1
|
Bykov YS, Schuldiner M. Analysis of mitochondrial biogenesis and protein localization by genetic screens and automated imaging. Methods Enzymol 2024; 706:97-123. [PMID: 39455236 DOI: 10.1016/bs.mie.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Budding yeast is a laboratory model of a simple eukaryotic cell. Its compact genome is very easy to edit. This allowed to create systematic collections (libraries) of yeast strains where every gene is either perturbed or tagged. Here we review how such collections were used to study mitochondrial biology by doing genetic screens. First, we introduce the principles of yeast genome editing and the basics of its life cycle that are useful for genetic experiments. Then we overview what yeast strain collections were created over the past years. We also describe the creation and the usage of the new generation of SWAP-Tag (SWAT) collections that allow to create custom libraries. We outline the principles of changing the genetic background of whole collections in parallel, and the basics of synthetic genetic array (SGA) approach. Then we review the discoveries that were made using different types of genetic screens focusing on general mitochondrial functions, proteome, and protein targeting pathways. The development of new collections and screening techniques will continue to bring valuable insight into the function of mitochondria and other organelles.
Collapse
Affiliation(s)
- Yury S Bykov
- Quantitative Cell Biology, Rhineland-Palatinate Technical University, Kaiserslautern, Germany.
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
2
|
Koch C, Lenhard S, Räschle M, Prescianotto-Baschong C, Spang A, Herrmann JM. The ER-SURF pathway uses ER-mitochondria contact sites for protein targeting to mitochondria. EMBO Rep 2024; 25:2071-2096. [PMID: 38565738 PMCID: PMC11014988 DOI: 10.1038/s44319-024-00113-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/14/2024] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Most mitochondrial proteins are synthesized on cytosolic ribosomes and imported into mitochondria in a post-translational reaction. Mitochondrial precursor proteins which use the ER-SURF pathway employ the surface of the endoplasmic reticulum (ER) as an important sorting platform. How they reach the mitochondrial import machinery from the ER is not known. Here we show that mitochondrial contact sites play a crucial role in the ER-to-mitochondria transfer of precursor proteins. The ER mitochondria encounter structure (ERMES) and Tom70, together with Djp1 and Lam6, are part of two parallel and partially redundant ER-to-mitochondria delivery routes. When ER-to-mitochondria transfer is prevented by loss of these two contact sites, many precursors of mitochondrial inner membrane proteins are left stranded on the ER membrane, resulting in mitochondrial dysfunction. Our observations support an active role of the ER in mitochondrial protein biogenesis.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | | | - Anne Spang
- Biozentrum, University of Basel, 4056, Basel, Switzerland
| | | |
Collapse
|
3
|
Rödl S, Herrmann JM. The role of the proteasome in mitochondrial protein quality control. IUBMB Life 2023; 75:868-879. [PMID: 37178401 DOI: 10.1002/iub.2734] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/15/2023] [Indexed: 05/15/2023]
Abstract
The abundance of each cellular protein is dynamically adjusted to the prevailing metabolic and stress conditions by modulation of their synthesis and degradation rates. The proteasome represents the major machinery for the degradation of proteins in eukaryotic cells. How the ubiquitin-proteasome system (UPS) controls protein levels and removes superfluous and damaged proteins from the cytosol and the nucleus is well characterized. However, recent studies showed that the proteasome also plays a crucial role in mitochondrial protein quality control. This mitochondria-associated degradation (MAD) thereby acts on two layers: first, the proteasome removes mature, functionally compromised or mis-localized proteins from the mitochondrial surface; and second, the proteasome cleanses the mitochondrial import pore of import intermediates of nascent proteins that are stalled during translocation. In this review, we provide an overview about the components and their specific functions that facilitate proteasomal degradation of mitochondrial proteins in the yeast Saccharomyces cerevisiae. Thereby we explain how the proteasome, in conjunction with a set of intramitochondrial proteases, maintains mitochondrial protein homeostasis and dynamically adapts the levels of mitochondrial proteins to specific conditions.
Collapse
Affiliation(s)
- Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | |
Collapse
|
4
|
Knöringer K, Groh C, Krämer L, Stein KC, Hansen KG, Zimmermann J, Morgan B, Herrmann JM, Frydman J, Boos F. The unfolded protein response of the endoplasmic reticulum supports mitochondrial biogenesis by buffering nonimported proteins. Mol Biol Cell 2023; 34:ar95. [PMID: 37379206 PMCID: PMC10551703 DOI: 10.1091/mbc.e23-05-0205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 06/30/2023] Open
Abstract
Almost all mitochondrial proteins are synthesized in the cytosol and subsequently targeted to mitochondria. The accumulation of nonimported precursor proteins occurring upon mitochondrial dysfunction can challenge cellular protein homeostasis. Here we show that blocking protein translocation into mitochondria results in the accumulation of mitochondrial membrane proteins at the endoplasmic reticulum, thereby triggering the unfolded protein response (UPRER). Moreover, we find that mitochondrial membrane proteins are also routed to the ER under physiological conditions. The level of ER-resident mitochondrial precursors is enhanced by import defects as well as metabolic stimuli that increase the expression of mitochondrial proteins. Under such conditions, the UPRER is crucial to maintain protein homeostasis and cellular fitness. We propose the ER serves as a physiological buffer zone for those mitochondrial precursors that cannot be immediately imported into mitochondria while engaging the UPRER to adjust the ER proteostasis capacity to the extent of precursor accumulation.
Collapse
Affiliation(s)
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Lena Krämer
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | - Kevin C. Stein
- Department of Biology, Stanford University, Stanford, CA 94305
| | - Katja G. Hansen
- Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA 02115
| | - Jannik Zimmermann
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123 Saarbrücken, Germany
| | - Bruce Morgan
- Institute of Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, 66123 Saarbrücken, Germany
| | | | - Judith Frydman
- Department of Biology, Stanford University, Stanford, CA 94305
- Department of Genetics, Stanford University, Stanford, CA 94305
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| |
Collapse
|
5
|
Gao LL, Hong ZH, Wang Y, Wu GZ. Chloroplast proteostasis: A story of birth, life, and death. PLANT COMMUNICATIONS 2023; 4:100424. [PMID: 35964157 PMCID: PMC9860172 DOI: 10.1016/j.xplc.2022.100424] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/02/2022] [Accepted: 08/10/2022] [Indexed: 06/02/2023]
Abstract
Protein homeostasis (proteostasis) is a dynamic balance of protein synthesis and degradation. Because of the endosymbiotic origin of chloroplasts and the massive transfer of their genetic information to the nucleus of the host cell, many protein complexes in the chloroplasts are constituted from subunits encoded by both genomes. Hence, the proper function of chloroplasts relies on the coordinated expression of chloroplast- and nucleus-encoded genes. The biogenesis and maintenance of chloroplast proteostasis are dependent on synthesis of chloroplast-encoded proteins, import of nucleus-encoded chloroplast proteins from the cytosol, and clearance of damaged or otherwise undesired "old" proteins. This review focuses on the regulation of chloroplast proteostasis, its interaction with proteostasis of the cytosol, and its retrograde control over nuclear gene expression. We also discuss significant issues and perspectives for future studies and potential applications for improving the photosynthetic performance and stress tolerance of crops.
Collapse
Affiliation(s)
- Lin-Lin Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zheng-Hui Hong
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinsong Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guo-Zhang Wu
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
6
|
Rödl S, den Brave F, Räschle M, Kizmaz B, Lenhard S, Groh C, Becker H, Zimmermann J, Morgan B, Richling E, Becker T, Herrmann JM. The metabolite-controlled ubiquitin conjugase Ubc8 promotes mitochondrial protein import. Life Sci Alliance 2022; 6:6/1/e202201526. [PMID: 36253107 PMCID: PMC9579816 DOI: 10.26508/lsa.202201526] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 11/26/2022] Open
Abstract
Mitochondria play a key role in cellular energy metabolism. Transitions between glycolytic and respiratory conditions induce considerable adaptations of the cellular proteome. These metabolism-dependent changes are particularly pronounced for the protein composition of mitochondria. Here, we show that the yeast cytosolic ubiquitin conjugase Ubc8 plays a crucial role in the remodeling process when cells transition from respiratory to fermentative conditions. Ubc8 is a conserved and well-studied component of the catabolite control system that is known to regulate the stability of gluconeogenic enzymes. Unexpectedly, we found that Ubc8 also promotes the assembly of the translocase of the outer membrane of mitochondria (TOM) and increases the levels of its cytosol-exposed receptor subunit Tom22. Ubc8 deficiency results in compromised protein import into mitochondria and reduced steady-state levels of mitochondrial proteins. Our observations show that Ubc8, which is controlled by the prevailing metabolic conditions, promotes the switch from glucose synthesis to glucose usage in the cytosol and induces the biogenesis of the mitochondrial TOM machinery to improve mitochondrial protein import during phases of metabolic transition.
Collapse
Affiliation(s)
- Saskia Rödl
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Markus Räschle
- Molecular Genetics, University of Kaiserslautern, Kaiserslautern, Germany
| | - Büsra Kizmaz
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Svenja Lenhard
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Carina Groh
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Hanna Becker
- Food Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Jannik Zimmermann
- Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Bruce Morgan
- Biochemistry, Center for Human and Molecular Biology (ZHMB), Saarland University, Saarbrücken, Germany
| | - Elke Richling
- Food Chemistry, University of Kaiserslautern, Kaiserslautern, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | | |
Collapse
|
7
|
Avendaño-Monsalve MC, Mendoza-Martínez AE, Ponce-Rojas JC, Poot-Hernández AC, Rincón-Heredia R, Funes S. Positively charged amino acids at the N terminus of select mitochondrial proteins mediate early recognition by import proteins αβ'-NAC and Sam37. J Biol Chem 2022; 298:101984. [PMID: 35487246 PMCID: PMC9136113 DOI: 10.1016/j.jbc.2022.101984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 04/16/2022] [Accepted: 04/19/2022] [Indexed: 11/04/2022] Open
Abstract
A major challenge in eukaryotic cells is the proper distribution of nuclear-encoded proteins to the correct organelles. For a subset of mitochondrial proteins, a signal sequence at the N terminus (matrix-targeting sequence [MTS]) is recognized by protein complexes to ensure their proper translocation into the organelle. However, the early steps of mitochondrial protein targeting remain undeciphered. The cytosolic chaperone nascent polypeptide–associated complex (NAC), which in yeast is represented as the two different heterodimers αβ-NAC and αβ′-NAC, has been proposed to be involved during the early steps of mitochondrial protein targeting. We have previously described that the mitochondrial outer membrane protein Sam37 interacts with αβ′-NAC and together promote the import of specific mitochondrial precursor proteins. In this work, we aimed to detect the region in the MTS of mitochondrial precursors relevant for their recognition by αβ′-NAC during their sorting to the mitochondria. We used targeting signals of different mitochondrial proteins (αβ′-NAC-dependent Oxa1 and αβ′-NAC-independent Mdm38) and fused them to GFP to study their intracellular localization by biochemical and microscopy methods, and in addition followed their import kinetics in vivo. Our results reveal the presence of a positively charged amino acid cluster in the MTS of select mitochondrial precursors, such as Oxa1 and Fum1, which are crucial for their recognition by αβ′-NAC. Furthermore, we explored the presence of this cluster at the N terminus of the mitochondrial proteome and propose a set of precursors whose proper localization depends on both αβ′-NAC and Sam37.
Collapse
Affiliation(s)
- Maria Clara Avendaño-Monsalve
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ariann E Mendoza-Martínez
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - José Carlos Ponce-Rojas
- Department of Molecular, Cellular, and Developmental Biology, University of California at Santa Barbara, Santa Barbara, California, USA
| | - Augusto César Poot-Hernández
- Unidad de Bioinformática y Manejo de la Información, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Ruth Rincón-Heredia
- Unidad de Imagenología, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico
| | - Soledad Funes
- Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Coyoacán, Cd.Mx., Mexico.
| |
Collapse
|
8
|
Güngör B, Flohr T, Garg SG, Herrmann JM. The ER membrane complex (EMC) can functionally replace the Oxa1 insertase in mitochondria. PLoS Biol 2022; 20:e3001380. [PMID: 35231030 PMCID: PMC8887752 DOI: 10.1371/journal.pbio.3001380] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 12/17/2021] [Indexed: 12/18/2022] Open
Abstract
Two multisubunit protein complexes for membrane protein insertion were recently identified in the endoplasmic reticulum (ER): the guided entry of tail anchor proteins (GET) complex and ER membrane complex (EMC). The structures of both of their hydrophobic core subunits, which are required for the insertion reaction, revealed an overall similarity to the YidC/Oxa1/Alb3 family members found in bacteria, mitochondria, and chloroplasts. This suggests that these membrane insertion machineries all share a common ancestry. To test whether these ER proteins can functionally replace Oxa1 in yeast mitochondria, we generated strains that express mitochondria-targeted Get2-Get1 and Emc6-Emc3 fusion proteins in Oxa1 deletion mutants. Interestingly, the Emc6-Emc3 fusion was able to complement an Δoxa1 mutant and restored its respiratory competence. The Emc6-Emc3 fusion promoted the insertion of the mitochondrially encoded protein Cox2, as well as of nuclear encoded inner membrane proteins, although was not able to facilitate the assembly of the Atp9 ring. Our observations indicate that protein insertion into the ER is functionally conserved to the insertion mechanism in bacteria and mitochondria and adheres to similar topological principles.
Collapse
Affiliation(s)
- Büsra Güngör
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Sriram G. Garg
- Institute for Molecular Evolution, Heinrich-Heine-Universität Düsseldorf, Düsseldorf, Germany
| | | |
Collapse
|
9
|
den Brave F, Gupta A, Becker T. Protein Quality Control at the Mitochondrial Surface. Front Cell Dev Biol 2021; 9:795685. [PMID: 34926473 PMCID: PMC8678412 DOI: 10.3389/fcell.2021.795685] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/05/2021] [Indexed: 12/14/2022] Open
Abstract
Mitochondria contain two membranes, the outer and inner membrane. The outer membrane fulfills crucial functions for the communication of mitochondria with the cellular environment like exchange of lipids via organelle contact sites, the transport of metabolites and the formation of a signaling platform in apoptosis and innate immunity. The translocase of the outer membrane (TOM complex) forms the entry gate for the vast majority of precursor proteins that are produced on cytosolic ribosomes. Surveillance of the functionality of outer membrane proteins is critical for mitochondrial functions and biogenesis. Quality control mechanisms remove defective and mistargeted proteins from the outer membrane as well as precursor proteins that clog the TOM complex. Selective degradation of single proteins is also an important mode to regulate mitochondrial dynamics and initiation of mitophagy pathways. Whereas inner mitochondrial compartments are equipped with specific proteases, the ubiquitin-proteasome system is a central player in protein surveillance on the mitochondrial surface. In this review, we summarize our current knowledge about the molecular mechanisms that govern quality control of proteins at the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Fabian den Brave
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Arushi Gupta
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Thomas Becker
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, Bonn, Germany
| |
Collapse
|
10
|
Cytosolic Quality Control of Mitochondrial Protein Precursors-The Early Stages of the Organelle Biogenesis. Int J Mol Sci 2021; 23:ijms23010007. [PMID: 35008433 PMCID: PMC8745001 DOI: 10.3390/ijms23010007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
With few exceptions, proteins that constitute the proteome of mitochondria originate outside of this organelle in precursor forms. Such protein precursors follow dedicated transportation paths to reach specific parts of mitochondria, where they complete their maturation and perform their functions. Mitochondrial precursor targeting and import pathways are essential to maintain proper mitochondrial function and cell survival, thus are tightly controlled at each stage. Mechanisms that sustain protein homeostasis of the cytosol play a vital role in the quality control of proteins targeted to the organelle. Starting from their synthesis, precursors are constantly chaperoned and guided to reduce the risk of premature folding, erroneous interactions, or protein damage. The ubiquitin-proteasome system provides proteolytic control that is not restricted to defective proteins but also regulates the supply of precursors to the organelle. Recent discoveries provide evidence that stress caused by the mislocalization of mitochondrial proteins may contribute to disease development. Precursors are not only subject to regulation but also modulate cytosolic machinery. Here we provide an overview of the cellular pathways that are involved in precursor maintenance and guidance at the early cytosolic stages of mitochondrial biogenesis. Moreover, we follow the circumstances in which mitochondrial protein import deregulation disturbs the cellular balance, carefully looking for rescue paths that can restore proteostasis.
Collapse
|
11
|
Koch C, Schuldiner M, Herrmann JM. ER-SURF: Riding the Endoplasmic Reticulum Surface to Mitochondria. Int J Mol Sci 2021; 22:9655. [PMID: 34502567 PMCID: PMC8432098 DOI: 10.3390/ijms22179655] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023] Open
Abstract
Most mitochondrial proteins are synthesized in the cytosol and targeted to the mitochondrial surface in a post-translational manner. The surface of the endoplasmic reticulum (ER) plays an active role in this targeting reaction. ER-associated chaperones interact with certain mitochondrial membrane protein precursors and transfer them onto receptor proteins of the mitochondrial surface in a process termed ER-SURF. ATP-driven proteins in the membranes of mitochondria (Msp1, ATAD1) and the ER (Spf1, P5A-ATPase) serve as extractors for the removal of mislocalized proteins. If the re-routing to mitochondria fails, precursors can be degraded by ER or mitochondria-associated degradation (ERAD or MAD respectively) in a proteasome-mediated reaction. This review summarizes the current knowledge about the cooperation of the ER and mitochondria in the targeting and quality control of mitochondrial precursor proteins.
Collapse
Affiliation(s)
- Christian Koch
- Cell Biology, University of Kaiserslautern, 67663 Kaiserslautern, Germany;
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 7610001, Israel;
| | | |
Collapse
|
12
|
Quality control of protein import into mitochondria. Biochem J 2021; 478:3125-3143. [PMID: 34436539 DOI: 10.1042/bcj20190584] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/19/2022]
Abstract
Mitochondria import about 1000 proteins that are produced as precursors on cytosolic ribosomes. Defects in mitochondrial protein import result in the accumulation of non-imported precursor proteins and proteotoxic stress. The cell is equipped with different quality control mechanisms to monitor protein transport into mitochondria. First, molecular chaperones guide unfolded proteins to mitochondria and deliver non-imported proteins to proteasomal degradation. Second, quality control factors remove translocation stalled precursor proteins from protein translocases. Third, protein translocases monitor protein sorting to mitochondrial subcompartments. Fourth, AAA proteases of the mitochondrial subcompartments remove mislocalized or unassembled proteins. Finally, impaired efficiency of protein transport is an important sensor for mitochondrial dysfunction and causes the induction of cellular stress responses, which could eventually result in the removal of the defective mitochondria by mitophagy. In this review, we summarize our current understanding of quality control mechanisms that govern mitochondrial protein transport.
Collapse
|
13
|
Schlagowski AM, Knöringer K, Morlot S, Sánchez Vicente A, Flohr T, Krämer L, Boos F, Khalid N, Ahmed S, Schramm J, Murschall LM, Haberkant P, Stein F, Riemer J, Westermann B, Braun RJ, Winklhofer KF, Charvin G, Herrmann JM. Increased levels of mitochondrial import factor Mia40 prevent the aggregation of polyQ proteins in the cytosol. EMBO J 2021; 40:e107913. [PMID: 34191328 PMCID: PMC8365258 DOI: 10.15252/embj.2021107913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/11/2022] Open
Abstract
The formation of protein aggregates is a hallmark of neurodegenerative diseases. Observations on patient samples and model systems demonstrated links between aggregate formation and declining mitochondrial functionality, but causalities remain unclear. We used Saccharomyces cerevisiae to analyze how mitochondrial processes regulate the behavior of aggregation‐prone polyQ protein derived from human huntingtin. Expression of Q97‐GFP rapidly led to insoluble cytosolic aggregates and cell death. Although aggregation impaired mitochondrial respiration only slightly, it considerably interfered with the import of mitochondrial precursor proteins. Mutants in the import component Mia40 were hypersensitive to Q97‐GFP, whereas Mia40 overexpression strongly suppressed the formation of toxic Q97‐GFP aggregates both in yeast and in human cells. Based on these observations, we propose that the post‐translational import of mitochondrial precursor proteins into mitochondria competes with aggregation‐prone cytosolic proteins for chaperones and proteasome capacity. Mia40 regulates this competition as it has a rate‐limiting role in mitochondrial protein import. Therefore, Mia40 is a dynamic regulator in mitochondrial biogenesis that can be exploited to stabilize cytosolic proteostasis.
Collapse
Affiliation(s)
| | | | - Sandrine Morlot
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | - Ana Sánchez Vicente
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Tamara Flohr
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Lena Krämer
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Felix Boos
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | - Nabeel Khalid
- German Research Center for Artificial Intelligence DFKI, Kaiserslautern, Germany
| | - Sheraz Ahmed
- German Research Center for Artificial Intelligence DFKI, Kaiserslautern, Germany
| | - Jana Schramm
- Cell Biology, University of Bayreuth, Bayreuth, Germany
| | | | - Per Haberkant
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Frank Stein
- Proteomics Core Facility, EMBL Heidelberg, Heidelberg, Germany
| | - Jan Riemer
- Biochemistry, University of Cologne, Cologne, Germany
| | | | - Ralf J Braun
- Cell Biology, University of Bayreuth, Bayreuth, Germany.,Neurodegeneration, Danube Private University, Krems/Donau, Austria
| | - Konstanze F Winklhofer
- Department of Molecular Cell Biology, Institute of Biochemistry and Pathobiochemistry, Ruhr University Bochum, Bochum, Germany
| | - Gilles Charvin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France.,Centre National de la Recherche Scientifique, UMR7104, Illkirch, France.,Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France.,Université de Strasbourg, Illkirch, France
| | | |
Collapse
|
14
|
Shakya VP, Barbeau WA, Xiao T, Knutson CS, Schuler MH, Hughes AL. A nuclear-based quality control pathway for non-imported mitochondrial proteins. eLife 2021; 10:61230. [PMID: 33734083 PMCID: PMC7993989 DOI: 10.7554/elife.61230] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/17/2021] [Indexed: 01/08/2023] Open
Abstract
Mitochondrial import deficiency causes cellular toxicity due to the accumulation of non-imported mitochondrial precursor proteins, termed mitoprotein-induced stress. Despite the burden mis-localized mitochondrial precursors place on cells, our understanding of the systems that dispose of these proteins is incomplete. Here, we cataloged the location and steady-state abundance of mitochondrial precursor proteins during mitochondrial impairment in Saccharomyces cerevisiae. We found that a number of non-imported mitochondrial proteins localize to the nucleus, where they are subjected to proteasome-dependent degradation through a process we term nuclear-associated mitoprotein degradation (mitoNUC). Recognition and destruction of mitochondrial precursors by the mitoNUC pathway requires the presence of an N-terminal mitochondrial targeting sequence and is mediated by combined action of the E3 ubiquitin ligases San1, Ubr1, and Doa10. Impaired breakdown of precursors leads to alternative sequestration in nuclear-associated foci. These results identify the nucleus as an important destination for the disposal of non-imported mitochondrial precursors.
Collapse
Affiliation(s)
- Viplendra Ps Shakya
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - William A Barbeau
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Tianyao Xiao
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Christina S Knutson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Max H Schuler
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| | - Adam L Hughes
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, United States
| |
Collapse
|