1
|
Fedosov SN, Nexo E, Heegaard CW. Kinetics of Cellular Cobalamin Uptake and Conversion: Comparison of Aquo/Hydroxocobalamin to Cyanocobalamin. Nutrients 2024; 16:378. [PMID: 38337663 PMCID: PMC10857013 DOI: 10.3390/nu16030378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Cyanocobalamin (CNCbl) and aquo/hydroxocobalamin (HOCbl) are the forms of vitamin B12 that are most commonly used for supplementation. They are both converted to methylcobalamin (MeCbl) and 5'-deoxyadenosylcobalamin (AdoCbl), which metabolize homocysteine and methylmalonic acid, respectively. Here, we compare the kinetics of uptake and the intracellular transformations of radiolabeled CNCbl vs. HOCbl in HeLa cells. More HOCbl was accumulated over 4-48 h, but further extrapolation indicated similar uptake (>90%) for both vitamin forms. The initially synthesized coenzyme was MeCbl, which noticeably exceeded AdoCbl during 48 h. Yet, the synthesis of AdoCbl accelerated, and the predicted final levels of Cbls were MeCbl ≈ AdoCbl ≈ 40% and HOCbl ≈ 20%. The designed kinetic model revealed the same patterns of the uptake and turnover for CNCbl and HOCbl, apart from two steps. First, the "activating" intracellular processing of the internalized HOCbl was six-fold faster. Second, the detachment rates from the cell surface (when the "excessive" Cbl-molecules were refluxed into the external medium) related as 4:1 for CNCbl vs. HOCbl. This gave a two-fold faster cellular accumulation and processing of HOCbl vs. CNCbl. In medical terms, our data suggest (i) an earlier response to the treatment of Cbl-deficiency with HOCbl, and (ii) the manifestation of a successful treatment initially as a decrease in homocysteine.
Collapse
Affiliation(s)
- Sergey N. Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
- Department of Clinical Medicine/Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Ebba Nexo
- Department of Clinical Medicine/Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark;
| | - Christian W. Heegaard
- Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus C, Denmark;
| |
Collapse
|
2
|
Masloh S, Culot M, Gosselet F, Chevrel A, Scapozza L, Zeisser Labouebe M. Challenges and Opportunities in the Oral Delivery of Recombinant Biologics. Pharmaceutics 2023; 15:pharmaceutics15051415. [PMID: 37242657 DOI: 10.3390/pharmaceutics15051415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Recombinant biological molecules are at the cutting-edge of biomedical research thanks to the significant progress made in biotechnology and a better understanding of subcellular processes implicated in several diseases. Given their ability to induce a potent response, these molecules are becoming the drugs of choice for multiple pathologies. However, unlike conventional drugs which are mostly ingested, the majority of biologics are currently administered parenterally. Therefore, to improve their limited bioavailability when delivered orally, the scientific community has devoted tremendous efforts to develop accurate cell- and tissue-based models that allow for the determination of their capacity to cross the intestinal mucosa. Furthermore, several promising approaches have been imagined to enhance the intestinal permeability and stability of recombinant biological molecules. This review summarizes the main physiological barriers to the oral delivery of biologics. Several preclinical in vitro and ex vivo models currently used to assess permeability are also presented. Finally, the multiple strategies explored to address the challenges of administering biotherapeutics orally are described.
Collapse
Affiliation(s)
- Solene Masloh
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Maxime Culot
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique (LBHE), Faculté des sciences Jean Perrin, University of Artois, UR 2465, Rue Jean Souvraz, 62300 Lens, France
| | - Anne Chevrel
- Affilogic, 24 Rue de la Rainière, 44300 Nantes, France
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| | - Magali Zeisser Labouebe
- School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1201 Geneva, Switzerland
| |
Collapse
|
3
|
Gebreyesus G, Aagaard Poulsen N, Krogh Larsen M, Bach Larsen L, Skipper Sørensen E, Würtz Heegaard C, Buitenhuis B. Vitamin B 12 and transcobalamin in bovine milk: Genetic variation and genome-wide association with loci along the genome. JDS COMMUNICATIONS 2021; 2:127-131. [PMID: 36339496 PMCID: PMC9623645 DOI: 10.3168/jdsc.2020-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 01/19/2021] [Indexed: 06/16/2023]
Abstract
In human nutrition, bovine milk is an essential source of bioavailable vitamin B12 and B12-binding proteins, including transcobalamin. In this study, we estimated genetic parameters for milk content of vitamin B12 and transcobalamin using milk samples from 341 and 663 Danish Holstein cows, respectively. Additionally, we conducted whole-genome association analysis to identify SNP and genes associated with vitamin B12 and transcobalamin. Our results indicated moderate to high heritability for vitamin B12 (0.37 ± 0.18) and transcobalamin (0.61 ± 0.13) content in the Danish Holstein. With a significance threshold of -log10 P-value > 5.87, significant associations were detected between SNP in Bos taurus autosome (BTA)17 and the log-transformed transcobalamin content of milk; no significant association was detected for vitamin B12. The significant region in BTA17 was imputed to full sequence for further fine mapping, and the SNP with the most significant associations to transcobalamin were assigned to the transcobalamin 2 (TCN2) gene.
Collapse
Affiliation(s)
- Grum Gebreyesus
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| | - Nina Aagaard Poulsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Mette Krogh Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
- Arla Foods Amba, Mæalkevejen 4, DK-6920 Videbæk, Denmark
| | - Lotte Bach Larsen
- Department of Food Science, Aarhus University, Agro Food Park 48, DK-8200 Aarhus N, Denmark
| | - Esben Skipper Sørensen
- Molecular Nutrition, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Christian Würtz Heegaard
- Molecular Nutrition, Department of Molecular Biology and Genetics, Aarhus University, Gustav Wieds Vej 10, DK-8000 Aarhus C, Denmark
| | - Bart Buitenhuis
- Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, PO Box 50, DK-8830 Tjele, Denmark
| |
Collapse
|
4
|
Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional Roles of B‐Vitamins in the Gut and Gut Microbiome. Mol Nutr Food Res 2020; 64:e2000426. [DOI: 10.1002/mnfr.202000426] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/31/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences Tokushima University Graduate School Tokushima 770–8503 Japan
| |
Collapse
|
5
|
Hinkel J, Schmitt J, Wurm M, Rosenbaum-Fabian S, Schwab KO, Jacobsen DW, Spiekerkoetter U, Fedosov SN, Hannibal L, Grünert SC. Elevated Plasma Vitamin B 12 in Patients with Hepatic Glycogen Storage Diseases. J Clin Med 2020; 9:jcm9082326. [PMID: 32707782 PMCID: PMC7463656 DOI: 10.3390/jcm9082326] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Hepatic glycogen storage diseases (GSDs) are inborn errors of metabolism affecting the synthesis or breakdown of glycogen in the liver. This study, for the first time, systematically assessed vitamin B12 status in a large cohort of hepatic GSD patients. Methods: Plasma vitamin B12, total plasma homocysteine (tHcy) and methylmalonic acid concentrations were measured in 44 patients with hepatic GSDs and compared to 42 healthy age- and gender-matched controls. Correlations of vitamin B12 status with different disease markers of GSDs (including liver transaminase activities and triglycerides) as well as the vitamin B12 intake were studied. Results: GSD patients had significantly higher plasma vitamin B12 concentrations than healthy controls (p = 0.0002). Plasma vitamin B12 concentration remained elevated in GSD patients irrespective of vitamin B12 intake. Plasma vitamin B12 concentrations correlated negatively with triglyceride levels, whereas no correlations were detected with liver transaminase activities (GOT and GPT) in GSD patients. Merging biomarker data of healthy controls and GSD patients showed a positive correlation between vitamin B12 status and liver function, which suggests complex biomarker associations. A combined analysis of biomarkers permitted a reliable clustering of healthy controls versus GSD patients. Conclusions: Elevated plasma concentration of vitamin B12 (irrespective of B12 intake) is a common finding in patients with hepatic GSD. The negative correlation of plasma vitamin B12 with triglyceride levels suggests an influence of metabolic control on the vitamin B12 status of GSD patients. Elevated vitamin B12 was not correlated with GOT and GPT in our cohort of GSD patients. Merging of data from healthy controls and GSD patients yielded positive correlations between these biomarkers. This apparent dichotomy highlights the intrinsic complexity of biomarker associations and argues against generalizations of liver disease and elevated vitamin B12 in blood. Further studies are needed to determine whether the identified associations are causal or coincidental, and the possible impact of chronically elevated vitamin B12 on GSD.
Collapse
Affiliation(s)
- Julia Hinkel
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
| | - Johannes Schmitt
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
| | - Michael Wurm
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
- Department of Pediatrics, St. Hedwigs Campus, University Children’s Hospital Regensburg, 93049 Regensburg, Germany;
| | - Stefanie Rosenbaum-Fabian
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
| | - Karl Otfried Schwab
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
| | - Donald W. Jacobsen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Ute Spiekerkoetter
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
| | - Sergey N. Fedosov
- Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Luciana Hannibal
- Laboratory of Clinical Biochemistry and Metabolism, Department of General Pediatrics, Adolescent Medicine and Neonatology, Medical Center - University of Freiburg, Faculty of Medicine, 79106 Freiburg, Germany
- Correspondence: (L.H.); (S.C.G.)
| | - Sarah C. Grünert
- Department of General Pediatrics, Adolescent Medicine and Neonatology, Faculty of Medicine, Medical Center—University of Freiburg, 79106 Freiburg, Germany; (J.H.); (J.S.); (S.R.-F.); (K.O.S.); (U.S.)
- Correspondence: (L.H.); (S.C.G.)
| |
Collapse
|