1
|
Rubtsova MP, Nikishin DA, Vyssokikh MY, Koriagina MS, Vasiliev AV, Dontsova OA. Telomere Reprogramming and Cellular Metabolism: Is There a Link? Int J Mol Sci 2024; 25:10500. [PMID: 39408829 PMCID: PMC11476947 DOI: 10.3390/ijms251910500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Telomeres-special DNA-protein structures at the ends of linear eukaryotic chromosomes-define the proliferation potential of cells. Extremely short telomeres promote a DNA damage response and cell death to eliminate cells that may have accumulated mutations after multiple divisions. However, telomere elongation is associated with the increased proliferative potential of specific cell types, such as stem and germ cells. This elongation can be permanent in these cells and is activated temporally during immune response activation and regeneration processes. The activation of telomere lengthening mechanisms is coupled with increased proliferation and the cells' need for energy and building resources. To obtain the necessary nutrients, cells are capable of finely regulating energy production and consumption, switching between catabolic and anabolic processes. In this review, we focused on the interconnection between metabolism programs and telomere lengthening mechanisms during programmed activation of proliferation, such as in germ cell maturation, early embryonic development, neoplastic lesion growth, and immune response activation. It is generally accepted that telomere disturbance influences biological processes and promotes dysfunctionality. Here, we propose that metabolic conditions within proliferating cells should be involved in regulating telomere lengthening mechanisms, and telomere length may serve as a marker of defects in cellular functionality. We propose that it is possible to reprogram metabolism in order to regulate the telomere length and proliferative activity of cells, which may be important for the development of approaches to regeneration, immune response modulation, and cancer therapy. However, further investigations in this area are necessary to improve the understanding and manipulation of the molecular mechanisms involved in the regulation of proliferation, metabolism, and aging.
Collapse
Affiliation(s)
- Maria P. Rubtsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Denis A. Nikishin
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
| | - Mikhail Y. Vyssokikh
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Maria S. Koriagina
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
| | - Andrey V. Vasiliev
- Department of Embryology, Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (D.A.N.); (A.V.V.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow 119334, Russia
| | - Olga A. Dontsova
- Chemistry Department, Lomonosov Moscow State University, Moscow 119234, Russia; (M.S.K.); (O.A.D.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- A.N.Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia;
- Skolkovo Institute of Science and Technology, Center for Molecular and Cellular Biology, Moscow 121205, Russia
| |
Collapse
|
2
|
Prince S, Maguemoun K, Ferdebouh M, Querido E, Derumier A, Tremblay S, Chartrand P. CoPixie, a novel algorithm for single-particle track colocalization, enables efficient quantification of telomerase dynamics at telomeres. Nucleic Acids Res 2024; 52:9417-9430. [PMID: 39082280 PMCID: PMC11381360 DOI: 10.1093/nar/gkae669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 09/10/2024] Open
Abstract
Single-particle imaging and tracking can be combined with colocalization analysis to study the dynamic interactions between macromolecules in living cells. Indeed, single-particle tracking has been extensively used to study protein-DNA interactions and dynamics. Still, unbiased identification and quantification of binding events at specific genomic loci remains challenging. Herein, we describe CoPixie, a new software that identifies colocalization events between a theoretically unlimited number of imaging channels, including single-particle movies. CoPixie is an object-based colocalization algorithm that relies on both pixel and trajectory overlap to determine colocalization between molecules. We employed CoPixie with live-cell single-molecule imaging of telomerase and telomeres, to test the model that cancer-associated POT1 mutations facilitate telomere accessibility. We show that POT1 mutants Y223C, D224N or K90E increase telomere accessibility for telomerase interaction. However, unlike the POT1-D224N mutant, the POT1-Y223C and POT1-K90E mutations also increase the duration of long-lasting telomerase interactions at telomeres. Our data reveal that telomere elongation in cells expressing cancer-associated POT1 mutants arises from the dual impact of these mutations on telomere accessibility and telomerase retention at telomeres. CoPixie can be used to explore a variety of questions involving macromolecular interactions in living cells, including between proteins and nucleic acids, from multicolor single-particle tracks.
Collapse
Affiliation(s)
- Samuel Prince
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Kamélia Maguemoun
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Mouna Ferdebouh
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Amélie Derumier
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Stéphanie Tremblay
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| |
Collapse
|
3
|
Bettin N, Querido E, Gialdini I, Grupelli GP, Goretti E, Cantarelli M, Andolfato M, Soror E, Sontacchi A, Jurikova K, Chartrand P, Cusanelli E. TERRA transcripts localize at long telomeres to regulate telomerase access to chromosome ends. SCIENCE ADVANCES 2024; 10:eadk4387. [PMID: 38865460 PMCID: PMC11168465 DOI: 10.1126/sciadv.adk4387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 05/08/2024] [Indexed: 06/14/2024]
Abstract
The function of TERRA in the regulation of telomerase in human cells is still debated. While TERRA interacts with telomerase, how it regulates telomerase function remains unknown. Here, we show that TERRA colocalizes with the telomerase RNA subunit hTR in the nucleoplasm and at telomeres during different phases of the cell cycle. We report that TERRA transcripts relocate away from chromosome ends during telomere lengthening, leading to a reduced number of telomeric TERRA-hTR molecules and consequent increase in "TERRA-free" telomerase molecules at telomeres. Using live-cell imaging and super-resolution microscopy, we show that upon transcription, TERRA relocates from its telomere of origin to long chromosome ends. Furthermore, TERRA depletion by antisense oligonucleotides promoted hTR localization to telomeres, leading to increased residence time and extended half-life of hTR molecules at telomeres. Overall, our findings indicate that telomeric TERRA transcripts inhibit telomere elongation by telomerase acting in trans, impairing telomerase access to telomeres that are different from their chromosome end of origin.
Collapse
Affiliation(s)
- Nicole Bettin
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Emmanuelle Querido
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Irene Gialdini
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Glenda Paola Grupelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Elena Goretti
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Cantarelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Marta Andolfato
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Eslam Soror
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Alessandra Sontacchi
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| | - Katarina Jurikova
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
- Department of Genetics, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, Mlynská dolina, 84215 Bratislava, Slovakia
| | - Pascal Chartrand
- Department of Biochemistry and Molecular Medicine, University of Montreal, 2900 boul. Edouard Montpetit, H3T1J4 Montreal, Canada
| | - Emilio Cusanelli
- Laboratory of Cell Biology and Molecular Genetics, Department CIBIO, University of Trento, via Sommarive 9, 38123 Trento, Italy
| |
Collapse
|
4
|
Bartle L, Wellinger RJ. Methods that shaped telomerase research. Biogerontology 2024; 25:249-263. [PMID: 37903970 PMCID: PMC10998806 DOI: 10.1007/s10522-023-10073-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/30/2023] [Indexed: 11/01/2023]
Abstract
Telomerase, the ribonucleoprotein (RNP) responsible for telomere maintenance, has a complex life. Complex in that it is made of multiple proteins and an RNA, and complex because it undergoes many changes, and passes through different cell compartments. As such, many methods have been developed to discover telomerase components, delve deep into understanding its structure and function and to figure out how telomerase biology ultimately relates to human health and disease. While some old gold-standard methods are still key for determining telomere length and measuring telomerase activity, new technologies are providing promising new ways to gain detailed information that we have never had access to before. Therefore, we thought it timely to briefly review the methods that have revealed information about the telomerase RNP and outline some of the remaining questions that could be answered using new methodology.
Collapse
Affiliation(s)
- Louise Bartle
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada
| | - Raymund J Wellinger
- Department of Microbiology and Infectious Diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Applied Cancer Research Pavilion, 3201 rue Jean-Mignault, Sherbrooke, QC, J1E 4K8, Canada.
| |
Collapse
|
5
|
Lim CJ. Telomere C-Strand Fill-In Machinery: New Insights into the Human CST-DNA Polymerase Alpha-Primase Structures and Functions. Subcell Biochem 2024; 104:73-100. [PMID: 38963484 DOI: 10.1007/978-3-031-58843-3_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Telomeres at the end of eukaryotic chromosomes are extended by a specialized set of enzymes and telomere-associated proteins, collectively termed here the telomere "replisome." The telomere replisome acts on a unique replicon at each chromosomal end of the telomeres, the 3' DNA overhang. This telomere replication process is distinct from the replisome mechanism deployed to duplicate the human genome. The G-rich overhang is first extended before the complementary C-strand is filled in. This overhang is extended by telomerase, a specialized ribonucleoprotein and reverse transcriptase. The overhang extension process is terminated when telomerase is displaced by CTC1-STN1-TEN1 (CST), a single-stranded DNA-binding protein complex. CST then recruits DNA polymerase α-primase to complete the telomere replication process by filling in the complementary C-strand. In this chapter, the recent structure-function insights into the human telomere C-strand fill-in machinery (DNA polymerase α-primase and CST) will be discussed.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
6
|
Klump BM, Schmidt JC. Advances in understanding telomerase assembly. Biochem Soc Trans 2023; 51:2093-2101. [PMID: 38108475 PMCID: PMC10754283 DOI: 10.1042/bst20230269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Telomerase is a complex ribonucleoprotein scaffolded by the telomerase RNA (TR). Telomere lengthening by telomerase is essential to maintain the proliferative potential of stem cells and germ cells, and telomerase is inappropriately activated in the majority of cancers. Assembly of TR with its 12 protein co-factors and the maturation of the 5'- and 3'-ends of TR have been the focus of intense research efforts over the past two decades. High-resolution Cryo-EM structures of human telomerase, high-throughput sequencing of the 3' end of TR, and live cell imaging of various telomerase components have significantly advanced our understanding of the molecular mechanisms that govern telomerase biogenesis, yet many important questions remain unaddressed. In this review, we will summarize these recent advances and highlight the remaining key questions with the ultimate goal of targeting telomerase assembly to suppress telomere maintenance in cancer cells or to promote telomerase activity in patients affected by telomere shortening disorders.
Collapse
Affiliation(s)
- Basma M. Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, U.S.A
- Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, U.S.A
| | - Jens C. Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
7
|
Klump BM, Perez GI, Patrick EM, Adams-Boone K, Cohen SB, Han L, Yu K, Schmidt JC. TCAB1 prevents nucleolar accumulation of the telomerase RNA to facilitate telomerase assembly. Cell Rep 2023; 42:112577. [PMID: 37267110 PMCID: PMC10569210 DOI: 10.1016/j.celrep.2023.112577] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
Localization of a variety of RNAs to non-membrane-bound cellular compartments such as nucleoli and Cajal bodies is critical for their stability and function. The molecular mechanisms that underly the recruitment and exclusion of RNAs from these phase-separated organelles is incompletely understood. Telomerase is a ribonucleoprotein composed of the reverse transcriptase protein telomerase reverse transcriptase (TERT), the telomerase RNA (TR), and several auxiliary proteins, including TCAB1. Here we show that in the absence of TCAB1, a large fraction of TR is tightly bound to the nucleolus, while TERT is largely excluded from the nucleolus, reducing telomerase assembly. This suggests that nuclear compartmentalization by the non-membrane-bound nucleolus counteracts telomerase assembly, and TCAB1 is required to retain TR in the nucleoplasm. Our work provides insight into the mechanism and functional consequences of RNA recruitment to organelles formed by phase separation and demonstrates that TCAB1 plays an important role in telomerase assembly.
Collapse
Affiliation(s)
- Basma M Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Cellular and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
| | - Gloria I Perez
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kate Adams-Boone
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Scott B Cohen
- Children's Medical Research Institute and University of Sydney, Westmead, NSW 2145, Australia
| | - Li Han
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
8
|
CRISPR/Cas: A New Tool in the Research of Telomeres and Telomerase as Well as a Novel Form of Cancer Therapy. Int J Mol Sci 2022; 23:ijms23063002. [PMID: 35328421 PMCID: PMC8953708 DOI: 10.3390/ijms23063002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/08/2022] [Indexed: 02/01/2023] Open
Abstract
Due to their close connection with senescence, aging, and disease, telomeres and telomerase provide a unique and vital research route for boosting longevity and health span. Despite significant advances during the last three decades, earlier studies into these two biological players were impeded by the difficulty of achieving real-time changes inside living cells. As a result of the clustered regularly interspaced short palindromic repeats (CRISPR)-associated system’s (Cas) method, targeted genetic studies are now underway to change telomerase, the genes that govern it as well as telomeres. This review will discuss studies that have utilized CRISPR-related technologies to target and modify genes relevant to telomeres and telomerase as well as to develop targeted anti-cancer therapies. These studies greatly improve our knowledge and understanding of cellular and molecular mechanisms that underlie cancer development and aging.
Collapse
|
9
|
Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32:527-536. [DOI: 10.1016/j.tcb.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
|
10
|
Rachakonda S, Hoheisel JD, Kumar R. Occurrence, functionality and abundance of the TERT promoter mutations. Int J Cancer 2021; 149:1852-1862. [PMID: 34313327 DOI: 10.1002/ijc.33750] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/14/2021] [Accepted: 07/16/2021] [Indexed: 12/18/2022]
Abstract
Telomere shortening at chromosomal ends due to the constraints of the DNA replication process acts as a tumor suppressor by restricting the replicative potential in primary cells. Cancers evade that limitation primarily through the reactivation of telomerase via different mechanisms. Mutations within the promoter of the telomerase reverse transcriptase (TERT) gene represent a definite mechanism for the ribonucleic enzyme regeneration predominantly in cancers that arise from tissues with low rates of self-renewal. The promoter mutations cause a moderate increase in TERT transcription and consequent telomerase upregulation to the levels sufficient to delay replicative senescence but not prevent bulk telomere shortening and genomic instability. Since the discovery, a staggering number of studies have resolved the discrete aspects, effects and clinical relevance of the TERT promoter mutations. The promoter mutations link transcription of TERT with oncogenic pathways, associate with markers of poor outcome and define patients with reduced survivals in several cancers. In this review, we discuss the occurrence and impact of the promoter mutations and highlight the mechanism of TERT activation. We further deliberate on the foundational question of the abundance of the TERT promoter mutations and a general dearth of functional mutations within noncoding sequences, as evident from pan-cancer analysis of the whole-genomes. We posit that the favorable genomic constellation within the TERT promoter may be less than a common occurrence in other noncoding functional elements. Besides, the evolutionary constraints limit the functional fraction within the human genome, hence the lack of abundant mutations outside the coding sequences.
Collapse
Affiliation(s)
| | - Jörg D Hoheisel
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
11
|
SIRT6 enhances telomerase activity to protect against DNA damage and senescence in hypertrophic ligamentum flavum cells from lumbar spinal stenosis patients. Aging (Albany NY) 2021; 13:6025-6040. [PMID: 33568575 PMCID: PMC7950242 DOI: 10.18632/aging.202536] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022]
Abstract
Lumbar spinal stenosis (LSS) is a condition wherein patients exhibit age-related fibrosis, elastin-to-collagen ratio reductions, and ligamentum flavum hypertrophy. This study was designed to assess the relationship between SIRT6 and telomerase activity in hypertrophic ligamentum flavum (LFH) cells from LSS patients. We observed significant reductions in SIRT6, TPP1, and POT1 protein levels as well as increases in telomerase reverse transcriptase (TERT) levels and telomerase activity in LFH tissues relative to non- hypertrophic ligamentum flavum (LFN) tissues. When SIRT6 was overexpressed in these LFH cells, this was associated with significant increases in telomerase activity and a significant reduction in fibrosis-related protein expression. These effects were reversed, however, when telomerase activity was inactivated by hTERT knockdown in these same cells. SIRT6 overexpression was further found to reduce the frequency of senescence-associated β-galactosidase (SA-β-Gal)-positive LFH cells and to decrease p16, MMP3, and L1 mRNA levels and telomere dysfunction-induced foci (TIFs) in LFH cells. In contrast, hTERT knockdown-induced telomerase inactivation eliminated these SIRT6-dependent effects. Overall, our results indicate that SIRT6 functions as a key protective factor that prevents cellular senescence and telomere dysfunction in ligamentum flavum cells, with this effect being at least partially attributable to SIRT6-dependent telomerase activation.
Collapse
|
12
|
Lim CJ, Cech TR. Shaping human telomeres: from shelterin and CST complexes to telomeric chromatin organization. Nat Rev Mol Cell Biol 2021; 22:283-298. [PMID: 33564154 DOI: 10.1038/s41580-021-00328-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2021] [Indexed: 01/14/2023]
Abstract
The regulation of telomere length in mammals is crucial for chromosome end-capping and thus for maintaining genome stability and cellular lifespan. This process requires coordination between telomeric protein complexes and the ribonucleoprotein telomerase, which extends the telomeric DNA. Telomeric proteins modulate telomere architecture, recruit telomerase to accessible telomeres and orchestrate the conversion of the newly synthesized telomeric single-stranded DNA tail into double-stranded DNA. Dysfunctional telomere maintenance leads to telomere shortening, which causes human diseases including bone marrow failure, premature ageing and cancer. Recent studies provide new insights into telomerase-related interactions (the 'telomere replisome') and reveal new challenges for future telomere structural biology endeavours owing to the dynamic nature of telomere architecture and the great number of structures that telomeres form. In this Review, we discuss recently determined structures of the shelterin and CTC1-STN1-TEN1 (CST) complexes, how they may participate in the regulation of telomere replication and chromosome end-capping, and how disease-causing mutations in their encoding genes may affect specific functions. Major outstanding questions in the field include how all of the telomere components assemble relative to each other and how the switching between different telomere structures is achieved.
Collapse
Affiliation(s)
- Ci Ji Lim
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA. .,Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA.
| | - Thomas R Cech
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA. .,BioFrontiers Institute, University of Colorado Boulder, Boulder, CO, USA. .,Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
13
|
Salimi-Jeda A, Badrzadeh F, Esghaei M, Abdoli A. The role of telomerase and viruses interaction in cancer development, and telomerase-dependent therapeutic approaches. Cancer Treat Res Commun 2021; 27:100323. [PMID: 33530025 DOI: 10.1016/j.ctarc.2021.100323] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/21/2022]
Abstract
Human telomerase reverse transcriptase (hTERT) is an enzyme that is critically involved in elongating and maintaining telomeres length to control cell life span and replicative potential. Telomerase activity is continuously expressed in human germ-line cells and most cancer cells, whereas it is suppressed in most somatic cells. In normal cells, by reducing telomerase activity and progressively shortening the telomeres, the cells progress to the senescence or apoptosis process. However, in cancer cells, telomere lengths remain constant due to telomerase's reactivation, and cells continue to proliferate and inhibit apoptosis, and ultimately lead to cancer development and human death due to metastasis. Studies demonstrated that several DNA and RNA oncoviruses could interact with telomerase by integrating their genome sequence within the host cell telomeres specifically. Through the activation of the hTERT promoter and lengthening the telomere, these cells contributes to cancer development. Since oncoviruses can activate telomerase and increase hTERT expression, there are several therapeutic strategies based on targeting the telomerase of cancer cells like telomerase-targeted peptide vaccines, hTERT-targeting dendritic cells (DCs), hTERT-targeting gene therapy, and hTERT-targeting CRISPR/Cas9 system that can overcome tumor-mediated toleration mechanisms and specifically apoptosis in cancer cells. This study reviews available data on the molecular structure of telomerase and the role of oncoviruses and telomerase interaction in cancer development and telomerase-dependent therapeutic approaches to conquest the cancer cells.
Collapse
Affiliation(s)
- Ali Salimi-Jeda
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Fariba Badrzadeh
- Faculti of Medicine, Golestan University of Medical sciences, Golestan, Iran.
| | - Maryam Esghaei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Asghar Abdoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
14
|
Pańczyszyn A, Boniewska-Bernacka E, Goc A. The role of telomeres and telomerase in the senescence of postmitotic cells. DNA Repair (Amst) 2020; 95:102956. [PMID: 32937289 DOI: 10.1016/j.dnarep.2020.102956] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 12/13/2022]
Abstract
Senescence is a process related to the stopping of divisions and changes leading the cell to the SASP phenotype. Permanent senescence of many SASP cells contributes to faster aging of the body and development of age-related diseases due to the release of pro-inflammatory factors. Both mitotically active and non-dividing cells can undergo senescence as a result of activation of different molecular pathways. Telomeres, referred to as the molecular clock, direct the dividing cell into the aging pathway when reaching a critical length. In turn, the senescence of postmitotic cells depends not on the length of telomeres, but their functionality. Dysfunctional telomeres are responsible for triggering the signaling of DNA damage response (DDR). Telomerase subunits in post-mitotic cells translocate between the nucleus, cytoplasm and mitochondria, participating in the regulation of their activity. Among other things, they contribute to the reduction of reactive oxygen species generation, which leads to telomere dysfunction and, consequently, senescence. Some proteins of the shelterin complex also play a protective role by inhibiting senescence-initiating kinases and limiting ROS production by mitochondria.
Collapse
Affiliation(s)
- Anna Pańczyszyn
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Ewa Boniewska-Bernacka
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| | - Anna Goc
- University of Opole, Institute of Medical Sciences, Department of Biology and Genetics, Opole 45-040, Pl.Kopernika 11a, Poland.
| |
Collapse
|
15
|
Single-Molecule Imaging of Telomerase RNA Reveals a Recruitment-Retention Model for Telomere Elongation. Mol Cell 2020; 79:115-126.e6. [DOI: 10.1016/j.molcel.2020.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/13/2020] [Accepted: 05/03/2020] [Indexed: 11/23/2022]
|
16
|
Srinivas N, Rachakonda S, Kumar R. Telomeres and Telomere Length: A General Overview. Cancers (Basel) 2020; 12:E558. [PMID: 32121056 PMCID: PMC7139734 DOI: 10.3390/cancers12030558] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023] Open
Abstract
Telomeres are highly conserved tandem nucleotide repeats that include proximal double-stranded and distal single-stranded regions that in complex with shelterin proteins afford protection at chromosomal ends to maintain genomic integrity. Due to the inherent limitations of DNA replication and telomerase suppression in most somatic cells, telomeres undergo age-dependent incremental attrition. Short or dysfunctional telomeres are recognized as DNA double-stranded breaks, triggering cells to undergo replicative senescence. Telomere shortening, therefore, acts as a counting mechanism that drives replicative senescence by limiting the mitotic potential of cells. Telomere length, a complex hereditary trait, is associated with aging and age-related diseases. Epidemiological data, in general, support an association with varying magnitudes between constitutive telomere length and several disorders, including cancers. Telomere attrition is also influenced by oxidative damage and replicative stress caused by genetic, epigenetic, and environmental factors. Several single nucleotide polymorphisms at different loci, identified through genome-wide association studies, influence inter-individual variation in telomere length. In addition to genetic factors, environmental factors also influence telomere length during growth and development. Telomeres hold potential as biomarkers that reflect the genetic predisposition together with the impact of environmental conditions and as targets for anti-cancer therapies.
Collapse
Affiliation(s)
| | | | - Rajiv Kumar
- Division of Functional Genome Analysis, German Cancer Research Center, Im Neunheimer Feld 580, 69120 Heidelberg, Germany; (N.S.); (S.R.)
| |
Collapse
|
17
|
Patrick EM, Slivka JD, Payne B, Comstock MJ, Schmidt JC. Observation of processive telomerase catalysis using high-resolution optical tweezers. Nat Chem Biol 2020; 16:801-809. [PMID: 32066968 PMCID: PMC7311264 DOI: 10.1038/s41589-020-0478-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/14/2020] [Indexed: 02/07/2023]
Abstract
Telomere maintenance by telomerase is essential for continuous proliferation of human cells and is vital for the survival of stem cells and 90% of cancer cells. To compensate for telomeric DNA lost during DNA replication, telomerase processively adds GGTTAG repeats to chromosome ends by copying the template region within its RNA subunit. Between repeat additions, the RNA template must be recycled. How telomerase remains associated with substrate DNA during this critical translocation step remains unknown. Using a newly developed single-molecule telomerase activity assay utilizing high-resolution optical tweezers, we demonstrate that stable substrate DNA binding at an anchor site within telomerase facilitates the processive synthesis of telomeric repeats. The product DNA synthesized by telomerase can be recaptured by the anchor site or fold into G-quadruplex structures. Our results provide detailed mechanistic insights into telomerase catalysis, a process of critical importance in aging and cancer.
Collapse
Affiliation(s)
- Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Joseph D Slivka
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Bramyn Payne
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
| | - Matthew J Comstock
- Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA.
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA. .,Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
18
|
Quantitative Biology of Human Shelterin and Telomerase: Searching for the Weakest Point. Int J Mol Sci 2019; 20:ijms20133186. [PMID: 31261825 PMCID: PMC6651453 DOI: 10.3390/ijms20133186] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/12/2019] [Accepted: 06/27/2019] [Indexed: 02/06/2023] Open
Abstract
The repetitive telomeric DNA at chromosome ends is protected from unwanted repair by telomere-associated proteins, which form the shelterin complex in mammals. Recent works have provided new insights into the mechanisms of how human shelterin assembles and recruits telomerase to telomeres. Inhibition of telomerase activity and telomerase recruitment to chromosome ends is a promising target for anticancer therapy. Here, we summarize results of quantitative assessments and newly emerged structural information along with the status of the most promising approaches to telomerase inhibition in cancer cells. We focus on the mechanism of shelterin assembly and the mechanisms of how shelterin affects telomerase recruitment to telomeres, addressing the conceptual dilemma of how shelterin allows telomerase action and regulates other essential processes. We evaluate how the identified critical interactions of telomerase and shelterin might be elucidated in future research of new anticancer strategies.
Collapse
|
19
|
Telomere DNA G-quadruplex folding within actively extending human telomerase. Proc Natl Acad Sci U S A 2019; 116:9350-9359. [PMID: 31019071 DOI: 10.1073/pnas.1814777116] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Telomerase reverse transcribes short guanine (G)-rich DNA repeat sequences from its internal RNA template to maintain telomere length. G-rich telomere DNA repeats readily fold into G-quadruplex (GQ) structures in vitro, and the presence of GQ-prone sequences throughout the genome introduces challenges to replication in vivo. Using a combination of ensemble and single-molecule telomerase assays, we discovered that GQ folding of the nascent DNA product during processive addition of multiple telomere repeats modulates the kinetics of telomerase catalysis and dissociation. Telomerase reactions performed with telomere DNA primers of varying sequence or using GQ-stabilizing K+ versus GQ-destabilizing Li+ salts yielded changes in DNA product profiles consistent with formation of GQ structures within the telomerase-DNA complex. Addition of the telomerase processivity factor POT1-TPP1 altered the DNA product profile, but was not sufficient to recover full activity in the presence of Li+ cations. This result suggests GQ folding synergizes with POT1-TPP1 to support telomerase function. Single-molecule Förster resonance energy transfer experiments reveal complex DNA structural dynamics during real-time catalysis in the presence of K+ but not Li+, supporting the notion of nascent product folding within the active telomerase complex. To explain the observed distributions of telomere products, we globally fit telomerase time-series data to a kinetic model that converges to a set of rate constants describing each successive telomere repeat addition cycle. Our results highlight the potential influence of the intrinsic folding properties of telomere DNA during telomerase catalysis, and provide a detailed characterization of GQ modulation of polymerase function.
Collapse
|
20
|
Brane AC, Tollefsbol TO. Targeting Telomeres and Telomerase: Studies in Aging and Disease Utilizing CRISPR/Cas9 Technology. Cells 2019; 8:E186. [PMID: 30795542 PMCID: PMC6406488 DOI: 10.3390/cells8020186] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 02/14/2019] [Accepted: 02/20/2019] [Indexed: 12/11/2022] Open
Abstract
Telomeres and telomerase provide a unique and important avenue of study in improving both life expectancy and quality of life due to their close association with aging and disease. While major advances in our understanding of these two biological mediators have characterized the last two decades, previous studies have been limited by the inability to affect change in real time within living cells. The last three years, however, have witnessed a huge step forward to overcome this limitation. The advent of the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system has led to a wide array of targeted genetic studies that are already being employed to modify telomeres and telomerase, as well as the genes that affect them. In this review, we analyze studies utilizing the technology to target and modify telomeres, telomerase, and their closely associated genes. We also discuss how these studies can provide insight into the biology and mechanisms that underlie aging, cancer, and other diseases.
Collapse
Affiliation(s)
- Andrew C Brane
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
| | - Trygve O Tollefsbol
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Center for Healthy Aging, University of Alabama Birmingham, 1530 3rd Avenue South, Birmingham, AL 35294, USA.
- Comprehensive Cancer Center, University of Alabama Birmingham, 1802 6th Avenue South, Birmingham, AL 35294, USA.
- Nutrition Obesity Research Center, University of Alabama Birmingham, 1675 University Boulevard, Birmingham, AL 35294, USA.
- Comprehensive Diabetes Center, University of Alabama Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA.
| |
Collapse
|