1
|
Fu J, Liu W, Liu S, Zhao R, Hayashi T, Zhao H, Xiang Y, Mizuno K, Hattori S, Fujisaki H, Ikejima T. Inhibition of YAP/TAZ pathway contributes to the cytotoxicity of silibinin in MCF-7 and MDA-MB-231 human breast cancer cells. Cell Signal 2024; 119:111186. [PMID: 38643945 DOI: 10.1016/j.cellsig.2024.111186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Breast cancer is one of the most common cancers threatening women's health. Our previous study found that silibinin induced the death of MCF-7 and MDA-MB-231 human breast cancer cells. We noticed that silibinin-induced cell damage was accompanied by morphological changes, including the increased cell aspect ratio (cell length/width) and decreased cell area. Besides, the cytoskeleton is also destroyed in cells treated with silibinin. YAP/TAZ, a mechanical signal sensor interacted with extracellular pressure, cell adhesion area and cytoskeleton, is also closely associated with cell survival, proliferation and migration. Thus, the involvement of YAP/TAZ in the cytotoxicity of silibinin in breast cancer cells has attracted our interests. Excitingly, we find that silibinin inhibits the nuclear translocation of YAP/TAZ in MCF-7 and MDA-MB-231 cells, and reduces the mRNA expressions of YAP/TAZ target genes, ACVR1, MnSOD and ANKRD. More importantly, expression of YAP1 gene is negatively correlated with the survival of the patients with breast cancers. Molecular docking analysis reveals high probabilities for binding of silibinin to the proteins in the YAP pathways. DARTS and CETSA results confirm the binding abilities of silibinin to YAP and LATS. Inhibiting YAP pathway either by addition of verteporfin, an inhibitor of YAP/TAZ-TEAD, or by transfection of si-RNAs targeting YAP or TAZ further enhances silibinin-induced cell damage. While enhancing YAP activity by silencing LATS1/2 or overexpressing YAPS127/397A, an active form of YAP, attenuates silibinin-induced cell damage. These findings demonstrate that inhibition of the YAP/TAZ pathway contributes to cytotoxicity of silibinin in breast cancers, shedding lights on YAP/TAZ-targeted cancer therapies.
Collapse
Affiliation(s)
- Jianing Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Weiwei Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Siyu Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Ruxiao Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Toshihiko Hayashi
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Haina Zhao
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Yinlanqi Xiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Hitomi Fujisaki
- Nippi Research Institute of Biomatrix, Toride, Ibaraki 302-0017, Japan
| | - Takashi Ikejima
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China; Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, Liaoning, China.
| |
Collapse
|
2
|
Wang C, Fan M, Heo SJ, Adams SM, Li T, Liu Y, Li Q, Loebel C, Alisafaei F, Burdick JA, Lu XL, Birk DE, Mauck RL, Han L. Structure-Mechanics Principles and Mechanobiology of Fibrocartilage Pericellular Matrix: A Pivotal Role of Type V Collagen. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.26.600498. [PMID: 38979323 PMCID: PMC11230444 DOI: 10.1101/2024.06.26.600498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
The pericellular matrix (PCM) is the immediate microniche surrounding resident cells in various tissue types, regulating matrix turnover, cell-matrix cross-talk and disease initiation. This study elucidated the structure-mechanical properties and mechanobiological functions of the PCM in fibrocartilage, a family of connective tissues that sustain complex tensile and compressive loads in vivo. Studying the murine meniscus as the model tissue, we showed that fibrocartilage PCM contains thinner, random collagen fibrillar networks that entrap proteoglycans, a structure distinct from the densely packed, highly aligned collagen fibers in the bulk extracellular matrix (ECM). In comparison to the ECM, the PCM has a lower modulus and greater isotropy, but similar relative viscoelastic properties. In Col5a1 +/- menisci, the reduction of collagen V, a minor collagen localized in the PCM, resulted in aberrant fibril thickening with increased heterogeneity. Consequently, the PCM exhibited a reduced modulus, loss of isotropy and faster viscoelastic relaxation. This disrupted PCM contributes to perturbed mechanotransduction of resident meniscal cells, as illustrated by reduced intracellular calcium signaling, as well as upregulated biosynthesis of lysyl oxidase and tenascin C. When cultured in vitro, Col5a1 +/- meniscal cells synthesized a weakened nascent PCM, which had inferior properties towards protecting resident cells against applied tensile stretch. These findings underscore the PCM as a distinctive microstructure that governs fibrocartilage mechanobiology, and highlight the pivotal role of collagen V in PCM function. Targeting the PCM or its molecular constituents holds promise for enhancing not only meniscus regeneration and osteoarthritis intervention, but also addressing diseases across various fibrocartilaginous tissues.
Collapse
Affiliation(s)
- Chao Wang
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Mingyue Fan
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Su-Jin Heo
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Sheila M Adams
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Thomas Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Yuchen Liu
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Qing Li
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - Claudia Loebel
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Farid Alisafaei
- Department of Mechanical and Industrial Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Jason A Burdick
- BioFrontiers Institute and Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO 80309, United States
| | - X Lucas Lu
- Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, United States
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani School of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Robert L Mauck
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
- Translational Musculoskeletal Research Center, Corporal Michael J. Crescenz Veterans Administration Medical Center, Philadelphia, PA 19104, United States
| | - Lin Han
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| |
Collapse
|
3
|
Cai X, Warburton C, Perez OF, Wang Y, Ho L, Finelli C, Ehlen QT, Wu C, Rodriguez CD, Kaplan L, Best TM, Huang CY, Meng Z. Hippo-PKCζ-NFκB signaling axis: A druggable modulator of chondrocyte responses to mechanical stress. iScience 2024; 27:109983. [PMID: 38827404 PMCID: PMC11140209 DOI: 10.1016/j.isci.2024.109983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024] Open
Abstract
Recent studies have implicated a crucial role of Hippo signaling in cell fate determination by biomechanical signals. Here we show that mechanical loading triggers the activation of a Hippo-PKCζ-NFκB pathway in chondrocytes, resulting in the expression of NFκB target genes associated with inflammation and matrix degradation. Mechanistically, mechanical loading activates an atypical PKC, PKCζ, which phosphorylates NFκB p65 at Serine 536, stimulating its transcriptional activation. This mechanosensitive activation of PKCζ and NFκB p65 is impeded in cells with gene deletion or chemical inhibition of Hippo core kinases LATS1/2, signifying an essential role of Hippo signaling in this mechanotransduction. A PKC inhibitor AEB-071 or PKCζ knockdown prevents p65 Serine 536 phosphorylation. Our study uncovers that the interplay of the Hippo signaling, PKCζ, and NFκB in response to mechanical loading serves as a therapeutic target for knee osteoarthritis and other conditions resulting from mechanical overloading or Hippo signaling deficiencies.
Collapse
Affiliation(s)
- Xiaomin Cai
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christopher Warburton
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olivia F. Perez
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ying Wang
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lucy Ho
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Christina Finelli
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
| | - Quinn T. Ehlen
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Chenzhou Wu
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos D. Rodriguez
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Lee Kaplan
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Thomas M. Best
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- Department of Orthopedics, University of Miami, Miami, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Chun-Yuh Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Biomedical Engineering, University of Miami, Coral Gables, FL, USA
- UHealth Sports Medicine Institute, University of Miami, Miami, FL, USA
| | - Zhipeng Meng
- Department of Molecular and Cellular Pharmacology, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, USA
- USOAR Scholar Program, Medical Education, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
4
|
Liu L, Liu H, Meng P, Zhang Y, Zhang F, Jia Y, Cheng B, Lammi MJ, Zhang F, Guo X. Involvement of Yes-Associated Protein 1 Activation in the Matrix Degradation of Human-Induced-Pluripotent-Stem-Cell-Derived Chondrocytes Induced by T-2 Toxin and Deoxynivalenol Alone and in Combination. Int J Mol Sci 2024; 25:878. [PMID: 38255951 PMCID: PMC10815455 DOI: 10.3390/ijms25020878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/21/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
T-2 toxin and deoxynivalenol (DON) are two prevalent mycotoxins that cause cartilage damage in Kashin-Beck disease (KBD). Cartilage extracellular matrix (ECM) degradation in chondrocytes is a significant pathological feature of KBD. It has been shown that the Hippo pathway is involved in cartilage ECM degradation. This study aimed to examine the effect of YAP, a major regulator of the Hippo pathway, on the ECM degradation in the hiPS-derived chondrocytes (hiPS-Ch) model of KBD. The hiPS-Ch injury models were established via treatment with T-2 toxin/DON alone or in combination. We found that T-2 toxin and DON inhibited the proliferation of hiPS-Ch in a dose-dependent manner; significantly increased the levels of YAP, SOX9, and MMP13; and decreased the levels of COL2A1 and ACAN (all p values < 0.05). Immunofluorescence revealed that YAP was primarily located in the nuclei of hiPS-Ch, and its expression level increased with toxin concentrations. The inhibition of YAP resulted in the dysregulated expression of chondrogenic markers (all p values < 0.05). These findings suggest that T-2 toxin and DON may inhibit the proliferation of, and induce the ECM degradation, of hiPS-Ch mediated by YAP, providing further insight into the cellular and molecular mechanisms contributing to cartilage damage caused by toxins.
Collapse
Affiliation(s)
- Li Liu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Huan Liu
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Peilin Meng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Yanan Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
- School of Nursing, Lanzhou University, Lanzhou 730000, China
| | - Feng’e Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Yumeng Jia
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Bolun Cheng
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Mikko J. Lammi
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
- Department of Integrative Medical Biology, University of Umeå, 901 87 Umeå, Sweden
| | - Feng Zhang
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| | - Xiong Guo
- School of Public Health, Xi’an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, Collaborative Innovation Center of Endemic Disease and Health Promotion for Silk Road Region, Xi’an 710061, China; (L.L.); (H.L.); (P.M.); (Y.Z.); (F.Z.); (Y.J.); (B.C.); (M.J.L.)
| |
Collapse
|