknown. In this study, we analyzed the roles of a nuclear protein Cfdp1, which is thought to be involved in chromatin remodeling, in zebrafish neurogenesis. RESULTS Zebrafish cfdp1 mutants maintained the progenitors of granule cells (GCs) in the cerebellum, but showed defects in their differentiation to GCs. cfdp1 mutants showed an increase in phospho-histone 3 (pH 3)-positive cells and apoptotic cells, as well as a delayed cell cycle transition from the G2 to the M phase in the cerebellum. The inhibition of tp53 prevented apoptosis but not GC differentiation in the cfdp1 mutant cerebellum. A similar increase in apoptotic cells and pH 3-positive cells, and defective cell differentiation, were observed in the cfdp1 mutant retina. Although mitotic spindles formed, mitosis was blocked before anaphase in both the cerebellum and retina of cfdp1 mutant larvae. Furthermore, expression of the G2/mitotic-specific cyclin B1 gene increased in the cfdp1 mutant cerebellum. CONCLUSIONS Our findings suggest that Cfdp1 regulates the cell cycle of neural progenitors, thereby promoting neural differentiation in the brain.
Collapse
Affiliation(s)
- Tsubasa Itoh
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Shinsuke Inoue
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Xiaoding Sun
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Ryo Kusuda
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Masahiko Hibi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Shimizu
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
7
|
Sakuma C, Sekizuka T, Kuroda M, Hanada K, Yamaji T. Identification of SYS1 as a Host Factor Required for Shiga Toxin-Mediated Cytotoxicity in Vero Cells. Int J Mol Sci 2021; 22:ijms22094936. [PMID: 34066520 PMCID: PMC8124574 DOI: 10.3390/ijms22094936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/01/2021] [Accepted: 05/04/2021] [Indexed: 12/12/2022] Open
Abstract
Shiga toxin (STx) or Vero toxin is a virulence factor produced by enterohemorrhagic Escherichia coli. The toxin binds to the glycosphingolipid globotriaosylceramide (Gb3) for its entry, and causes cell death by inhibiting ribosome function. Previously, we performed a loss-of-function screen in HeLa cells using a human CRISPR knockout (KO) library and identified various host genes required for STx-induced cell death. To determine whether this library targeted to the human genome is applicable to non-human primate cells and to identify previously unrecognized factors crucial for STx-induced cell death, we herein performed a similar screen in the African green monkey kidney-derived Vero C1008 subline. Many genes relevant to metabolic enzymes and membrane trafficking were enriched, although the number of enriched genes was less than that obtained in the screening for HeLa cells. Of note, several genes that had not been enriched in the previous screening were enriched: one of these genes was SYS1, which encodes a multi-spanning membrane protein in the Golgi apparatus. In SYS1 KO Vero cells, expression of Gb3 and sphingomyelin was decreased, while that of glucosylceramide and lactosylceramide was increased. In addition, loss of SYS1 inhibited the biosynthesis of protein glycans, deformed the Golgi apparatus, and perturbed the localization of trans-Golgi network protein (TGN) 46. These results indicate that the human CRISPR KO library is applicable to Vero cell lines, and SYS1 has a widespread effect on glycan biosynthesis via regulation of intra-Golgi and endosome–TGN retrograde transports.
Collapse
Affiliation(s)
- Chisato Sakuma
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (C.S.); (K.H.)
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (T.S.); (M.K.)
| | - Kentaro Hanada
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (C.S.); (K.H.)
| | - Toshiyuki Yamaji
- Department of Biochemistry and Cell Biology, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; (C.S.); (K.H.)
- Correspondence:
| |
Collapse
|
8
|
Sun S, Gresham D. Cellular quiescence in budding yeast. Yeast 2021; 38:12-29. [PMID: 33350503 DOI: 10.1002/yea.3545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/20/2022] Open
Abstract
Cellular quiescence, the temporary and reversible exit from proliferative growth, is the predominant state of all cells. However, our understanding of the biological processes and molecular mechanisms that underlie cell quiescence remains incomplete. As with the mitotic cell cycle, budding and fission yeast are preeminent model systems for studying cellular quiescence owing to their rich experimental toolboxes and the evolutionary conservation across eukaryotes of pathways and processes that control quiescence. Here, we review current knowledge of cell quiescence in budding yeast and how it pertains to cellular quiescence in other organisms, including multicellular animals. Quiescence entails large-scale remodeling of virtually every cellular process, organelle, gene expression, and metabolic state that is executed dynamically as cells undergo the initiation, maintenance, and exit from quiescence. We review these major transitions, our current understanding of their molecular bases, and highlight unresolved questions. We summarize the primary methods employed for quiescence studies in yeast and discuss their relative merits. Understanding cell quiescence has important consequences for human disease as quiescent single-celled microbes are notoriously difficult to kill and quiescent human cells play important roles in diseases such as cancer. We argue that research on cellular quiescence will be accelerated through the adoption of common criteria, and methods, for defining cell quiescence. An integrated approach to studying cell quiescence, and a focus on the behavior of individual cells, will yield new insights into the pathways and processes that underlie cell quiescence leading to a more complete understanding of the life cycle of cells. TAKE AWAY: Quiescent cells are viable cells that have reversibly exited the cell cycle Quiescence is induced in response to a variety of nutrient starvation signals Quiescence is executed dynamically through three phases: initiation, maintenance, and exit Quiescence entails large-scale remodeling of gene expression, organelles, and metabolism Single-cell approaches are required to address heterogeneity among quiescent cells.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| | - David Gresham
- Center for Genomics and Systems Biology, New York University, New York, New York, 10003, USA.,Department of Biology, New York University, New York, New York, 10003, USA
| |
Collapse
|
9
|
Sun S, Baryshnikova A, Brandt N, Gresham D. Genetic interaction profiles of regulatory kinases differ between environmental conditions and cellular states. Mol Syst Biol 2020; 16:e9167. [PMID: 32449603 PMCID: PMC7247079 DOI: 10.15252/msb.20199167] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 03/18/2020] [Accepted: 03/31/2020] [Indexed: 01/13/2023] Open
Abstract
Cell growth and quiescence in eukaryotic cells is controlled by an evolutionarily conserved network of signaling pathways. Signal transduction networks operate to modulate a wide range of cellular processes and physiological properties when cells exit proliferative growth and initiate a quiescent state. How signaling networks function to respond to diverse signals that result in cell cycle exit and establishment of a quiescent state is poorly understood. Here, we studied the function of signaling pathways in quiescent cells using global genetic interaction mapping in the model eukaryotic cell, Saccharomyces cerevisiae (budding yeast). We performed pooled analysis of genotypes using molecular barcode sequencing (Bar-seq) to test the role of ~4,000 gene deletion mutants and ~12,000 pairwise interactions between all non-essential genes and the protein kinase genes TOR1, RIM15, and PHO85 in three different nutrient-restricted conditions in both proliferative and quiescent cells. We detect up to 10-fold more genetic interactions in quiescent cells than proliferative cells. We find that both individual gene effects and genetic interaction profiles vary depending on the specific pro-quiescence signal. The master regulator of quiescence, RIM15, shows distinct genetic interaction profiles in response to different starvation signals. However, vacuole-related functions show consistent genetic interactions with RIM15 in response to different starvation signals, suggesting that RIM15 integrates diverse signals to maintain protein homeostasis in quiescent cells. Our study expands genome-wide genetic interaction profiling to additional conditions, and phenotypes, and highlights the conditional dependence of epistasis.
Collapse
Affiliation(s)
- Siyu Sun
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyNew York UniversityNew YorkNYUSA
| | | | - Nathan Brandt
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyNew York UniversityNew YorkNYUSA
| | - David Gresham
- Center for Genomics and Systems BiologyNew York UniversityNew YorkNYUSA
- Department of BiologyNew York UniversityNew YorkNYUSA
| |
Collapse
|
10
|
Cytokinesis in Eukaryotic Cells: The Furrow Complexity at a Glance. Cells 2020; 9:cells9020271. [PMID: 31979090 PMCID: PMC7072619 DOI: 10.3390/cells9020271] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/17/2020] [Accepted: 01/20/2020] [Indexed: 12/31/2022] Open
Abstract
The duplication cycle is the fascinating process that, starting from a cell, results in the formation of two daughter cells and it is essential for life. Cytokinesis is the final step of the cell cycle, it is a very complex phase, and is a concert of forces, remodeling, trafficking, and cell signaling. All of the steps of cell division must be properly coordinated with each other to faithfully segregate the genetic material and this task is fundamental for generating viable cells. Given the importance of this process, molecular pathways and proteins that are involved in cytokinesis are conserved from yeast to humans. In this review, we describe symmetric and asymmetric cell division in animal cell and in a model organism, budding yeast. In addition, we illustrate the surveillance mechanisms that ensure a proper cell division and discuss the connections with normal cell proliferation and organs development and with the occurrence of human diseases.
Collapse
|
11
|
Umer Z, Akhtar J, Khan MHF, Shaheen N, Haseeb MA, Mazhar K, Mithani A, Anwar S, Tariq M. Genome-wide RNAi screen in Drosophila reveals Enok as a novel trithorax group regulator. Epigenetics Chromatin 2019; 12:55. [PMID: 31547845 PMCID: PMC6757429 DOI: 10.1186/s13072-019-0301-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/17/2022] Open
Abstract
Background Polycomb group (PcG) and trithorax group (trxG) proteins contribute to the specialization of cell types by maintaining differential gene expression patterns. Initially discovered as positive regulators of HOX genes in forward genetic screens, trxG counteracts PcG-mediated repression of cell type-specific genes. Despite decades of extensive analysis, molecular understanding of trxG action and regulation are still punctuated by many unknowns. This study aimed at discovering novel factors that elicit an anti-silencing effect to facilitate trxG-mediated gene activation. Results We have developed a cell-based reporter system and performed a genome-wide RNAi screen to discover novel factors involved in trxG-mediated gene regulation in Drosophila. We identified more than 200 genes affecting the reporter in a manner similar to trxG genes. From the list of top candidates, we have characterized Enoki mushroom (Enok), a known histone acetyltransferase, as an important regulator of trxG in Drosophila. Mutants of enok strongly suppressed extra sex comb phenotype of Pc mutants and enhanced homeotic transformations associated with trx mutations. Enok colocalizes with both TRX and PC at chromatin. Moreover, depletion of Enok specifically resulted in an increased enrichment of PC and consequently silencing of trxG targets. This downregulation of trxG targets was also accompanied by a decreased occupancy of RNA-Pol-II in the gene body, correlating with an increased stalling at the transcription start sites of these genes. We propose that Enok facilitates trxG-mediated maintenance of gene activation by specifically counteracting PcG-mediated repression. Conclusion Our ex vivo approach led to identification of new trxG candidate genes that warrant further investigation. Presence of chromatin modifiers as well as known members of trxG and their interactors in the genome-wide RNAi screen validated our reverse genetics approach. Genetic and molecular characterization of Enok revealed a hitherto unknown interplay between Enok and PcG/trxG system. We conclude that histone acetylation by Enok positively impacts the maintenance of trxG-regulated gene activation by inhibiting PRC1-mediated transcriptional repression.
Collapse
Affiliation(s)
- Zain Umer
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Jawad Akhtar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Haider Farooq Khan
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Najma Shaheen
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Muhammad Abdul Haseeb
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Khalida Mazhar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Aziz Mithani
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan
| | - Saima Anwar
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.,Biomedical Engineering Centre, University of Engineering and Technology Lahore, KSK Campus, Lahore, Pakistan
| | - Muhammad Tariq
- Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore, 54792, Pakistan.
| |
Collapse
|
12
|
Prozzillo Y, Delle Monache F, Ferreri D, Cuticone S, Dimitri P, Messina G. The True Story of Yeti, the "Abominable" Heterochromatic Gene of Drosophila melanogaster. Front Physiol 2019; 10:1093. [PMID: 31507454 PMCID: PMC6713933 DOI: 10.3389/fphys.2019.01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/08/2019] [Indexed: 12/21/2022] Open
Abstract
The Drosophila Yeti gene (CG40218) was originally identified by recessive lethal mutation and subsequently mapped to the deep pericentromeric heterochromatin of chromosome 2. Functional studies have shown that Yeti encodes a 241 amino acid protein called YETI belonging to the evolutionarily conserved family of Bucentaur (BCNT) proteins and exhibiting a widespread distribution in animals and plants. Later studies have demonstrated that YETI protein: (i) is able to bind both subunits of the microtubule-based motor kinesin-I; (ii) is required for proper chromosome organization in both mitosis and meiosis divisions; and more recently (iii) is a new subunit of dTip60 chromatin remodeling complex. To date, other functions of YETI counterparts in chicken (CENtromere Protein 29, CENP-29), mouse (Cranio Protein 27, CP27), zebrafish and human (CranioFacial Development Protein 1, CFDP1) have been reported in literature, but the fully understanding of the multifaceted molecular function of this protein family remains still unclear. In this review we comprehensively highlight recent work and provide a more extensive hypothesis suggesting a broader range of YETI protein functions in different cellular processes.
Collapse
Affiliation(s)
- Yuri Prozzillo
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Francesca Delle Monache
- "Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Diego Ferreri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Stefano Cuticone
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Patrizio Dimitri
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giovanni Messina
- Pasteur Institute of Italy, Fondazione Cenci Bolognetti, Rome, Italy.,"Charles Darwin" Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Amini S, Jacobsen A, Ivanova O, Lijnzaad P, Heringa J, Holstege FCP, Feenstra KA, Kemmeren P. The ability of transcription factors to differentially regulate gene expression is a crucial component of the mechanism underlying inversion, a frequently observed genetic interaction pattern. PLoS Comput Biol 2019; 15:e1007061. [PMID: 31083661 PMCID: PMC6532943 DOI: 10.1371/journal.pcbi.1007061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 05/23/2019] [Accepted: 04/30/2019] [Indexed: 12/21/2022] Open
Abstract
Genetic interactions, a phenomenon whereby combinations of mutations lead to unexpected effects, reflect how cellular processes are wired and play an important role in complex genetic diseases. Understanding the molecular basis of genetic interactions is crucial for deciphering pathway organization as well as understanding the relationship between genetic variation and disease. Several hypothetical molecular mechanisms have been linked to different genetic interaction types. However, differences in genetic interaction patterns and their underlying mechanisms have not yet been compared systematically between different functional gene classes. Here, differences in the occurrence and types of genetic interactions are compared for two classes, gene-specific transcription factors (GSTFs) and signaling genes (kinases and phosphatases). Genome-wide gene expression data for 63 single and double deletion mutants in baker's yeast reveals that the two most common genetic interaction patterns are buffering and inversion. Buffering is typically associated with redundancy and is well understood. In inversion, genes show opposite behavior in the double mutant compared to the corresponding single mutants. The underlying mechanism is poorly understood. Although both classes show buffering and inversion patterns, the prevalence of inversion is much stronger in GSTFs. To decipher potential mechanisms, a Petri Net modeling approach was employed, where genes are represented as nodes and relationships between genes as edges. This allowed over 9 million possible three and four node models to be exhaustively enumerated. The models show that a quantitative difference in interaction strength is a strict requirement for obtaining inversion. In addition, this difference is frequently accompanied with a second gene that shows buffering. Taken together, these results provide a mechanistic explanation for inversion. Furthermore, the ability of transcription factors to differentially regulate expression of their targets provides a likely explanation why inversion is more prevalent for GSTFs compared to kinases and phosphatases.
Collapse
Affiliation(s)
- Saman Amini
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Annika Jacobsen
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Olga Ivanova
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Philip Lijnzaad
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Jaap Heringa
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - K. Anton Feenstra
- Centre for Integrative Bioinformatics (IBIVU), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Patrick Kemmeren
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Center for Molecular Medicine, University Medical Centre Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Heigwer F, Port F, Boutros M. RNA Interference (RNAi) Screening in Drosophila. Genetics 2018; 208:853-874. [PMID: 29487145 PMCID: PMC5844339 DOI: 10.1534/genetics.117.300077] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 09/28/2017] [Indexed: 12/22/2022] Open
Abstract
In the last decade, RNA interference (RNAi), a cellular mechanism that uses RNA-guided degradation of messenger RNA transcripts, has had an important impact on identifying and characterizing gene function. First discovered in Caenorhabditis elegans, RNAi can be used to silence the expression of genes through introduction of exogenous double-stranded RNA into cells. In Drosophila, RNAi has been applied in cultured cells or in vivo to perturb the function of single genes or to systematically probe gene function on a genome-wide scale. In this review, we will describe the use of RNAi to study gene function in Drosophila with a particular focus on high-throughput screening methods applied in cultured cells. We will discuss available reagent libraries and cell lines, methodological approaches for cell-based assays, and computational methods for the analysis of high-throughput screens. Furthermore, we will review the generation and use of genome-scale RNAi libraries for tissue-specific knockdown analysis in vivo and discuss the differences and similarities with the use of genome-engineering methods such as CRISPR/Cas9 for functional analysis.
Collapse
Affiliation(s)
- Florian Heigwer
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Fillip Port
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center, and Department of Cell and Molecular Biology, Heidelberg University, Medical Faculty Mannheim, D-69120, Germany
| |
Collapse
|
15
|
Billmann M, Chaudhary V, ElMaghraby MF, Fischer B, Boutros M. Widespread Rewiring of Genetic Networks upon Cancer Signaling Pathway Activation. Cell Syst 2017; 6:52-64.e4. [PMID: 29199019 PMCID: PMC5791663 DOI: 10.1016/j.cels.2017.10.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 05/30/2017] [Accepted: 10/25/2017] [Indexed: 12/14/2022]
Abstract
Cellular signaling networks coordinate physiological processes in all multicellular organisms. Within networks, modules switch their function to control signaling activity in response to the cellular context. However, systematic approaches to map the interplay of such modules have been lacking. Here, we generated a context-dependent genetic interaction network of a metazoan's signaling pathway. Using Wnt signaling in Drosophila as a model, we measured >290,000 double perturbations of the pathway in a baseline state, after activation by Wnt ligand or after loss of the tumor suppressor APC. We found that genetic interactions within the Wnt network globally rewired after pathway activation. We derived between-state networks that showed how genes changed their function between state-specific networks. This related pathway inhibitors across states and identified genes required for pathway activation. For instance, we predicted and confirmed the ER-resident protein Catsup to be required for ligand-mediated Wnt signaling activation. Together, state-dependent and between-state genetic interaction networks identify responsive functional modules that control cellular pathways. Genetic interaction networks of Wnt signaling in three cellular states Networks rewire upon activation of Wnt pathway by ligand or by loss of APC Interaction profiles identify known and novel state-dependent pathway modules State-specific and between-state profile similarity identify signaling regulators
Collapse
Affiliation(s)
- Maximilian Billmann
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Varun Chaudhary
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Mostafa F ElMaghraby
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Bernd Fischer
- German Cancer Research Center (DKFZ), Computational Genome Biology Group, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany.
| |
Collapse
|
16
|
Serrano-Solano B, Díaz Ramos A, Hériché JK, Ranea JAG. How can functional annotations be derived from profiles of phenotypic annotations? BMC Bioinformatics 2017; 18:96. [PMID: 28183267 PMCID: PMC5304448 DOI: 10.1186/s12859-017-1503-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/28/2017] [Indexed: 11/25/2022] Open
Abstract
Background Loss-of-function phenotypes are widely used to infer gene function using the principle that similar phenotypes are indicative of similar functions. However, converting phenotypic to functional annotations requires careful interpretation of phenotypic descriptions and assessment of phenotypic similarity. Understanding how functions and phenotypes are linked will be crucial for the development of methods for the automatic conversion of gene loss-of-function phenotypes to gene functional annotations. Results We explored the relation between cellular phenotypes from RNAi-based screens in human cells and gene annotations of cellular functions as provided by the Gene Ontology (GO). Comparing different similarity measures, we found that information content-based measures of phenotypic similarity were the best at capturing gene functional similarity. However, phenotypic similarities did not map to the Gene Ontology organization of gene function but to functions defined as groups of GO terms with shared gene annotations. Conclusions Our observations have implications for the use and interpretation of phenotypic similarities as a proxy for gene functions both in RNAi screen data analysis and curation and in the prediction of disease genes. Electronic supplementary material The online version of this article (doi:10.1186/s12859-017-1503-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Beatriz Serrano-Solano
- Department of Molecular Biology and Biochemistry, University of Málaga, Boulevard Louis Pasteur, Málaga, 29071, Spain
| | - Antonio Díaz Ramos
- Department of Algebra, Geometry and Topology, University of Málaga, Boulevard Louis Pasteur, Málaga, 29071, Spain
| | - Jean-Karim Hériché
- European Molecular Biology Laboratory, Meyerhofstrasse 1, Heidelberg, 69117, Germany
| | - Juan A G Ranea
- Department of Molecular Biology and Biochemistry, University of Málaga, Boulevard Louis Pasteur, Málaga, 29071, Spain. .,CIBER de Enfermedades raras (CIBERER), Madrid, Spain.
| |
Collapse
|
17
|
Billmann M, Boutros M. Systematic epistatic mapping of cellular processes. Cell Div 2017; 12:2. [PMID: 28077953 PMCID: PMC5223360 DOI: 10.1186/s13008-016-0028-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/26/2016] [Indexed: 12/12/2022] Open
Abstract
Genetic screens have identified many novel components of various biological processes, such as components required for cell cycle and cell division. While forward genetic screens typically generate unstructured ‘hit’ lists, genetic interaction mapping approaches can identify functional relations in a systematic fashion. Here, we discuss a recent study by our group demonstrating a two-step approach to first screen for regulators of the mitotic cell cycle, and subsequently guide hypothesis generation by using genetic interaction analysis. The screen used a high-content microscopy assay and automated image analysis to capture defects during mitotic progression and cytokinesis. Genetic interaction networks derived from process-specific features generate a snapshot of functional gene relations in those processes, which follow a temporal order during the cell cycle. This complements a recently published approach, which inferred directional genetic interactions reconstructing hierarchical relationships between genes across different phases during mitotic progression. In conclusion, this strategy leverages unbiased, genome-wide, yet highly sensitive and process-focused functional screening in cells.
Collapse
Affiliation(s)
- Maximilian Billmann
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany ; Department of Computer Science and Engineering, University of Minnesota-Twin Cities, 200 Union St SE, Minneapolis, MN 55455 USA
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division Signaling and Functional Genomics and Heidelberg University, Department of Cell and Molecular Biology, Faculty of Medicine Mannheim, Im Neuenheimer Feld 580, 69120 Heidelberg, Germany ; German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| |
Collapse
|
18
|
Abstract
We have carried out a haploinsufficiency (HI) screen in fission yeast using heterozygous deletion diploid mutants of a genome-wide set of cell cycle genes to identify genes encoding products whose level determines the rate of progression through the cell cycle. Cell size at division was used as a measure of advancement or delay of the G2-M transition of rod-shaped fission yeast cells. We found that 13 mutants were significantly longer or shorter (greater than 10%) than control cells at cell division. These included mutants of the cdc2, cdc25, wee1 and pom1 genes, which have previously been shown to play a role in the timing of entry into mitosis, and which validate this approach. Seven of these genes are involved in regulation of the G2-M transition, 5 for nuclear transport and one for nucleotide metabolism. In addition we identified 4 more genes that were 8–10% longer or shorter than the control that also had roles in regulation of the G2-M transition or in nuclear transport. The genes identified here are all conserved in human cells, suggesting that this dataset will be useful as a basis for further studies to identify rate-limiting steps for progression through the cell cycle in other eukaryotes.
Collapse
|