1
|
Kasberg W, Luong P, Minushkin K, Pustova I, Swift KA, Zhao M, Audhya A. TFG regulates inner COPII coat recruitment to facilitate anterograde secretory protein transport. Mol Biol Cell 2024; 35:ar113. [PMID: 38985515 PMCID: PMC11321049 DOI: 10.1091/mbc.e24-06-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Coat protein complex II (COPII) governs the initial steps of biosynthetic secretory protein transport from the endoplasmic reticulum (ER), facilitating the movement of a wide variety of cargoes. Here, we demonstrate that Trk-fused gene (TFG) regulates the rate at which inner COPII coat proteins are concentrated at ER subdomains. Specifically, in cells lacking TFG, the GTPase-activating protein (GAP) Sec23 accumulates more rapidly at budding sites on the ER as compared with control cells, potentially altering the normal timing of GTP hydrolysis on Sar1. Under these conditions, anterograde trafficking of several secretory cargoes is delayed, irrespective of their predicted size. We propose that TFG controls the local, freely available pool of Sec23 during COPII coat formation and limits its capacity to prematurely destabilize COPII complexes on the ER. This function of TFG enables it to act akin to a rheostat, promoting the ordered recruitment of Sec23, which is critical for efficient secretory cargo export.
Collapse
Affiliation(s)
- William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Peter Luong
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Kayla Minushkin
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Kevin A. Swift
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Meixian Zhao
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53706
| |
Collapse
|
2
|
Agellon LB. Importance of fatty acid binding proteins in cellular function and organismal metabolism. J Cell Mol Med 2024; 28:e17703. [PMID: 36876733 PMCID: PMC10902576 DOI: 10.1111/jcmm.17703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/25/2023] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Fatty acid binding proteins (Fabps) are small soluble proteins that are abundant in the cytosol. These proteins are known to bind a myriad of small hydrophobic molecules and have been postulated to serve a variety of roles, yet their precise functions have remained an enigma over half a century of study. Here, we consider recent findings, along with the cumulative findings contributed by many laboratories working on Fabps over the last half century, to synthesize a new outlook for what functions Fabps serve in cells and organisms. Collectively, the findings illustrate that Fabps function as versatile multi-purpose devices serving as sensors, conveyors and modulators to enable cells to detect and handle a specific class of metabolites, and to adjust their metabolic capacity and efficiency.
Collapse
Affiliation(s)
- Luis B. Agellon
- School of Human NutritionMcGill UniversitySte. Anne de BellevueQuebecCanada
| |
Collapse
|
3
|
Abstract
Fatty acid-binding proteins (FABPs) are small lipid-binding proteins abundantly expressed in tissues that are highly active in fatty acid (FA) metabolism. Ten mammalian FABPs have been identified, with tissue-specific expression patterns and highly conserved tertiary structures. FABPs were initially studied as intracellular FA transport proteins. Further investigation has demonstrated their participation in lipid metabolism, both directly and via regulation of gene expression, and in signaling within their cells of expression. There is also evidence that they may be secreted and have functional impact via the circulation. It has also been shown that the FABP ligand binding repertoire extends beyond long-chain FAs and that their functional properties also involve participation in systemic metabolism. This article reviews the present understanding of FABP functions and their apparent roles in disease, particularly metabolic and inflammation-related disorders and cancers.
Collapse
Affiliation(s)
- Judith Storch
- Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers University, New Brunswick, New Jersey, United States;
| | - Betina Corsico
- Instituto de Investigaciones Bioquímicas de La Plata, CONICET-UNLP, Facultad de Ciencias Médicas, La Plata, Argentina;
| |
Collapse
|
4
|
Huang Q, Szebenyi DME. The alarmone ppGpp selectively inhibits the isoform A of the human small GTPase Sar1. Proteins 2023; 91:518-531. [PMID: 36369712 DOI: 10.1002/prot.26445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/17/2022] [Accepted: 11/03/2022] [Indexed: 11/15/2022]
Abstract
Transport of newly synthesized proteins from endoplasmic reticulum (ER) to Golgi is mediated by coat protein complex II (COPII). The assembly and disassembly of COPII vesicles is regulated by the molecular switch Sar1, which is a small GTPase and a component of COPII. Usually a small GTPase binds GDP (inactive form) or GTP (active form). Mammals have two Sar1 isoforms, Sar1a and Sar1b, that have approximately 90% sequence identity. Some experiments demonstrated that these two isoforms had distinct but overlapping functions. Here we found another instance of differing behavior: the alarmone ppGpp could bind to and inhibit the GTPase activity of human Sar1a but could not inhibit the GTPase activity of human Sar1b. The crystal structures of Sar1a⋅ppGpp and Sar1b⋅GDP have been determined. Superposition of the structures shows that ppGpp binds to the nucleotide-binding pocket, its guanosine base, ribose ring and 5'-diphosphate occupying nearly the same positions as for GDP. However, its 3'-diphosphate points away from the active site and, hence, away from the surface of the protein. The overall structure of Sar1a⋅ppGpp is more similar to Sar1b⋅GDP than to Sar1b⋅GTP. We also find that the Asp140-Arg138-water-ligand interaction net is important for the binding of ppGpp to Sar1a. This study provides further evidence showing that there are biochemical differences between the Sar1a and Sar1b isoforms of Sar1.
Collapse
Affiliation(s)
- Qingqiu Huang
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York, USA
| | - Doletha M E Szebenyi
- Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, New York, USA
| |
Collapse
|
5
|
In vitro reconstitution of COPII vesicles from Arabidopsis thaliana suspension-cultured cells. Nat Protoc 2023; 18:810-830. [PMID: 36599961 DOI: 10.1038/s41596-022-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/23/2022] [Indexed: 01/06/2023]
Abstract
Transport vesicles mediate protein traffic between endomembrane organelles in a highly selective and efficient manner. In vitro reconstitution systems have been widely used for studying mechanisms of vesicle formation, polar trafficking, and cargo specificity in mammals and yeast. However, this technique has not yet been applied to plants because of the large lytic vacuoles and rigid cell walls. Here, we describe an Arabidopsis-derived in vitro vesicle formation system to reconstitute, purify and characterize plant-derived coat protein complex II (COPII) vesicles. In this protocol, we provide a detailed method for the isolation of microsomes and cytosol from Arabidopsis thaliana suspension-cultured cells (7-8 h), in vitro COPII vesicle reconstitution and purification (4-5 h) and biochemical and microscopic analysis using specific antibodies against COPII cargo molecules for reconstitution efficiency evaluation (2 h). We also include detailed sample-preparation steps for analyzing vesicle morphology by cryogenic electron microscopy (1 h) and vesicle cargoes by quantitative proteomics (4 h). Routinely, the whole procedure takes ~18-20 h of operation time and enables plant researchers without specific expertise to achieve organelle purification or vesicle reconstitution for further characterization.
Collapse
|
6
|
Van der Verren SE, Zanetti G. The small GTPase Sar1, control centre of COPII trafficking. FEBS Lett 2023; 597:865-882. [PMID: 36737236 DOI: 10.1002/1873-3468.14595] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
Sar1 is a small GTPase of the ARF family. Upon exchange of GDP for GTP, Sar1 associates with the endoplasmic reticulum (ER) membrane and recruits COPII components, orchestrating cargo concentration and membrane deformation. Many aspects of the role of Sar1 and regulation of its GTP cycle remain unclear, especially as complexity increases in higher organisms that secrete a wider range of cargoes. This review focusses on the regulation of GTP hydrolysis and its role in coat assembly, as well as the mechanism of Sar1-induced membrane deformation and scission. Finally, we highlight the additional specialisation in higher eukaryotes and the outstanding questions on how Sar1 functions are orchestrated.
Collapse
Affiliation(s)
| | - Giulia Zanetti
- Institute of Structural and Molecular Biology, Birkbeck College London, UK
| |
Collapse
|
7
|
Zhan F, Deng Q, Chen Z, Xie C, Xiang S, Qiu S, Tian L, Wu C, Ou Y, Chen J, Xu L. SAR1A regulates the RhoA/YAP and autophagy signaling pathways to influence osteosarcoma invasion and metastasis. Cancer Sci 2022; 113:4104-4119. [PMID: 36047971 DOI: 10.1111/cas.15551] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/15/2022] Open
Abstract
Osteosarcoma is the most prevalent form of primary bone malignancy affecting adolescents. Secretion-associated Ras-related GTPase 1A (SAR1A) is a key regulator of endoplasmic reticulum (ER) homeostasis, but its role as a regulator of osteosarcoma metastasis has yet to be clarified. Bioinformatics analyses revealed SAR1A and RHOA to be upregulated in osteosarcoma patients, with the upregulation of these genes being associated with poor 5-year metastasis-free survival rates. In addition, the upregulation of SAR1A and RHOA in osteosarcoma was highly positively correlated. Immunohistochemical analyses additionally revealed that SAR1A levels were increased in osteosarcoma pulmonary metastases. In vitro wound healing and Transwell assays indicated that knocking down SAR1A or RHOA impaired the invasive and migratory activity of osteosarcoma cells, whereas RHOA overexpression had the opposite effect. Western blotting and immunofluorescent staining revealed the inhibition of osteosarcoma cell epithelial-mesenchymal transition following SAR1A or RHOA knockdown; RHOA overexpression had the opposite effect. Following SAR1A knockdown, phalloidin staining indicated that osteosarcoma cells showed reduced lamellipodia formation. Endoplasmic reticulum stress levels and reactive oxygen species production were enhanced following the knockdown of SAR1A, as was autophagic activity, with lung metastases being reduced in vivo after such knockdown. Knocking down SAR1A suppresses osteosarcoma cell metastasis through the RhoA/YAP, ER stress, and autophagic pathways, offering new insights into the regulation of autophagic activity in the context of osteosarcoma cell metastasis and suggesting that these pathways could be amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Fangbiao Zhan
- Department of Orthopedics, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China.,Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qianrong Deng
- Health Management Center, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Zhiyu Chen
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chaozheng Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shuang Xiang
- Department of Pathology, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Sheng Qiu
- Department of Endocrinology, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin Tian
- Department of Clinical Laboratory, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Chunrong Wu
- Department of Oncology, Chongqing University Jiangjin Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Yunsheng Ou
- Orthopedic Laboratory of Chongqing Medical University, Chongqing, China.,Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Chen
- Department of Orthopedics, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
| | - Lixin Xu
- Department of Orthopedics, Chongqing University Three Gorges Hospital, School of Medicine, Chongqing University, Chongqing Municipality Clinical Research Center for Geriatric Diseases, Chongqing, China
| |
Collapse
|
8
|
Li B, Zeng Y, Jiang L. COPII vesicles in plant autophagy and endomembrane trafficking. FEBS Lett 2022; 596:2314-2323. [PMID: 35486434 DOI: 10.1002/1873-3468.14362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 11/06/2022]
Abstract
In eukaryotes, the endomembrane system allows for spatiotemporal compartmentation of complicated cellular processes. The plant endomembrane system consists of the endoplasmic reticulum (ER), the Golgi apparatus (GA), the trans-Golgi network (TGN), the multivesicular body (MVB), and the vacuole. Anterograde traffic from the ER to GA is mediated by coat protein complex II (COPII) vesicles. Autophagy, an evolutionarily conserved catabolic process that turns over cellular materials upon nutrient deprivation or in adverse environments, exploits double-membrane autophagosomes to recycle unwanted constituents in the lysosome/vacuole. Accumulating evidence reveals novel functions of plant COPII vesicles in autophagy and their regulation by abiotic stresses. Here, we summarize current knowledge about plant COPII vesicles in the endomembrane trafficking and then highlight recent findings showing their distinct roles in modulating the autophagic flux and stress responses.
Collapse
Affiliation(s)
- Baiying Li
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Yonglun Zeng
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, Centre for Cell & Developmental Biology and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, New Territories, Hong Kong, China.,CUHK Shenzhen Research Institute, Shenzhen, China.,Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
9
|
Lee HW, Jiang YF, Chang HW, Cheng IC. Foot-and-Mouth Disease Virus 3A Hijacks Sar1 and Sec12 for ER Remodeling in a COPII-Independent Manner. Viruses 2022; 14:v14040839. [PMID: 35458569 PMCID: PMC9028839 DOI: 10.3390/v14040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 02/01/2023] Open
Abstract
Positive-stranded RNA viruses modify host organelles to form replication organelles (ROs) for their own replication. The enteroviral 3A protein has been demonstrated to be highly associated with the COPI pathway, in which factors operate on the ER-to-Golgi intermediate and the Golgi. However, Sar1, a COPII factor exerting coordinated action at endoplasmic reticulum (ER) exit sites rather than COPI factors, is required for the replication of foot-and-mouth disease virus (FMDV). Therefore, further understanding regarding FMDV 3A could be key to explaining the differences and to understanding FMDV’s RO formation. In this study, FMDV 3A was confirmed as a peripheral membrane protein capable of modifying the ER into vesicle-like structures, which were neither COPII vesicles nor autophagosomes. When the C-terminus of 3A was truncated, it was located at the ER without vesicular modification. This change was revealed using mGFP and APEX2 fusion constructs, and observed by fluorescence microscopy and electron tomography, respectively. For the other 3A truncation, the minimal region for modification was aa 42–92. Furthermore, we found that the remodeling was related to two COPII factors, Sar1 and Sec12; both interacted with 3A, but their binding domains on 3A were different. Finally, we hypothesized that the N-terminus of 3A would interact with Sar1, as its C-terminus simultaneously interacted with Sec12, which could possibly enhance Sar1 activation. On the ER membrane, active Sar1 interacted with regions of aa 42–59 and aa 76–92 from 3A for vesicle formation. This mechanism was distinct from the traditional COPII pathway and could be critical for FMDV RO formation.
Collapse
Affiliation(s)
- Heng-Wei Lee
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
| | - Yi-Fan Jiang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Hui-Wen Chang
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan; (H.-W.L.); (Y.-F.J.); (H.-W.C.)
- Correspondence:
| |
Collapse
|
10
|
Genetic disorders of cellular trafficking. Trends Genet 2022; 38:724-751. [DOI: 10.1016/j.tig.2022.02.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 02/28/2022] [Indexed: 02/06/2023]
|
11
|
ER exit sites in Drosophila display abundant ER-Golgi vesicles and pearled tubes but no megacarriers. Cell Rep 2021; 36:109707. [PMID: 34525362 DOI: 10.1016/j.celrep.2021.109707] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/24/2021] [Accepted: 08/20/2021] [Indexed: 01/08/2023] Open
Abstract
Secretory cargos are collected at endoplasmic reticulum (ER) exit sites (ERES) before transport to the Golgi apparatus. Decades of research have provided many details of the molecular events underlying ER-Golgi exchanges. Essential questions, however, remain about the organization of the ER-Golgi interface in cells and the type of membrane structures mediating traffic from ERES. To investigate these, we use transgenic tagging in Drosophila flies, 3D-structured illumination microscopy (SIM), and focused ion beam scanning electron microscopy (FIB-SEM) to characterize ERES-Golgi units in collagen-producing fat body, imaginal discs, and imaginal discs overexpressing ERES determinant Tango1. Facing ERES, we find a pre-cis-Golgi region, equivalent to the vertebrate ER-Golgi intermediate compartment (ERGIC), involved in both anterograde and retrograde transport. This pre-cis-Golgi is continuous with the rest of the Golgi, not a separate compartment or collection of large carriers, for which we find no evidence. We observe, however, many vesicles, as well as pearled tubules connecting ERES and Golgi.
Collapse
|
12
|
Nakagawa H, Komori M, Nishimura K. Carbon tetrachloride suppresses ER-Golgi transport by inhibiting COPII vesicle formation on the ER membrane in the RLC-16 hepatocyte cell line. Cell Biol Int 2021; 45:633-641. [PMID: 33247607 DOI: 10.1002/cbin.11510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/20/2020] [Accepted: 11/21/2020] [Indexed: 01/14/2023]
Abstract
Carbon tetrachloride (CCl4 ) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4 -induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.
Collapse
Affiliation(s)
- Hiroshi Nakagawa
- Laboratory of Toxicology, Graduate School of Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Masayuki Komori
- Laboratory of Cellular and Molecular Biology, Graduate School of Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| | - Kazuhiko Nishimura
- Laboratory of Toxicology, Graduate School of Veterinary Sciences, Osaka Prefecture University, Izumisano, Osaka, Japan
| |
Collapse
|
13
|
Feng Z, Yang K, Pastor-Pareja JC. Tales of the ER-Golgi Frontier: Drosophila-Centric Considerations on Tango1 Function. Front Cell Dev Biol 2021; 8:619022. [PMID: 33505971 PMCID: PMC7829582 DOI: 10.3389/fcell.2020.619022] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
In the secretory pathway, the transfer of cargo from the ER to the Golgi involves dozens of proteins that localize at specific regions of the ER called ER exit sites (ERES), where cargos are concentrated preceding vesicular transport to the Golgi. Despite many years of research, we are missing crucial details of how this highly dynamic ER-Golgi interface is defined, maintained and functions. Mechanisms allowing secretion of large cargos such as the very abundant collagens are also poorly understood. In this context, Tango1, discovered in the fruit fly Drosophila and widely conserved in animal evolution, has received a lot of attention in recent years. Tango1, an ERES-localized transmembrane protein, is the single fly member of the MIA/cTAGE family, consisting in humans of TANGO1 and at least 14 different related proteins. After its discovery in flies, a specific role of human TANGO1 in mediating secretion of collagens was reported. However, multiple studies in Drosophila have demonstrated that Tango1 is required for secretion of all cargos. At all ERES, through self-interaction and interactions with other proteins, Tango1 aids ERES maintenance and tethering of post-ER membranes. In this review, we discuss discoveries on Drosophila Tango1 and put them in relation with research on human MIA/cTAGE proteins. In doing so, we aim to offer an integrated view of Tango1 function and the nature of ER-Golgi transport from an evolutionary perspective.
Collapse
Affiliation(s)
- Zhi Feng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Ke Yang
- School of Life Sciences, Tsinghua University, Beijing, China
| | - José C Pastor-Pareja
- School of Life Sciences, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
14
|
Liu D, Zhang X, Liu X, Zhang A, Zhu B. Roles of a small GTPase Sar1 in ecdysteroid signaling and immune response of red swamp crayfish Procambarus clarkii. Int J Biol Macromol 2020; 166:550-556. [PMID: 33137382 DOI: 10.1016/j.ijbiomac.2020.10.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 10/23/2022]
Abstract
Secretion-associated and ras-related protein 1 (Sar1) is a small GTPase that plays an important role in the transport of protein coated with coat protein complex II vesicles. However, its alternative roles in the biological processes of Procambarus clarkii remain unclear. Here, a sar1 gene (named as Pc-sar1) with an open reading frame of 582 bp from P. clarkii was identified. Pc-sar1 was expressed in all examined tissues with highest expression levels in muscle, which was determined by real-time PCR and western blotting. After the induction of lipopolysaccharide (LPS) and polycytidylic acid (Poly I: C), the transcriptional levels of Pc-sar1 differed in hepatopancreas, gill, muscle and intestine. In contrast, the expression of Pc-sar1 was upregulated by 20-hydroxyecdysone in these four tissues. In addition, the RNA interference of Pc-sar1 significantly affected the expression levels of immune and hormone-related genes. These results indicate that Pc-sar1 is involved in the innate immune response and ecdysteroid signaling pathway.
Collapse
Affiliation(s)
- Die Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaojiao Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Xiaoxiao Liu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Awei Zhang
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Baojian Zhu
- College of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
15
|
Melville DB, Studer S, Schekman R. Small sequence variations between two mammalian paralogs of the small GTPase SAR1 underlie functional differences in coat protein complex II assembly. J Biol Chem 2020; 295:8401-8412. [PMID: 32358066 PMCID: PMC7307210 DOI: 10.1074/jbc.ra120.012964] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/27/2020] [Indexed: 01/03/2023] Open
Abstract
Vesicles that are coated by coat protein complex II (COPII) are the primary mediators of vesicular traffic from the endoplasmic reticulum to the Golgi apparatus. Secretion-associated Ras-related GTPase 1 (SAR1) is a small GTPase that is part of COPII and, upon GTP binding, recruits the other COPII proteins to the endoplasmic reticulum membrane. Mammals have two SAR1 paralogs that genetic data suggest may have distinct physiological roles, e.g. in lipoprotein secretion in the case of SAR1B. Here we identified two amino acid clusters that have conserved SAR1 paralog–specific sequences. We observed that one cluster is adjacent to the SAR1 GTP-binding pocket and alters the kinetics of GTP exchange. The other cluster is adjacent to the binding site for two COPII components, SEC31 homolog A COPII coat complex component (SEC31) and SEC23. We found that the latter cluster confers to SAR1B a binding preference for SEC23A that is stronger than that of SAR1A for SEC23A. Unlike SAR1B, SAR1A was prone to oligomerize on a membrane surface. SAR1B knockdown caused loss of lipoprotein secretion, overexpression of SAR1B but not of SAR1A could restore secretion, and a divergent cluster adjacent to the SEC31/SEC23-binding site was critical for this SAR1B function. These results highlight that small primary sequence differences between the two mammalian SAR1 paralogs lead to pronounced biochemical differences that significantly affect COPII assembly and identify a specific function for SAR1B in lipoprotein secretion, providing insights into the mechanisms of large cargo secretion that may be relevant for COPII-related diseases.
Collapse
Affiliation(s)
- David B Melville
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Sean Studer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| | - Randy Schekman
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
16
|
Peotter J, Kasberg W, Pustova I, Audhya A. COPII-mediated trafficking at the ER/ERGIC interface. Traffic 2019; 20:491-503. [PMID: 31059169 PMCID: PMC6640837 DOI: 10.1111/tra.12654] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/25/2019] [Accepted: 05/02/2019] [Indexed: 12/16/2022]
Abstract
Coat proteins play multiple roles in the life cycle of a membrane-bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII-coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER-Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.
Collapse
Affiliation(s)
- Jennifer Peotter
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - William Kasberg
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Iryna Pustova
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
17
|
Li X, Li P, Wang L, Zhang M, Gao X. Lysine Enhances the Stimulation of Fatty Acids on Milk Fat Synthesis via the GPRC6A-PI3K-FABP5 Signaling in Bovine Mammary Epithelial Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7005-7015. [PMID: 31174423 DOI: 10.1021/acs.jafc.9b02160] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amino acids can enhance milk fat synthesis in bovine mammary epithelial cells (BMECs), but the molecular mechanism is not well-known. In this study, we explored the regulatory role and molecular mechanism of lysine (Lys) on milk fat synthesis induced by fatty acids (FAs). We show that Lys dose-dependently affects number of cells and milk fat synthesis, and has more stimulatory effects in the presence of FAs. Lys enhances FA-induced sterol regulatory element binding protein 1c (SREBP-1c) expression and maturation in a fatty-acid-binding protein 5 (FABP5)-dependent manner. We further show that the Lys stimulates FABP5 expression via the GPRC6A (GPCR, class C, group 6, subtype A)-PI3K (phosphatidylinositol 3-kinase) signaling. Lys dose-dependently affects GPRC6A expression and localization at the plasma membrane. In summary, our data reveals that Lys enhances FAs-stimulated SREBP-1c expression and maturation leading to milk fat synthesis via the GPRC6A-PI3K-FABP5 signaling in BMECs.
Collapse
Affiliation(s)
- Xueying Li
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| | - Ping Li
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Lulu Wang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Minghui Zhang
- The Key Laboratory of Dairy Science of Education Ministry , Northeast Agricultural University , Harbin 150030 , China
| | - Xuejun Gao
- School of Animal Science , Yangtze University , Jingzhou 434020 , China
| |
Collapse
|
18
|
Wang Y, Mousley CJ, Lete MG, Bankaitis VA. An equal opportunity collaboration between lipid metabolism and proteins in the control of membrane trafficking in the trans-Golgi and endosomal systems. Curr Opin Cell Biol 2019; 59:58-72. [PMID: 31039522 DOI: 10.1016/j.ceb.2019.03.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 03/25/2019] [Accepted: 03/27/2019] [Indexed: 12/18/2022]
Abstract
Recent years have witnessed the evolution of the cell biology of lipids into an extremely active area of investigation. Deciphering the involvement of lipid metabolism and lipid signaling in membrane trafficking pathways defines a major nexus of contemporary experimental activity on this front. Significant effort in that direction is invested in understanding the trans-Golgi network/endosomal system where unambiguous connections between membrane trafficking and inositol lipid and phosphatidylcholine metabolism were first discovered. However, powered by new advances in contemporary cell biology, the march of science is rapidly expanding that window of inquiry to include ever more diverse arms of the lipid metabolome, and to include other compartments of the secretory pathway as well.
Collapse
Affiliation(s)
- Yaxi Wang
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA
| | - Carl J Mousley
- School of Biomedical Sciences, Curtin Health Innovation Research Institute (CHIRI), Faculty of Health Sciences, Curtin University, Bentley, WA 6102, Australia
| | - Marta G Lete
- Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | - Vytas A Bankaitis
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843-2128, USA; Department of Molecular and Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA.
| |
Collapse
|