1
|
Ntadambanya A, Pernier J, David V, Susumu K, Medintz IL, Collot M, Klymchenko A, Hildebrandt N, Le Potier I, Le Clainche C, Cardoso Dos Santos M. Quantum Dot-Based FRET Nanosensors for Talin-Membrane Assembly and Mechanosensing. Angew Chem Int Ed Engl 2024; 63:e202409852. [PMID: 39007225 DOI: 10.1002/anie.202409852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/13/2024] [Accepted: 07/14/2024] [Indexed: 07/16/2024]
Abstract
Understanding the mechanisms of assembly and disassembly of macromolecular structures in cells relies on solving biomolecular interactions. However, those interactions often remain unclear because tools to track molecular dynamics are not sufficiently resolved in time or space. In this study, we present a straightforward method for resolving inter- and intra-molecular interactions in cell adhesive machinery, using quantum dot (QD) based Förster resonance energy transfer (FRET) nanosensors. Using a mechanosensitive protein, talin, one of the major components of focal adhesions, we are investigating the mechanosensing ability of proteins to sense and respond to mechanical stimuli. First, we quantified the distances separating talin and a giant unilamellar vesicle membrane for three talin variants. These variants differ in molecular length. Second, we investigated the mechanosensing capabilities of talin, i.e., its conformational changes due to mechanical stretching initiated by cytoskeleton contraction. Our results suggest that in early focal adhesion, talin undergoes stretching, corresponding to a decrease in the talin-membrane distance of 2.5 nm. We demonstrate that QD-FRET nanosensors can be applied for the sensitive quantification of mechanosensing with a sub-nanometer accuracy.
Collapse
Affiliation(s)
- Audrey Ntadambanya
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Julien Pernier
- Gustave Roussy Institute, Inserm U1279, Université Paris-Saclay, Villejuif, France
| | - Violaine David
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Kimihiro Susumu
- Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory, Washington, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering U.S. Naval Research Laboratory, Washington, USA
| | - Mayeul Collot
- Laboratoire de Bioimagerie et Pathologie, CNRS UMR 7021 Université de Strasbourg, Strasbourg, France
| | - Andrey Klymchenko
- Laboratoire de Bioimagerie et Pathologie, CNRS UMR 7021 Université de Strasbourg, Strasbourg, France
| | - Niko Hildebrandt
- Department of Engineering Physics, McMaster University, Hamilton, ON L8S4L7, Canada
| | - Isabelle Le Potier
- Centre de nanosciences et nanotechnologies (C2N), CNRS UMR9001, Université Paris-Saclay, Palaiseau, France
| | - Christophe Le Clainche
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Marcelina Cardoso Dos Santos
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
2
|
Narasimhan S, Holmes WR, Kaverina I. Merging of ventral fibers at adhesions drives the remodeling of cellular contractile systems in fibroblasts. Cytoskeleton (Hoboken) 2022; 79:81-93. [PMID: 35996927 PMCID: PMC9770016 DOI: 10.1002/cm.21722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/10/2022] [Accepted: 08/17/2022] [Indexed: 01/30/2023]
Abstract
Ventral stress fibers (VSFs) are contractile actin fibers dynamically attached to cell-matrix focal adhesions. VSFs are critical in cellular traction force production and migration. VSFs vary from randomly oriented short, thinner fibers to long, thick fibers that span along the whole long axis of a cell. De novo VSF formation was shown to occur by cortical actin mesh condensation or by crosslinking of dorsal stress fibers and transverse arcs at the cell front. However, the formation of long VSFs that extend across the whole cell axis is not well understood. Here, we report a novel phenomenon of VSF merging in migratory fibroblast cells, which is guided by mechanical force balance and contributes to VSF alignment along the long cell axis. The mechanism of VSF merging involves two steps: connection of two ventral fibers by an emerging myosin II bridge at an intervening adhesion and intervening adhesion dissolution. Our data indicate that these two steps are interdependent: slow adhesion disassembly leads to the slowing of the myosin bridge formation. Cellular data and computational modeling show that the contact angle between merging fibers decides successful merging, with shallow angles leading to merge failure. Our data and modeling further show that merging increases the share of uniformly aligned long VSFs, likely contributing to directional traction force production. Thus, we characterize merging as a process for dynamic reorganization of VSFs with functional significance for directional cell migration.
Collapse
Affiliation(s)
| | | | - Irina Kaverina
- Department of Cell and Developmental Biology, Vanderbilt University
| |
Collapse
|