1
|
Shvartsman SY, McFann S, Wühr M, Rubinstein BY. Phase plane dynamics of ERK phosphorylation. J Biol Chem 2023; 299:105234. [PMID: 37690685 PMCID: PMC10616409 DOI: 10.1016/j.jbc.2023.105234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/12/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) controls multiple critical processes in the cell and is deregulated in human cancers, congenital abnormalities, immune diseases, and neurodevelopmental syndromes. Catalytic activity of ERK requires dual phosphorylation by an upstream kinase, in a mechanism that can be described by two sequential Michaelis-Menten steps. The estimation of individual reaction rate constants from kinetic data in the full mechanism has proved challenging. Here, we present an analytically tractable approach to parameter estimation that is based on the phase plane representation of ERK activation and yields two combinations of six reaction rate constants in the detailed mechanism. These combinations correspond to the ratio of the specificities of two consecutive phosphorylations and the probability that monophosphorylated substrate does not dissociate from the enzyme before the second phosphorylation. The presented approach offers a language for comparing the effects of mutations that disrupt ERK activation and function in vivo. As an illustration, we use phase plane representation to analyze dual phosphorylation under heterozygous conditions, when two enzyme variants compete for the same substrate.
Collapse
Affiliation(s)
- Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Center for Computational Biology, Flatiron Institute, New York, New York, USA.
| | - Sarah McFann
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA
| | - Martin Wühr
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
2
|
Andrianova EP, Marmion RA, Shvartsman SY, Zhulin IB. Evolutionary history of MEK1 illuminates the nature of deleterious mutations. Proc Natl Acad Sci U S A 2023; 120:e2304184120. [PMID: 37579140 PMCID: PMC10450672 DOI: 10.1073/pnas.2304184120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/24/2023] [Indexed: 08/16/2023] Open
Abstract
Mutations in signal transduction pathways lead to various diseases including cancers. MEK1 kinase, encoded by the human MAP2K1 gene, is one of the central components of the MAPK pathway and more than a hundred somatic mutations in the MAP2K1 gene were identified in various tumors. Germline mutations deregulating MEK1 also lead to congenital abnormalities, such as the cardiofaciocutaneous syndrome and arteriovenous malformation. Evaluating variants associated with a disease is a challenge, and computational genomic approaches aid in this process. Establishing evolutionary history of a gene improves computational prediction of disease-causing mutations; however, the evolutionary history of MEK1 is not well understood. Here, by revealing a precise evolutionary history of MEK1, we construct a well-defined dataset of MEK1 metazoan orthologs, which provides sufficient depth to distinguish between conserved and variable amino acid positions. We matched known and predicted disease-causing and benign mutations to evolutionary changes observed in corresponding amino acid positions and found that all known and many suspected disease-causing mutations are evolutionarily intolerable. We selected several variants that cannot be unambiguously assessed by automated prediction tools but that are confidently identified as "damaging" by our approach, for experimental validation in Drosophila. In all cases, evolutionary intolerant variants caused increased mortality and severe defects in fruit fly embryos confirming their damaging nature. We anticipate that our analysis will serve as a blueprint to help evaluate known and novel missense variants in MEK1 and that our approach will contribute to improving automated tools for disease-associated variant interpretation.
Collapse
Affiliation(s)
- Ekaterina P. Andrianova
- Department of Microbiology, The Ohio State University, Columbus, OH43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| | - Robert A. Marmion
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
| | - Stanislav Y. Shvartsman
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ08544
- Department of Molecular Biology, Princeton University, Princeton, NJ08544
- Flatiron Institute, Simons Foundation, New York, NY10010
| | - Igor B. Zhulin
- Department of Microbiology, The Ohio State University, Columbus, OH43210
- Translational Data Analytics Institute, The Ohio State University, Columbus, OH43210
| |
Collapse
|
3
|
Smits CM, Dutta S, Jain-Sharma V, Streichan SJ, Shvartsman SY. Maintaining symmetry during body axis elongation. Curr Biol 2023; 33:3536-3543.e6. [PMID: 37562404 DOI: 10.1016/j.cub.2023.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 06/29/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023]
Abstract
Bilateral symmetry defines much of the animal kingdom and is crucial for numerous functions of bilaterian organisms. Genetic approaches have discovered highly conserved patterning networks that establish bilateral symmetry in early embryos,1 but how this symmetry is maintained throughout subsequent morphogenetic events remains largely unknown.2 Here we show that the terminal patterning system-which relies on Ras/ERK signaling through activation of the Torso receptor by its ligand Trunk3-is critical for preserving bilateral symmetry during Drosophila body axis elongation, a process driven by cell rearrangements in the two identical lateral regions of the embryo and specified by the dorsal-ventral and anterior-posterior patterning systems.4 We demonstrate that fluctuating asymmetries in this rapid convergent-extension process are attenuated in normal embryos over time, possibly through noise-dissipating forces from the posterior midgut invagination and movement. However, when Torso signaling is attenuated via mutation of Trunk or RNAi directed against downstream Ras/ERK pathway components, body axis elongation results in a characteristic corkscrew phenotype,5 which reflects dramatic reorganization of global tissue flow and is incompatible with viability. Our results reveal a new function downstream of the Drosophila terminal patterning system in potentially active control of bilateral symmetry and should motivate systematic search for similar symmetry-preserving regulatory mechanisms in other bilaterians.
Collapse
Affiliation(s)
- Celia M Smits
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Sayantan Dutta
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Vishank Jain-Sharma
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Sebastian J Streichan
- Department of Physics, University of California, Santa Barbara, Santa Barbara, CA 93106, USA; Biomolecular Science and Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Stanislav Y Shvartsman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|
4
|
Marmion RA, Simpkins AG, Barrett LA, Denberg DW, Zusman S, Schottenfeld-Roames J, Schüpbach T, Shvartsman SY. Stochastic phenotypes in RAS-dependent developmental diseases. Curr Biol 2023; 33:807-816.e4. [PMID: 36706752 PMCID: PMC10026697 DOI: 10.1016/j.cub.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 12/02/2022] [Accepted: 01/05/2023] [Indexed: 01/27/2023]
Abstract
Germline mutations upregulating RAS signaling are associated with multiple developmental disorders. A hallmark of these conditions is that the same mutation may present vastly different phenotypes in different individuals, even in monozygotic twins. Here, we demonstrate how the origins of such largely unexplained phenotypic variations may be dissected using highly controlled studies in Drosophila that have been gene edited to carry activating variants of MEK, a core enzyme in the RAS pathway. This allowed us to measure the small but consistent increase in signaling output of such alleles in vivo. The fraction of mutation carriers reaching adulthood was strongly reduced, but most surviving animals had normal RAS-dependent structures. We rationalize these results using a stochastic signaling model and support it by quantifying cell fate specification errors in bilaterally symmetric larval trachea, a RAS-dependent structure that allows us to isolate the effects of mutations from potential contributions of genetic modifiers and environmental differences. We propose that the small increase in signaling output shifts the distribution of phenotypes into a regime, where stochastic variation causes defects in some individuals, but not in others. Our findings shed light on phenotypic heterogeneity of developmental disorders caused by deregulated RAS signaling and offer a framework for investigating causal effects of other pathogenic alleles and mild mutations in general.
Collapse
Affiliation(s)
- Robert A Marmion
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Alison G Simpkins
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Lena A Barrett
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - David W Denberg
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | - Susan Zusman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA.
| | | | - Trudi Schüpbach
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Stanislav Y Shvartsman
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA; Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA; Flatiron Institute, Simons Foundation, New York, NY 10010, USA.
| |
Collapse
|
5
|
Kubota Y, Fujioka Y, Patil A, Takagi Y, Matsubara D, Iijima M, Momose I, Naka R, Nakai K, Noda NN, Takekawa M. Qualitative differences in disease-associated MEK mutants reveal molecular signatures and aberrant signaling-crosstalk in cancer. Nat Commun 2022; 13:4063. [PMID: 35831322 PMCID: PMC9279491 DOI: 10.1038/s41467-022-31690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/27/2022] [Indexed: 11/09/2022] Open
Abstract
Point-mutations of MEK1, a central component of ERK signaling, are present in cancer and RASopathies, but their precise biological effects remain obscure. Here, we report a mutant MEK1 structure that uncovers the mechanisms underlying abnormal activities of cancer- and RASopathy-associated MEK1 mutants. These two classes of MEK1 mutations differentially impact on spatiotemporal dynamics of ERK signaling, cellular transcriptional programs, gene expression profiles, and consequent biological outcomes. By making use of such distinct characteristics of the MEK1 mutants, we identified cancer- and RASopathy-signature genes that may serve as diagnostic markers or therapeutic targets for these diseases. In particular, two AKT-inhibitor molecules, PHLDA1 and 2, are simultaneously upregulated by oncogenic ERK signaling, and mediate cancer-specific ERK-AKT crosstalk. The combined expression of PHLDA1/2 is critical to confer resistance to ERK pathway-targeted therapeutics on cancer cells. Finally, we propose a therapeutic strategy to overcome this drug resistance. Our data provide vital insights into the etiology, diagnosis, and therapeutic strategy of cancers and RASopathies.
Collapse
Affiliation(s)
- Yuji Kubota
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Yuko Fujioka
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan.,Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Ashwini Patil
- Laboratory of Functional Analysis In Silico, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.,Combinatics Inc., Chiba, Japan
| | - Yusuke Takagi
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Daisuke Matsubara
- Molecular Pathology Laboratory, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Masatomi Iijima
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Isao Momose
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan
| | - Ryosuke Naka
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Kenta Nakai
- Laboratory of Functional Analysis In Silico, Human Genome Center, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan
| | - Nobuo N Noda
- Institute of Microbial Chemistry, Microbial Chemistry Research Foundation, Shinagawa-ku, Tokyo, Japan.,Division of Biological Molecular Mechanisms, Institute for Genetic Medicine, Hokkaido University, Sapporo, 060-0815, Japan
| | - Mutsuhiro Takekawa
- Division of Cell Signaling and Molecular Medicine, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|