1
|
Liu HN, Wang XY, Zou Y, Wu WB, Lin Y, Ji BY, Wang TY. Synthetic enhancers including TFREs improve transgene expression in CHO cells. Heliyon 2024; 10:e26901. [PMID: 38468921 PMCID: PMC10926067 DOI: 10.1016/j.heliyon.2024.e26901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/12/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
The human cytomegalovirus major immediate early gene (CMV) promoter is currently the most preferred promoter for recombinant therapeutic proteins (RTPs) production in CHO cells. To enhance the production of RTPs, five synthetic enhancers including multiple transcription factor regulatory elements (TFREs) were evaluated to enhance recombinant protein level in transient and stably transfected CHO cells. Compared with the control, four elements can enhance the report genes expression under both two transfected states. Further, the function of these four enhancers on human serum albumin (HSA) were investigated. We found that the transient expression can increase by up to 1.5 times, and the stably expression can maximum increase by up to 2.14 times. The enhancement of transgene expression was caused by the boost of their corresponding mRNA levels. Transcriptomics analysis was performed and found that transcriptional activation and cell cycle regulation genes were involved. In conclusion, optimization of enhancers in the CMV promoter could increase the production yield of transgene in transfected CHO cells, which has significance for developing high-yield CHO cell expression system.
Collapse
Affiliation(s)
- Hui-Ning Liu
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- SanQuan College of Xinxiang Medical University, Xinxiang 453003, China
| | - Xiao-Yin Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zou
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| | - Wen-Bao Wu
- Shanghai Immunocan Biotech Co., LTD, Shanghai 200000, China
| | - Yan Lin
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Bo-Yu Ji
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
| | - Tian-Yun Wang
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang Medical University, Xinxiang 453003, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
2
|
Cepleanu-Pascu IA, Stan M, Cocioba S, Stoica I. Easy method for six-fragment Golden Gate Assembly of modular vectors. Biotechniques 2023; 74:85-99. [PMID: 36691899 DOI: 10.2144/btn-2022-0041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Efficient cloning techniques are a requirement for synthetic biology. This study provides a simplified cloning method based on Golden Gate Assembly that can be used for rapid vector construction. The building of multiple expression vectors with customizable modules is achieved in a timely manner with minimal hands-on time by removing unnecessary steps in the workflow. The authors constructed a total of 21 mammalian episomal expression vectors and conducted a fluorescence expression comparison for different regulatory region combinations post-transfection in HEK293T and HEPG2 cells. Screening revealed that using the EF-1α promoter in combination with the bovine growth hormone polyadenylation sequence seemed to perform best in the types of cells tested compared with other variants.
Collapse
Affiliation(s)
| | - Miruna Stan
- Department of Biochemistry & Molecular Biology, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | | | - Ileana Stoica
- Department of Genetics, Faculty of Biology, University of Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Khan SU, Khan MU, Khan MI, Kalsoom F, Zahra A. Current Landscape and Emerging Opportunities of Gene Therapy with Non-viral Episomal Vectors. Curr Gene Ther 2023; 23:135-147. [PMID: 36200188 DOI: 10.2174/1566523222666221004100858] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/10/2022] [Indexed: 11/22/2022]
Abstract
Gene therapy has proven to be extremely beneficial in the management of a wide range of genetic disorders for which there are currently no or few effective treatments. Gene transfer vectors are very significant in the field of gene therapy. It is possible to attach a non-viral attachment vector to the donor cell chromosome instead of integrating it, eliminating the negative consequences of both viral and integrated vectors. It is a safe and optimal express vector for gene therapy because it does not cause any adverse effects. However, the modest cloning rate, low expression, and low clone number make it unsuitable for use in gene therapy. Since the first generation of non-viral attachment episomal vectors was constructed, various steps have been taken to regulate their expression and stability, such as truncating the MAR element, lowering the amount of CpG motifs, choosing appropriate promoters and utilizing regulatory elements. This increases the transfection effectiveness of the non-viral attachment vector while also causing it to express at a high level and maintain a high level of stability. A vector is a genetic construct commonly employed in gene therapy to treat various systemic disorders. This article examines the progress made in the development of various optimization tactics for nonviral attachment vectors and the future applications of these vectors in gene therapy.
Collapse
Affiliation(s)
- Safir Ullah Khan
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China
| | - Munir Ullah Khan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027 China
| | - Muhammad Imran Khan
- School of Life Sciences and Medicine, University of Science and Technology of China,Hefei 230027,People's Republic of China
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Fadia Kalsoom
- Department of Pathology, District Headquarters Hospital Jhang 35200, Punjab Province, Islamic Republic of Pakistan
| | - Aqeela Zahra
- Department of Family and Community Medicine. College of Medicine, University of Ha'il, Ha'il 81451, Saudi Arabia
| |
Collapse
|
4
|
Staurenghi F, McClements ME, Salman A, MacLaren RE. Minicircle Delivery to the Neural Retina as a Gene Therapy Approach. Int J Mol Sci 2022; 23:11673. [PMID: 36232975 PMCID: PMC9569440 DOI: 10.3390/ijms231911673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Non-viral gene therapy has the potential to overcome several shortcomings in viral vector-based therapeutics. Methods of in vivo plasmid delivery have developed over recent years to increase the efficiency of non-viral gene transfer, yet further improvements still need to be made to improve their translational capacity. Gene therapy advances for inherited retinal disease have been particularly prominent over the recent decade but overcoming physical and physiological barriers present in the eye remains a key obstacle in the field of non-viral ocular drug delivery. Minicircles are circular double-stranded DNA vectors that contain expression cassettes devoid of bacterial DNA, thereby limiting the risks of innate immune responses induced by such elements. To date, they have not been extensively used in pre-clinical studies yet remain a viable vector option for the treatment of inherited retinal disease. Here, we explore the potential of minicircle DNA delivery to the neural retina as a gene therapy approach. We consider the advantages of minicircles as gene therapy vectors as well as review the challenges involved in optimising their delivery to the neural retina.
Collapse
Affiliation(s)
- Federica Staurenghi
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Ahmed Salman
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
- Oxford University Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
5
|
Cortijo-Gutiérrez M, Sánchez-Hernández S, Tristán-Manzano M, Maldonado-Pérez N, Lopez-Onieva L, Real PJ, Herrera C, Marchal JA, Martin F, Benabdellah K. Improved Functionality of Integration-Deficient Lentiviral Vectors (IDLVs) by the Inclusion of IS 2 Protein Docks. Pharmaceutics 2021; 13:pharmaceutics13081217. [PMID: 34452178 PMCID: PMC8401568 DOI: 10.3390/pharmaceutics13081217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Integration-deficient lentiviral vectors (IDLVs) have recently generated increasing interest, not only as a tool for transient gene delivery, but also as a technique for detecting off-target cleavage in gene-editing methodologies which rely on customized endonucleases (ENs). Despite their broad potential applications, the efficacy of IDLVs has historically been limited by low transgene expression and by the reduced sensitivity to detect low-frequency off-target events. We have previously reported that the incorporation of the chimeric sequence element IS2 into the long terminal repeat (LTR) of IDLVs increases gene expression levels, while also reducing the episome yield inside transduced cells. Our study demonstrates that the effectiveness of IDLVs relies on the balance between two parameters which can be modulated by the inclusion of IS2 sequences. In the present study, we explore new IDLV configurations harboring several elements based on IS2 modifications engineered to mediate more efficient transgene expression without affecting the targeted cell load. Of all the insulators and configurations analysed, the insertion of the IS2 into the 3′LTR produced the best results. After demonstrating a DAPI-low nuclear gene repositioning of IS2-containing episomes, we determined whether, in addition to a positive effect on transcription, the IS2 could improve the capture of IDLVs on double strand breaks (DSBs). Thus, DSBs were randomly generated, using the etoposide or locus-specific CRISPR-Cas9. Our results show that the IS2 element improved the efficacy of IDLV DSB detection. Altogether, our data indicate that the insertion of IS2 into the LTR of IDLVs improved, not only their transgene expression levels, but also their ability to be inserted into existing DSBs. This could have significant implications for the development of an unbiased detection tool for off-target cleavage sites from different specific nucleases.
Collapse
Affiliation(s)
- Marina Cortijo-Gutiérrez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Sabina Sánchez-Hernández
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - María Tristán-Manzano
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Noelia Maldonado-Pérez
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Lourdes Lopez-Onieva
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
| | - Pedro J. Real
- GENYO, Centre for Genomics and Oncological Research, Molecular Oncology Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (L.L.-O.); (P.J.R.)
- Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Avenida Fuentenueva s/n, 18071 Granada, Spain
- Personalized Oncology Group, Bio-Health Research Institute (ibs Granada), 18016 Granada, Spain
| | - Concha Herrera
- Maimonides Institute of Biomedical Research in Cordoba (IMIBIC), 14004 Cordoba, Spain;
- Department of Haematology, Reina Sofía University Hospital, 14004 Cordoba, Spain
| | - Juan Antonio Marchal
- Biomedical Research Institute (ibs. Granada), 18012 Granada, Spain;
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research (CIBM), University of Granada, 18016 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, 18016 Granada, Spain
- Excellence Research Unit: Modeling Nature (MNat), University of Granada, 18016 Granada, Spain
| | - Francisco Martin
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
| | - Karim Benabdellah
- GENYO, Centre for Genomics and Oncological Research, Genomic Medicine Department, Pfizer-University of Granada-Andalusian Regional Government, Health Sciences Technology Park, Av. de la Illustration 114, 18016 Granada, Spain; (M.C.-G.); (S.S.-H.); (M.T.-M.); (N.M.-P.); (F.M.)
- Correspondence: ; Tel.: +34-958-715-500
| |
Collapse
|
6
|
Lopez C, Cao M, Yao Z, Shao Z. Revisiting the unique structure of autonomously replicating sequences in Yarrowia lipolytica and its role in pathway engineering. Appl Microbiol Biotechnol 2021; 105:5959-5972. [PMID: 34357429 DOI: 10.1007/s00253-021-11399-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/26/2022]
Abstract
Production of industrially relevant compounds in microbial cell factories can employ either genomes or plasmids as an expression platform. Selection of plasmids as pathway carriers is advantageous for rapid demonstration but poses a challenge of stability. Yarrowia lipolytica has attracted great attention in the past decade for the biosynthesis of chemicals related to fatty acids at titers attractive to industry, and many genetic tools have been developed to explore its oleaginous potential. Our recent studies on the autonomously replicating sequences (ARSs) of nonconventional yeasts revealed that the ARSs from Y. lipolytica showcase a unique structure that includes a previously unannotated sequence (spacer) linking the origin of replication (ORI) and the centromeric (CEN) element and plays a critical role in modulating plasmid behavior. Maintaining a native 645-bp spacer yielded a 2.2-fold increase in gene expression and 1.7-fold higher plasmid stability compared to a more universally employed minimized ARS. Testing the modularity of the ARS sub-elements indicated that plasmid stability exhibits a pronounced cargo dependency. Instability caused both plasmid loss and intramolecular rearrangements. Altogether, our work clarifies the appropriate application of various ARSs for the scientific community and sheds light on a previously unexplored DNA element as a potential target for engineering Y. lipolytica.
Collapse
Affiliation(s)
- Carmen Lopez
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, University of Illinois, Urbana, IL, 60801, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA.
| | - Zhanyi Yao
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Zengyi Shao
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011, USA.
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA.
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA.
- The Ames Laboratory, Ames, IA, 50011, USA.
| |
Collapse
|
7
|
Mulia GE, Picanço-Castro V, Stavrou EF, Athanassiadou A, Figueiredo ML. Advances in the Development and the Applications of Non-viral, Episomal Vectors for Gene Therapy. Hum Gene Ther 2021; 32:1076-1095. [PMID: 34348480 PMCID: PMC8819515 DOI: 10.1089/hum.2020.310] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Nonviral and nonintegrating episomal vectors are reemerging as a valid, alternative technology to integrating viral vectors for gene therapy, due to their more favorable safety profile, significantly lower risk for insertional mutagenesis, and a lesser potential for innate immune reactions, in addition to their low production cost. Over the past few years, attempts have been made to generate highly functional nonviral vectors that display long-term maintenance within cells and promote more sustained gene expression relative to conventional plasmids. Extensive research into the parameters that stabilize the episomal DNA within dividing and nondividing cells has shed light into the genetic and epigenetic mechanisms that govern replication and transcription of episomal DNA within a mammalian nucleus in long-term cell culture. Episomal vectors based on scaffold/matrix attachment regions (S/MARs) do not integrate into the genomic DNA and address the serious problem of plasmid loss during mitosis by providing mitotic stability to established plasmids, which results in long-term transfection and transgene expression. The inclusion, in such vectors, of an origin of replication—initiation region—from the human genome has greatly enhanced their performance in primary cell culture. A number of vectors that function as episomes have arisen, which are either devoid or depleted of harmful CpG sequences and bacterial genes, and their effectiveness, as well as that of nonintegrating viral episomes, is enhanced when combined with S/MAR elements. As a result of these advances, an “S/MAR technology” has emerged for the production of efficient episomal vectors. Significant research continues in this field and innovations, in combination with promising systems based on nanoparticles and potentially combined with physical delivery methods, will enable the generation of optimized systems with scale-up and clinical application suitability utilizing episomal vectors.
Collapse
Affiliation(s)
- Grace E Mulia
- Purdue University, Basic Medical Sciences, West Lafayette, Indiana, United States;
| | - Virginia Picanço-Castro
- University of Sao Paulo Faculty of Medicine of Ribeirao Preto, 54539, Center for Cell-based Therapy, Ribeirao Preto, São Paulo, Brazil;
| | - Eleana F Stavrou
- University of Patras, Department of General Biology, Patras, Greece;
| | - Aglaia- Athanassiadou
- University of Patras Medical School, General Biology, Asklepiou str, University Campus, Rion Patras, Greece, 26504;
| | - Marxa L Figueiredo
- Purdue University, Basic Medical Sciences, 625 Harrison St., LYNN 2177, West Lafayette, Indiana, United States, 47907;
| |
Collapse
|