1
|
Song BW, Kim S, Kim R, Jeong S, Moon H, Kim H, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Lee MY, Kim J, Kim HK, Han J, Chang W. Regulation of Inflammation-Mediated Endothelial to Mesenchymal Transition with Echinochrome a for Improving Myocardial Dysfunction. Mar Drugs 2022; 20:756. [PMID: 36547903 PMCID: PMC9781361 DOI: 10.3390/md20120756] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Endothelial-mesenchymal transition (EndMT) is a process by which endothelial cells (ECs) transition into mesenchymal cells (e.g., myofibroblasts and smooth muscle cells) and induce fibrosis of cells/tissues, due to ischemic conditions in the heart. Previously, we reported that echinochrome A (EchA) derived from sea urchin shells can modulate cardiovascular disease by promoting anti-inflammatory and antioxidant activity; however, the mechanism underlying these effects was unclear. We investigated the role of EchA in the EndMT process by treating human umbilical vein ECs (HUVECs) with TGF-β2 and IL-1β, and confirmed the regulation of cell migration, inflammatory, oxidative responses and mitochondrial dysfunction. Moreover, we developed an EndMT-induced myocardial infarction (MI) model to investigate the effect of EchA in vivo. After EchA was administered once a day for a total of 3 days, the histological and functional improvement of the myocardium was investigated to confirm the control of the EndMT. We concluded that EchA negatively regulates early or inflammation-related EndMT and reduces the myofibroblast proportion and fibrosis area, meaning that it may be a potential therapy for cardiac regeneration or cardioprotection from scar formation and cardiac fibrosis due to tissue granulation. Our findings encourage the study of marine bioactive compounds for the discovery of new therapeutics for recovering ischemic cardiac injuries.
Collapse
Affiliation(s)
- Byeong-Wook Song
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Sejin Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Republic of Korea
| | - Ran Kim
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Republic of Korea
| | - Seongtae Jeong
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Hanbyeol Moon
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Hojin Kim
- Institute for Bio-Medical Convergence, Catholic Kwandong University International St. Mary’s Hospital, Incheon 22711, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Min Young Lee
- Department of Molecular Physiology, College of Pharmacy, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongmin Kim
- Department of Life Systems, Sookmyung Women’s University, Seoul 04310, Republic of Korea
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University, Busan 47392, Republic of Korea
| | - Jin Han
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Inje University, Busan 47392, Republic of Korea
| | - Woochul Chang
- Department of Biology Education, College of Education, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
2
|
Su X, Wei J, Qi H, Jin M, Zhang Q, Zhang Y, Zhang C, Yang R. LRRC19 Promotes Permeability of the Gut Epithelial Barrier Through Degrading PKC-ζ and PKCι/λ to Reduce Expression of ZO1, ZO3, and Occludin. Inflamm Bowel Dis 2021; 27:1302-1315. [PMID: 33501933 DOI: 10.1093/ibd/izaa354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND A dysfunctional gut epithelial barrier allows the augmented permeation of endotoxins, luminal antigens, and bacteria into the bloodstream, causing disease. The maintenance of gut epithelial barrier integrity may be regulated by multiple factors. Herein we analyze the role of leucine-rich repeat-containing protein 19 (LRRC19) in regulating the permeability of the gut epithelial barrier. METHODS We utilized Lrrc19 knockout (KO) mice and clinical samples through transmission electron, intestinal permeability assay, Western blot, and immunofluorescence staining to characterize the role of LRRC19 in the permeability of the gut epithelial barrier. RESULTS We found that LRRC19, which is expressed in gut epithelial cells, impairs gut barrier function. Transmission electron micrographs revealed a tighter junction and narrower gaps in the colon epithelium cells in LRRC19 KO mice. There were lower levels of serum lipopolysaccharide and 4 kDa-fluorescein isothiocyanate-dextran after gavage in LRRC19 KO mice than in wild-type mice. We found that LRRC19 could reduce the expression of zonula occludens (ZO)-1, ZO-3, and occludin in the colonic epithelial cells. The decreased expression of ZO-1, ZO-3, and occludin was dependent on degrading protein kinase C (PKC) ζ and PKCι/λ through K48 ubiquitination by LRRC19. The expression of LRRC19 was also negatively correlated with ZO-1, ZO-3, occludin, PKCζ, and PKCι/λ in human colorectal cancers. CONCLUSIONS The protein LRRC19 can promote the permeability of the gut epithelial barrier through degrading PKC ζ and PKCι/λ to reduce the expression of ZO-1, ZO-3, and occludin.
Collapse
Affiliation(s)
- Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jianmei Wei
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Mengli Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Qianjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
3
|
Mashukova A, Forteza R, Shah VN, Salas PJ. The cell polarity kinase Par1b/MARK2 activation selects specific NF-kB transcripts via phosphorylation of core mediator Med17/TRAP80. Mol Biol Cell 2021; 32:690-702. [PMID: 33596087 PMCID: PMC8108508 DOI: 10.1091/mbc.e20-10-0646] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Par1b/MARK2 is a Ser/Thr kinase with pleiotropic effects that participates in the generation of apico-basal polarity in Caenorhabditis elegans. It is phosphorylated by atypical PKC(ι/λ) in Thr595 and inhibited. Because previous work showed a decrease in atypical protein kinase C (aPKC) activity under proinflammatory conditions, we analyzed the hypothesis that the resulting decrease in Thr595-MARK2 with increased kinase activity may also participate in innate immunity. We confirmed that pT595-MARK2 was decreased under inflammatory stimulation. The increase in MARK2 activity was verified by Par3 delocalization and rescue with a specific inhibitor. MARK2 overexpression significantly enhanced the transcriptional activity of NF-kB for a subset of transcripts. It also resulted in phosphorylation of a single band (∼Mr 80,000) coimmunoprecipitating with RelA, identified as Med17. In vitro phosphorylation showed direct phosphorylation of Med17 in Ser152 by recombinant MARK2. Expression of S152D-Med17 mimicked the effect of MARK2 activation on downstream transcriptional regulation, which was antagonized by S152A-Med17. The decrease in pThr595 phosphorylation was validated in aPKC-deficient mouse jejunal mucosae. The transcriptional effects were confirmed in transcriptome analysis and transcript enrichment determinations in cells expressing S152D-Med17. We conclude that theMARK2-Med17 axis represents a novel form of cross-talk between polarity signaling and transcriptional regulation including, but not restricted to, innate immunity responses.
Collapse
Affiliation(s)
- Anastasia Mashukova
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136.,Department of Medical Education, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33314
| | - Radia Forteza
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Viraj N Shah
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Pedro J Salas
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
4
|
Reina-Campos M, Diaz-Meco MT, Moscat J. The Dual Roles of the Atypical Protein Kinase Cs in Cancer. Cancer Cell 2019; 36:218-235. [PMID: 31474570 PMCID: PMC6751000 DOI: 10.1016/j.ccell.2019.07.010] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/24/2019] [Accepted: 07/30/2019] [Indexed: 02/08/2023]
Abstract
Atypical protein kinase C (aPKC) isozymes, PKCλ/ι and PKCζ, are now considered fundamental regulators of tumorigenesis. However, the specific separation of functions that determine their different roles in cancer is still being unraveled. Both aPKCs have pleiotropic context-dependent functions that can translate into tumor-promoter or -suppressive functions. Here, we review early and more recent literature to discuss how the different tumor types, and their microenvironments, might account for the selective signaling of each aPKC isotype. This is of clinical relevance because a better understanding of the roles of these kinases is essential for the design of new anti-cancer treatments.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Maria T Diaz-Meco
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jorge Moscat
- Cancer Metabolism and Signaling Networks Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
5
|
Vorhagen S, Kleefisch D, Persa OD, Graband A, Schwickert A, Saynisch M, Leitges M, Niessen CM, Iden S. Shared and independent functions of aPKCλ and Par3 in skin tumorigenesis. Oncogene 2018; 37:5136-5146. [PMID: 29789715 PMCID: PMC6137026 DOI: 10.1038/s41388-018-0313-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 03/04/2018] [Accepted: 04/17/2018] [Indexed: 12/11/2022]
Abstract
The polarity proteins Par3 and aPKC are key regulators of processes altered in cancer. Par3/aPKC are thought to dynamically interact with Par6 but increasing evidence suggests that aPKC and Par3 also exert complex-independent functions. Whereas aPKCλ serves as tumor promotor, Par3 can either promote or suppress tumorigenesis. Here we asked whether and how Par3 and aPKCλ genetically interact to control two-stage skin carcinogenesis. Epidermal loss of Par3, aPKCλ, or both, strongly reduced tumor multiplicity and increased latency but inhibited invasion to similar extents, indicating that Par3 and aPKCλ function as a complex to promote tumorigenesis. Molecularly, Par3/aPKCλ cooperate to promote Akt, ERK and NF-κB signaling during tumor initiation to sustain growth, whereas aPKCλ dominates in promoting survival. In the inflammatory tumorigenesis phase Par3/aPKCλ cooperate to drive Stat3 activation and hyperproliferation. Unexpectedly, the reduced inflammatory signaling did not alter carcinogen-induced immune cell numbers but reduced IL-4 Receptor-positive stromal macrophage numbers in all mutant mice, suggesting that epidermal aPKCλ and Par3 promote a tumor-permissive environment. Importantly, aPKCλ also serves a distinct, carcinogen-independent role in controlling skin immune cell homeostasis. Collectively, our data demonstrates that Par3 and aPKCλ cooperate to promote skin tumor initiation and progression, likely through sustaining growth, survival, and inflammatory signaling.
Collapse
Affiliation(s)
- Susanne Vorhagen
- Department of Dermatology, University of Cologne, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany
| | - Dominik Kleefisch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany
| | - Oana-Diana Persa
- Department of Dermatology, University of Cologne, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany
| | - Annika Graband
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany
| | - Alexandra Schwickert
- Department of Dermatology, University of Cologne, Köln, Germany.,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany
| | - Michael Saynisch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany.,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany
| | - Michael Leitges
- Biotechnology Centre of Oslo, University of Oslo, 0316, Oslo, Norway
| | - Carien M Niessen
- Department of Dermatology, University of Cologne, Köln, Germany. .,Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany.
| | - Sandra Iden
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Köln, Germany. .,Center for Molecular Medicine Cologne (CMMC), University of Cologne, Köln, Germany.
| |
Collapse
|
6
|
Murata M, Osanai M, Takasawa A, Takasawa K, Aoyama T, Kawada Y, Yamamoto A, Ono Y, Hiratsuka Y, Kojima T, Sawada N. Occludin induces microvillus formation via phosphorylation of ezrin in a mouse hepatic cell line. Exp Cell Res 2018; 366:172-180. [PMID: 29555369 DOI: 10.1016/j.yexcr.2018.03.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 03/13/2018] [Accepted: 03/15/2018] [Indexed: 11/30/2022]
Abstract
Apical and basolateral cell membranes are separated by tight junctions (TJs). Microvilli are limited to the apical cell membrane. TJs and microvilli are the landmarks for epithelial cell polarity. However, the direct relationship between TJ proteins (TJPs) and the components of microvilli remains unclear. In this study, we investigated whether occludin, which is considered to be a functional TJP, is involved in microvillus formation. In occludin knockout mouse hepatic cells (OcKO cells), the microvillus density was less than that in wild-type (WT) cells and the length of microvilli was short. Immunoreactivity of ezrin was decreased in OcKO cells compared with that in WT cells. Although there was no change in the expression level of ezrin, phosphorylation of ezrin was decreased in OcKO cells. The microvillus density and the length of microvilli were increased in OcKO cells by transfection of full-length mouse occludin and COOH-terminal domains of occludin. These results suggested that occludin induced microvillus formation via phosphorylation of ezrin and that the COOH-terminal domain of occludin, which is localized in non-TJ areas, might be able to induce microvilli formation. Our results provide new insights into the function of occludin.
Collapse
Affiliation(s)
- Masaki Murata
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan.
| | - Makoto Osanai
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Akira Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Kumi Takasawa
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Tomoyuki Aoyama
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yuka Kawada
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Akihiro Yamamoto
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yusuke Ono
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Yutaro Hiratsuka
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute of Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Norimasa Sawada
- Department of Pathology, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
7
|
Rothschild PR, Salah S, Berdugo M, Gélizé E, Delaunay K, Naud MC, Klein C, Moulin A, Savoldelli M, Bergin C, Jeanny JC, Jonet L, Arsenijevic Y, Behar-Cohen F, Crisanti P. ROCK-1 mediates diabetes-induced retinal pigment epithelial and endothelial cell blebbing: Contribution to diabetic retinopathy. Sci Rep 2017; 7:8834. [PMID: 28821742 PMCID: PMC5562711 DOI: 10.1038/s41598-017-07329-y] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/23/2017] [Indexed: 12/18/2022] Open
Abstract
In diabetic retinopathy, the exact mechanisms leading to retinal capillary closure and to retinal barriers breakdown remain imperfectly understood. Rho-associated kinase (ROCK), an effector of the small GTPase Rho, involved in cytoskeleton dynamic regulation and cell polarity is activated by hyperglycemia. In one year-old Goto Kakizaki (GK) type 2 diabetic rats retina, ROCK-1 activation was assessed by its cellular distribution and by phosphorylation of its substrates, MYPT1 and MLC. In both GK rat and in human type 2 diabetic retinas, ROCK-1 is activated and associated with non-apoptotic membrane blebbing in retinal vessels and in retinal pigment epithelium (RPE) that respectively form the inner and the outer barriers. Activation of ROCK-1 induces focal vascular constrictions, endoluminal blebbing and subsequent retinal hypoxia. In RPE cells, actin cytoskeleton remodeling and membrane blebs in RPE cells contributes to outer barrier breakdown. Intraocular injection of fasudil, significantly reduces both retinal hypoxia and RPE barrier breakdown. Diabetes-induced cell blebbing may contribute to ischemic maculopathy and represent an intervention target.
Collapse
Affiliation(s)
- Pierre-Raphaël Rothschild
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Sawsen Salah
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marianne Berdugo
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Emmanuelle Gélizé
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Kimberley Delaunay
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Marie-Christine Naud
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Christophe Klein
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Alexandre Moulin
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Michèle Savoldelli
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Ciara Bergin
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Jean-Claude Jeanny
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Laurent Jonet
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| | - Yvan Arsenijevic
- Department of Ophthalmology of University of Lausanne 1000 Lausanne, Jules Gonin Hospital, Lausanne, Switzerland
| | - Francine Behar-Cohen
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France. .,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. .,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France. .,Department of Ophthalmology, Assistance Publique-Hopitaux de Paris, Hôtel-Dieu de Paris Hospital, 75004, Paris, France. .,INSERM U1138 Team 17, Le Centre de Recherches des Cordeliers (CRC), 75006, Paris, France. .,University of Lausanne, Lausanne, Switzerland.
| | - Patricia Crisanti
- Inserm UMR_S 1138, Team 17: From physiopathology of retinal diseases to clinical advances, Centre de Recherche des Cordeliers, Paris, France.,Sorbonne University, University of Pierre et Marie Curie, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France.,Paris Descartes University, Sorbonne Paris Cité, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
| |
Collapse
|