1
|
Sengupta S, Sami AB, Gatlin JC, Levy DL. Proteasome inhibition induces microtubule-dependent changes in nuclear morphology. iScience 2025; 28:111550. [PMID: 39811669 PMCID: PMC11729685 DOI: 10.1016/j.isci.2024.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/12/2024] [Accepted: 12/04/2024] [Indexed: 01/16/2025] Open
Abstract
Cancers and neurodegenerative disorders are associated with both disrupted proteostasis and altered nuclear morphology. Determining if changes in nuclear morphology contribute to pathology requires an understanding of the underlying mechanisms, which are difficult to elucidate in cells where pleiotropic effects of altering proteostasis might indirectly influence nuclear morphology. To investigate direct effects, we studied nuclei assembled in Xenopus egg extract where potentially confounding effects of transcription, translation, cell cycle progression, and actin dynamics are absent. We report that proteasome inhibition causes acute microtubule-dependent changes in nuclear morphology and stability and altered microtubule dynamics and organization. Proteomic analysis of proteasome-inhibited extracts identified an increased abundance of microtubule nucleator TubGCP6, and TubGCP6 depletion partially rescued nuclear morphology. Key results were confirmed in HeLa cells. We propose that accumulation of TubGCP6 leads to altered microtubule dynamics proximal to the nucleus, producing forces that deform the nucleus and impact nuclear morphology and integrity.
Collapse
Affiliation(s)
- Sourabh Sengupta
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | | | - Jesse C. Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| | - Daniel L. Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA
| |
Collapse
|
2
|
Rosfelter A, de Labbey G, Chenevert J, Dumollard R, Schaub S, Machaty Z, Besnardeau L, Gonzalez Suarez D, Hebras C, Turlier H, Burgess DR, McDougall A. Reduction of cortical pulling at mitotic entry facilitates aster centration. J Cell Sci 2024; 137:jcs262037. [PMID: 38469748 DOI: 10.1242/jcs.262037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Equal cell division relies upon astral microtubule-based centering mechanisms, yet how the interplay between mitotic entry, cortical force generation and long astral microtubules leads to symmetric cell division is not resolved. We report that a cortically located sperm aster displaying long astral microtubules that penetrate the whole zygote does not undergo centration until mitotic entry. At mitotic entry, we find that microtubule-based cortical pulling is lost. Quantitative measurements of cortical pulling and cytoplasmic pulling together with physical simulations suggested that a wavelike loss of cortical pulling at mitotic entry leads to aster centration based on cytoplasmic pulling. Cortical actin is lost from the cortex at mitotic entry coincident with a fall in cortical tension from ∼300pN/µm to ∼100pN/µm. Following the loss of cortical force generators at mitotic entry, long microtubule-based cytoplasmic pulling is sufficient to displace the aster towards the cell center. These data reveal how mitotic aster centration is coordinated with mitotic entry in chordate zygotes.
Collapse
Affiliation(s)
- Anne Rosfelter
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Ghislain de Labbey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - Janet Chenevert
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Sebastien Schaub
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Zoltan Machaty
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Daniel Gonzalez Suarez
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - David R Burgess
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Alex McDougall
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
3
|
de-Carvalho J, Tlili S, Saunders TE, Telley IA. The positioning mechanics of microtubule asters in Drosophila embryo explants. eLife 2024; 12:RP90541. [PMID: 38426416 PMCID: PMC10911390 DOI: 10.7554/elife.90541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Abstract
Microtubule asters are essential in localizing the action of microtubules in processes including mitosis and organelle positioning. In large cells, such as the one-cell sea urchin embryo, aster dynamics are dominated by hydrodynamic pulling forces. However, in systems with more densely positioned nuclei such as the early Drosophila embryo, which packs around 6000 nuclei within the syncytium in a crystalline-like order, it is unclear what processes dominate aster dynamics. Here, we take advantage of a cell cycle regulation Drosophila mutant to generate embryos with multiple asters, independent from nuclei. We use an ex vivo assay to further simplify this biological system to explore the forces generated by and between asters. Through live imaging, drug and optical perturbations, and theoretical modeling, we demonstrate that these asters likely generate an effective pushing force over short distances.
Collapse
Affiliation(s)
- Jorge de-Carvalho
- Instituto Gulbenkian de Ciência, Fundação Calouste GulbenkianOeirasPortugal
| | - Sham Tlili
- Mechanobiology Institute and Department of Biological Sciences, National University of SingaporeSingaporeSingapore
| | - Timothy E Saunders
- Mechanobiology Institute and Department of Biological Sciences, National University of SingaporeSingaporeSingapore
- Institute of Molecular and Cellular Biology, A*Star, ProteosSingaporeSingapore
- Centre for Mechanochemical Cell Biology, Warwick Medical School, University of WarwickWarwickUnited Kingdom
| | - Ivo A Telley
- Instituto Gulbenkian de Ciência, Fundação Calouste GulbenkianOeirasPortugal
| |
Collapse
|
4
|
Zaferani M, Song R, Petry S, Stone HA. Building on-chip cytoskeletal circuits via branched microtubule networks. Proc Natl Acad Sci U S A 2024; 121:e2315992121. [PMID: 38232292 PMCID: PMC10823238 DOI: 10.1073/pnas.2315992121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 01/19/2024] Open
Abstract
Controllable platforms to engineer robust cytoskeletal scaffolds have the potential to create novel on-chip nanotechnologies. Inspired by axons, we combined the branching microtubule (MT) nucleation pathway with microfabrication to develop "cytoskeletal circuits." This active matter platform allows control over the adaptive self-organization of uniformly polarized MT arrays via geometric features of microstructures designed within a microfluidic confinement. We build and characterize basic elements, including turns and divisions, as well as complex regulatory elements, such as biased division and MT diodes, to construct various MT architectures on a chip. Our platform could be used in diverse applications, ranging from efficient on-chip molecular transport to mechanical nano-actuators. Further, cytoskeletal circuits can serve as a tool to study how the physical environment contributes to MT architecture in living cells.
Collapse
Affiliation(s)
- Meisam Zaferani
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ08544
| | - Ryungeun Song
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
| | - Howard A. Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ08544
| |
Collapse
|
5
|
Sami AB, Gatlin JC. Dynein-dependent collection of membranes defines the architecture and position of microtubule asters in isolated, geometrically confined volumes of cell-free extracts. Mol Biol Cell 2022; 33:br20. [PMID: 35976715 DOI: 10.1091/mbc.e22-03-0074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
It is well established that changes in the underlying architecture of the cell's microtubule network can affect organelle organization within the cytoplasm, but it remains unclear whether the spatial arrangement of organelles reciprocally influences the microtubule network. Here we use a combination of cell-free extracts and hydrogel microenclosures to characterize the relationship between membranes and microtubules during microtubule aster centration. We found that initially disperse ER membranes are collected by the aster and compacted near its nucleating center, all while the whole ensemble moves toward the geometric center of its confining enclosure. Once there, aster microtubules adopt a bullseye pattern with a high density annular ring of microtubules surrounding the compacted membrane core of lower microtubule density. Formation of this pattern was inhibited when dynein-dependent transport was perturbed or when membranes were depleted from the extracts. Asters in membrane-depleted extracts were able to move away from the most proximal wall but failed to center in cylindrical enclosures with diameters greater than or equal to 150 µm. Taken as whole, our data suggest that the dynein-dependent transport of membranes buttresses microtubules near the aster center and that this plays an important role in modulating aster architecture and position. [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text] [Media: see text].
Collapse
Affiliation(s)
| | - Jesse C Gatlin
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.,Cell Division & Organization Group, Marine Biological Laboratory, Woods Hole, MA 02543, USA
| |
Collapse
|
6
|
Ansari S, Yan W, Lamson A, Shelley MJ, Glaser MA, Betterton MD. Active condensation of filaments under spatial confinement. FRONTIERS IN PHYSICS 2022; 10:897255. [PMID: 38116396 PMCID: PMC10730113 DOI: 10.3389/fphy.2022.897255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Living systems exhibit self-organization, a phenomenon that enables organisms to perform functions essential for life. The interior of living cells is a crowded environment in which the self-assembly of cytoskeletal networks is spatially constrained by membranes and organelles. Cytoskeletal filaments undergo active condensation in the presence of crosslinking motor proteins. In past studies, confinement has been shown to alter the morphology of active condensates. Here, we perform simulations to explore systems of filaments and crosslinking motors in a variety of confining geometries. We simulate spatial confinement imposed by hard spherical, cylindrical, and planar boundaries. These systems exhibit non-equilibrium condensation behavior where crosslinking motors condense a fraction of the overall filament population, leading to coexistence of vapor and condensed states. We find that the confinement lengthscale modifies the dynamics and condensate morphology. With end-pausing crosslinking motors, filaments self-organize into half asters and fully-symmetric asters under spherical confinement, polarity-sorted bilayers and bottle-brush-like states under cylindrical confinement, and flattened asters under planar confinement. The number of crosslinking motors controls the size and shape of condensates, with flattened asters becoming hollow and ring-like for larger motor number. End pausing plays a key role affecting condensate morphology: systems with end-pausing motors evolve into aster-like condensates while those with non-end-pausing crosslinking motor proteins evolve into disordered clusters and polarity-sorted bundles.
Collapse
Affiliation(s)
- Saad Ansari
- Department of Physics, University of Colorado Boulder, Colorado, USA
| | - Wen Yan
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Adam Lamson
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Michael J. Shelley
- Center for Computational Biology, Flatiron Institute, New York, USA
- Courant Institute, New York University, New York, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado, USA
| |
Collapse
|
7
|
de-Carvalho J, Tlili S, Hufnagel L, Saunders TE, Telley IA. Aster repulsion drives short-ranged ordering in the Drosophila syncytial blastoderm. Development 2022; 149:274085. [DOI: 10.1242/dev.199997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/17/2021] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei at the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, using quantification of nuclei position and division orientation together with embryo explants, we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.
Collapse
Affiliation(s)
- Jorge de-Carvalho
- Physics of Intracellular Organization Group, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Sham Tlili
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
| | - Lars Hufnagel
- European Molecular Biology Laboratory, 69117 Heidelberg, Germany
| | - Timothy E. Saunders
- Mechanobiology Institute, National University of Singapore, 117411 Singapore
- Department of Biological Sciences, National University of Singapore, 117411Singapore
- Institute of Molecular and Cellular Biology, A*Star, Proteos, 138632 Singapore
- Warwick Medical School, University of Warwick, Coventry, CV4 7HL, UK
| | - Ivo A. Telley
- Physics of Intracellular Organization Group, Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
8
|
The Cytoskeleton and Its Roles in Self-Organization Phenomena: Insights from Xenopus Egg Extracts. Cells 2021; 10:cells10092197. [PMID: 34571847 PMCID: PMC8465277 DOI: 10.3390/cells10092197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/18/2021] [Accepted: 08/21/2021] [Indexed: 01/11/2023] Open
Abstract
Self-organization of and by the cytoskeleton is central to the biology of the cell. Since their introduction in the early 1980s, cytoplasmic extracts derived from the eggs of the African clawed-frog, Xenopus laevis, have flourished as a major experimental system to study the various facets of cytoskeleton-dependent self-organization. Over the years, the many investigations that have used these extracts uniquely benefited from their simplified cell cycle, large experimental volumes, biochemical tractability and cell-free nature. Here, we review the contributions of egg extracts to our understanding of the cytoplasmic aspects of self-organization by the microtubule and the actomyosin cytoskeletons as well as the importance of cytoskeletal filaments in organizing nuclear structure and function.
Collapse
|
9
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|