1
|
Gilbert T, Gorlt C, Barbier M, Duployer B, Plozza M, Dufrancais O, Martet LE, Dalbard E, Segot L, Tenailleau C, Haren L, Vérollet C, Bierkamp C, Merdes A. Loss of ninein interferes with osteoclast formation and causes premature ossification. eLife 2024; 13:e93457. [PMID: 38836552 PMCID: PMC11175614 DOI: 10.7554/elife.93457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 06/04/2024] [Indexed: 06/06/2024] Open
Abstract
Ninein is a centrosome protein that has been implicated in microtubule anchorage and centrosome cohesion. Mutations in the human NINEIN gene have been linked to Seckel syndrome and to a rare form of skeletal dysplasia. However, the role of ninein in skeletal development remains unknown. Here, we describe a ninein knockout mouse with advanced endochondral ossification during embryonic development. Although the long bones maintain a regular size, the absence of ninein delays the formation of the bone marrow cavity in the prenatal tibia. Likewise, intramembranous ossification in the skull is more developed, leading to a premature closure of the interfrontal suture. We demonstrate that ninein is strongly expressed in osteoclasts of control mice, and that its absence reduces the fusion of precursor cells into syncytial osteoclasts, whereas the number of osteoblasts remains unaffected. As a consequence, ninein-deficient osteoclasts have a reduced capacity to resorb bone. At the cellular level, the absence of ninein interferes with centrosomal microtubule organization, reduces centrosome cohesion, and provokes the loss of centrosome clustering in multinucleated mature osteoclasts. We propose that centrosomal ninein is important for osteoclast fusion, to enable a functional balance between bone-forming osteoblasts and bone-resorbing osteoclasts during skeletal development.
Collapse
Affiliation(s)
- Thierry Gilbert
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Camille Gorlt
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Merlin Barbier
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Marianna Plozza
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Ophélie Dufrancais
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
| | - Laure-Elene Martet
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Elisa Dalbard
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Loelia Segot
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | | | - Laurence Haren
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Christel Vérollet
- Institut de Pharmacologie et de Biologie Structurale, UMR5089, CNRS & Université Paul SabatierToulouseFrance
- International Research Project CNRS “MAC-TB/HIV”ToulouseFrance
| | - Christiane Bierkamp
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| | - Andreas Merdes
- Molecular, Cellular and Developmental Biology, Centre de Biologie Intégrative, UMR5077, CNRS & Université Paul SabatierToulouseFrance
| |
Collapse
|
2
|
Conway PJ, Dao J, Kovalskyy D, Mahadevan D, Dray E. Polyploidy in Cancer: Causal Mechanisms, Cancer-Specific Consequences, and Emerging Treatments. Mol Cancer Ther 2024; 23:638-647. [PMID: 38315992 PMCID: PMC11174144 DOI: 10.1158/1535-7163.mct-23-0578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/19/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
Drug resistance is the major determinant for metastatic disease and fatalities, across all cancers. Depending on the tissue of origin and the therapeutic course, a variety of biological mechanisms can support and sustain drug resistance. Although genetic mutations and gene silencing through epigenetic mechanisms are major culprits in targeted therapy, drug efflux and polyploidization are more global mechanisms that prevail in a broad range of pathologies, in response to a variety of treatments. There is an unmet need to identify patients at risk for polyploidy, understand the mechanisms underlying polyploidization, and to develop strategies to predict, limit, and reverse polyploidy thus enhancing efficacy of standard-of-care therapy that improve better outcomes. This literature review provides an overview of polyploidy in cancer and offers perspective on patient monitoring and actionable therapy.
Collapse
Affiliation(s)
- Patrick J Conway
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Jonathan Dao
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
| | - Dmytro Kovalskyy
- Greehey Children's Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas
| | - Daruka Mahadevan
- Mays Cancer Center, University of Texas Health San Antonio, San Antonio, Texas
- Department of Molecular Immunology & Microbiology, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| | - Eloise Dray
- Long School of Medicine, University of Texas Health San Antonio, San Antonio, Texas
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
3
|
Kalbfuss N, Gönczy P. Towards understanding centriole elimination. Open Biol 2023; 13:230222. [PMID: 37963546 PMCID: PMC10645514 DOI: 10.1098/rsob.230222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/14/2023] [Indexed: 11/16/2023] Open
Abstract
Centrioles are microtubule-based structures crucial for forming flagella, cilia and centrosomes. Through these roles, centrioles are critical notably for proper cell motility, signalling and division. Recent years have advanced significantly our understanding of the mechanisms governing centriole assembly and architecture. Although centrioles are typically very stable organelles, persisting over many cell cycles, they can also be eliminated in some cases. Here, we review instances of centriole elimination in a range of species and cell types. Moreover, we discuss potential mechanisms that enable the switch from a stable organelle to a vanishing one. Further work is expected to provide novel insights into centriole elimination mechanisms in health and disease, thereby also enabling scientists to readily manipulate organelle fate.
Collapse
Affiliation(s)
- Nils Kalbfuss
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Pierre Gönczy
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
4
|
Favaron PO, Carter AM. The trophoblast giant cells of cricetid rodents. Front Cell Dev Biol 2023; 10:1097854. [PMID: 36726588 PMCID: PMC9885145 DOI: 10.3389/fcell.2022.1097854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/16/2022] [Indexed: 01/19/2023] Open
Abstract
Giant cells are a prominent feature of placentation in cricetid rodents. Once thought to be maternal in origin, they are now known to be trophoblast giant cells (TGCs). The large size of cricetid TGCs and their nuclei reflects a high degree of polyploidy. While some TGCs are found at fixed locations, others migrate throughout the placenta and deep into the uterus where they sometimes survive postpartum. Herein, we review the distribution of TGCs in the placenta of cricetids, including our own data from the New World subfamily Sigmodontinae, and attempt a comparison between the TGCs of cricetid and murid rodents. In both families, parietal TGCs are found in the parietal yolk sac and as a layer between the junctional zone and decidua. In cricetids alone, large numbers of TGCs, likely from the same lineage, accumulate at the edge of the placental disk. Common to murids and cricetids is a haemotrichorial placental barrier where the maternal-facing layer consists of cytotrophoblasts characterized as sinusoidal TGCs. The maternal channels of the labyrinth are supplied by trophoblast-lined canals. Whereas in the mouse these are lined largely by canal TGCs, in cricetids canal TGCs are interspersed with syncytiotrophoblast. Transformation of the uterine spiral arteries occurs in both murids and cricetids and spiral artery TGCs line segments of the arteries that have lost their endothelium and smooth muscle. Since polyploidization of TGCs can amplify selective genomic regions required for specific functions, we argue that the TGCs of cricetids deserve further study and suggest avenues for future research.
Collapse
Affiliation(s)
- Phelipe O. Favaron
- Department of General Biology, Biological Sciences Center, State University of Londrina, Paraná, Brazil
| | - Anthony M. Carter
- Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
5
|
You DD, Zhou XL, Wang QQ, Liu JL. Cytoophidia safeguard binucleation of Drosophila male accessory gland cells. Exp Cell Res 2023; 422:113433. [PMID: 36423659 DOI: 10.1016/j.yexcr.2022.113433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 11/23/2022]
Abstract
Although most cells are mononuclear, the nucleus can exist in the form of binucleate or even multinucleate to respond to different physiological processes. The male accessory gland of Drosophila is the organ that produces semen, and its main cells are binucleate. Here we observe that CTP synthase (CTPS) forms filamentous cytoophidia in binuclear main cells, primarily located at the cell boundary. In CTPSH355A, a point mutation that destroys the formation of cytoophidia, we find that the nucleation mode of the main cells changes, including mononucleates and vertical distribution of binucleates. Although the overexpression of CTPSH355A can restore the level of CTPS protein, it will neither form cytoophidia nor eliminate the abnormal nucleation pattern. Therefore, our data indicate that there is an unexpected functional link between the formation of cytoophidia and the maintenance of binucleation in Drosophila main cells.
Collapse
Affiliation(s)
- Dong-Dong You
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiao-Li Zhou
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qiao-Qi Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China; Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, United Kingdom.
| |
Collapse
|