1
|
Kimmich MJ, Sundaramurthy S, Geary MA, Lesanpezeshki L, Yingling CV, Vanapalli SA, Littlefield RS, Pruyne D. FHOD-1 and profilin protect sarcomeres against contraction-induced deformation> in C. elegans. Mol Biol Cell 2024; 35:ar137. [PMID: 39259762 PMCID: PMC11617102 DOI: 10.1091/mbc.e24-04-0145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/13/2024] Open
Abstract
Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from Caenorhabditis elegans results in thin body wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that mutations predicted to specifically disrupt actin polymerization by FHOD-1 similarly disrupt muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and with profilins PFN-2 and PFN-3 to promote body wall muscle growth. We further demonstrate that dense bodies in worms lacking FHOD-1 or PFN-2/PFN-3 are less stable than in wild-type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin and actin depolymerization factor/cofilin homologue UNC-60B in body wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, possibly accounting for the abnormally slow growth and reduced body wall muscle strength in fhod-1 mutants. Overall, these results implicate FHOD protein-mediated actin assembly in forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.
Collapse
Affiliation(s)
- Michael J. Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Meaghan A. Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Curtis V. Yingling
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | | | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
2
|
Courtemanche N, Henty-Ridilla JL. Actin filament dynamics at barbed ends: New structures, new insights. Curr Opin Cell Biol 2024; 90:102419. [PMID: 39178734 PMCID: PMC11492572 DOI: 10.1016/j.ceb.2024.102419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/30/2024] [Accepted: 07/31/2024] [Indexed: 08/26/2024]
Abstract
The dynamic actin cytoskeleton contributes to many critical biological processes by providing the structural support underlying the morphology of most cells, facilitating intracellular transport, and generating forces required for cell motility and division. To execute many of these functions, actin monomers polymerize into polarized filaments that display different structural and biochemical properties at each end. Filament dynamics are regulated by diverse regulatory proteins which collaborate to dictate rates of elongation and disassembly, particularly at the fast-growing barbed (plus) end. This review highlights the biochemical mechanisms of six barbed end regulatory proteins: formin, profilin, capping protein, IQGAP1, cyclase-associated protein, and twinfilin. We discuss how individual proteins influence actin dynamics and how several intriguing complex assemblies influence the polymerization fate of actin filaments. Understanding these mechanisms offers insights into how actin is regulated in essential cell processes and dysregulated in disease.
Collapse
Affiliation(s)
- Naomi Courtemanche
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jessica L Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA; Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
3
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Alcaide Eligio M, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. J Cell Biol 2024; 223:e202305065. [PMID: 38787349 PMCID: PMC11117073 DOI: 10.1083/jcb.202305065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 04/01/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (capping protein, CP). We explore IQGAP1's roles in regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF, we show that IQGAP1's displacement activity extends to formin-CP "decision complexes," promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L. Pimm
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Brian K. Haarer
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexander D. Nobles
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Laura M. Haney
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Alexandra G. Marcin
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jessica L. Henty-Ridilla
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
4
|
Palmer NJ, Barrie KR, Dominguez R. Mechanisms of actin filament severing and elongation by formins. Nature 2024; 632:437-442. [PMID: 38843827 PMCID: PMC11375965 DOI: 10.1038/s41586-024-07637-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/31/2024] [Indexed: 08/02/2024]
Abstract
Humans express 15 formins that play crucial roles in actin-based processes, including cytokinesis, cell motility and mechanotransduction1,2. However, the lack of structures bound to the actin filament (F-actin) has been a major impediment to understanding formin function. Whereas formins are known for their ability to nucleate and elongate F-actin3-7, some formins can additionally depolymerize, sever or bundle F-actin. Two mammalian formins, inverted formin 2 (INF2) and diaphanous 1 (DIA1, encoded by DIAPH1), exemplify this diversity. INF2 shows potent severing activity but elongates weakly8-11 whereas DIA1 has potent elongation activity but does not sever4,8. Using cryo-electron microscopy (cryo-EM) we show five structural states of INF2 and two of DIA1 bound to the middle and barbed end of F-actin. INF2 and DIA1 bind differently to these sites, consistent with their distinct activities. The formin-homology 2 and Wiskott-Aldrich syndrome protein-homology 2 (FH2 and WH2, respectively) domains of INF2 are positioned to sever F-actin, whereas DIA1 appears unsuited for severing. These structures also show how profilin-actin is delivered to the fast-growing barbed end, and how this is followed by a transition of the incoming monomer into the F-actin conformation and the release of profilin. Combined, the seven structures presented here provide step-by-step visualization of the mechanisms of F-actin severing and elongation by formins.
Collapse
Affiliation(s)
- Nicholas J Palmer
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kyle R Barrie
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Roberto Dominguez
- Department of Physiology and Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Oosterheert W, Boiero Sanders M, Funk J, Prumbaum D, Raunser S, Bieling P. Molecular mechanism of actin filament elongation by formins. Science 2024; 384:eadn9560. [PMID: 38603491 DOI: 10.1126/science.adn9560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/05/2024] [Indexed: 04/13/2024]
Abstract
Formins control the assembly of actin filaments (F-actin) that drive cell morphogenesis and motility in eukaryotes. However, their molecular interaction with F-actin and their mechanism of action remain unclear. In this work, we present high-resolution cryo-electron microscopy structures of F-actin barbed ends bound by three distinct formins, revealing a common asymmetric formin conformation imposed by the filament. Formation of new intersubunit contacts during actin polymerization sterically displaces formin and triggers its translocation. This "undock-and-lock" mechanism explains how actin-filament growth is coordinated with formin movement. Filament elongation speeds are controlled by the positioning and stability of actin-formin interfaces, which distinguish fast and slow formins. Furthermore, we provide a structure of the actin-formin-profilin ring complex, which resolves how profilin is rapidly released from the barbed end during filament elongation.
Collapse
Affiliation(s)
- Wout Oosterheert
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Micaela Boiero Sanders
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Johanna Funk
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Daniel Prumbaum
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| | - Peter Bieling
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227 Dortmund, Germany
| |
Collapse
|
6
|
Kimmich MJ, Sundaramurthy S, Geary MA, Lesanpezeshki L, Yingling CV, Vanapalli SA, Littlefield RS, Pruyne D. FHOD-1/profilin-mediated actin assembly protects sarcomeres against contraction-induced deformation in C. elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582848. [PMID: 38559004 PMCID: PMC10979920 DOI: 10.1101/2024.02.29.582848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Formin HOmology Domain 2-containing (FHOD) proteins are a subfamily of actin-organizing formins important for striated muscle development in many animals. We showed previously that absence of the sole FHOD protein, FHOD-1, from C. elegans results in thin body-wall muscles with misshapen dense bodies that serve as sarcomere Z-lines. We demonstrate here that actin polymerization by FHOD-1 is required for its function in muscle development, and that FHOD-1 cooperates with profilin PFN-3 for dense body morphogenesis, and profilins PFN-2 and PFN-3 to promote body-wall muscle growth. We further demonstrate dense bodies in fhod-1 and pfn-3 mutants are less stable than in wild type animals, having a higher proportion of dynamic protein, and becoming distorted by prolonged muscle contraction. We also observe accumulation of actin depolymerization factor/cofilin homolog UNC-60B in body-wall muscle of these mutants. Such accumulations may indicate targeted disassembly of thin filaments dislodged from unstable dense bodies, and may account for the abnormally slow growth and reduced strength of body-wall muscle in fhod-1 mutants. Overall, these results show the importance of FHOD protein-mediated actin assembly to forming stable sarcomere Z-lines, and identify profilin as a new contributor to FHOD activity in striated muscle development.
Collapse
Affiliation(s)
- Michael J. Kimmich
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Sumana Sundaramurthy
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Meaghan A. Geary
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Leila Lesanpezeshki
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | - Curtis V. Yingling
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| | - Siva A. Vanapalli
- Department of Chemical Engineering, Texas Tech University, Lubbock, TX 79409
| | | | - David Pruyne
- Department of Cell and Developmental Biology, State University of New York Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
7
|
Pimm ML, Haarer BK, Nobles AD, Haney LM, Marcin AG, Marcela Alcaide Eligio, Henty-Ridilla JL. Coordination of actin plus-end dynamics by IQGAP1, formin, and capping protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.04.539490. [PMID: 37205555 PMCID: PMC10187324 DOI: 10.1101/2023.05.04.539490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Cell processes require precise regulation of actin polymerization that is mediated by plus-end regulatory proteins. Detailed mechanisms that explain plus-end dynamics involve regulators with opposing roles, including factors that enhance assembly, e.g., the formin mDia1, and others that stop growth (Capping Protein, CPz). We explore IQGAP1's roles regulating actin filament plus-ends and the consequences of perturbing its activity in cells. We confirm that IQGAP1 pauses elongation and interacts with plus ends through two residues (C756 and C781). We directly visualize the dynamic interplay between IQGAP1 and mDia1, revealing that IQGAP1 displaces the formin to influence actin assembly. Using four-color TIRF we show that IQGAP1's displacement activity extends to formin-CPz 'decision complexes', promoting end-binding protein turnover at plus-ends. Loss of IQGAP1 or its plus-end activities disrupts morphology and migration, emphasizing its essential role. These results reveal a new role for IQGAP1 in promoting protein turnover on filament ends and provide new insights into how plus-end actin assembly is regulated in cells.
Collapse
Affiliation(s)
- Morgan L Pimm
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Brian K Haarer
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexander D Nobles
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Laura M Haney
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Alexandra G Marcin
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Marcela Alcaide Eligio
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Jessica L Henty-Ridilla
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
- Department of Neuroscience & Physiology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| |
Collapse
|
8
|
Deciphering the molecular mechanisms of actin cytoskeleton regulation in cell migration using cryo-EM. Biochem Soc Trans 2023; 51:87-99. [PMID: 36695514 PMCID: PMC9987995 DOI: 10.1042/bst20220221] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
The actin cytoskeleton plays a key role in cell migration and cellular morphodynamics in most eukaryotes. The ability of the actin cytoskeleton to assemble and disassemble in a spatiotemporally controlled manner allows it to form higher-order structures, which can generate forces required for a cell to explore and navigate through its environment. It is regulated not only via a complex synergistic and competitive interplay between actin-binding proteins (ABP), but also by filament biochemistry and filament geometry. The lack of structural insights into how geometry and ABPs regulate the actin cytoskeleton limits our understanding of the molecular mechanisms that define actin cytoskeleton remodeling and, in turn, impact emerging cell migration characteristics. With the advent of cryo-electron microscopy (cryo-EM) and advanced computational methods, it is now possible to define these molecular mechanisms involving actin and its interactors at both atomic and ultra-structural levels in vitro and in cellulo. In this review, we will provide an overview of the available cryo-EM methods, applicable to further our understanding of the actin cytoskeleton, specifically in the context of cell migration. We will discuss how these methods have been employed to elucidate ABP- and geometry-defined regulatory mechanisms in initiating, maintaining, and disassembling cellular actin networks in migratory protrusions.
Collapse
|