1
|
Choi SJ, Choi HS, Kim H, Lee JM, Kim SH, Yoon JH, Keum B, Kim HJ, Chun HJ, Park YH. Gastric Cancer and Intestinal Metaplasia: Differential Metabolic Landscapes and New Pathways to Diagnosis. Int J Mol Sci 2024; 25:9509. [PMID: 39273456 PMCID: PMC11395121 DOI: 10.3390/ijms25179509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
Gastric cancer (GC) is the fifth most common cause of cancer-related death worldwide. Early detection is crucial for improving survival rates and treatment outcomes. However, accurate GC-specific biomarkers remain unknown. This study aimed to identify the metabolic differences between intestinal metaplasia (IM) and GC to determine the pathways involved in GC. A metabolic analysis of IM and tissue samples from 37 patients with GC was conducted using ultra-performance liquid chromatography with tandem mass spectrometry. Overall, 665 and 278 significant features were identified in the aqueous and 278 organic phases, respectively, using false discovery rate analysis, which controls the expected proportion of false positives among the significant results. sPLS-DA revealed a clear separation between IM and GC samples. Steroid hormone biosynthesis, tryptophan metabolism, purine metabolism, and arginine and proline metabolism were the most significantly altered pathways. The intensity of 11 metabolites, including N1, N2-diacetylspermine, creatine riboside, and N-formylkynurenine, showed significant elevation in more advanced GC. Based on pathway enrichment analysis and cancer stage-specific alterations, we identified six potential candidates as diagnostic biomarkers: aldosterone, N-formylkynurenine, guanosine triphosphate, arginine, S-adenosylmethioninamine, and creatine riboside. These metabolic differences between IM and GC provide valuable insights into gastric carcinogenesis. Further validation is needed to develop noninvasive diagnostic tools and targeted therapies to improve the outcomes of patients with GC.
Collapse
Affiliation(s)
- Seong Ji Choi
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyuk Soon Choi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyunil Kim
- EN BIO, Cheongju-si 28494, Republic of Korea
| | - Jae Min Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Seung Han Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Jai Hoon Yoon
- Department of Internal Medicine, Hanyang University College of Medicine, Seoul 04763, Republic of Korea
| | - Bora Keum
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hyo Jung Kim
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Hoon Jai Chun
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | | |
Collapse
|
2
|
Gao Z, Yang J. GNB4 Silencing Promotes Pyroptosis to Inhibit the Development of Glioma by Activating cGAS-STING Pathway. Mol Biotechnol 2024:10.1007/s12033-024-01194-7. [PMID: 38814382 DOI: 10.1007/s12033-024-01194-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/06/2024] [Indexed: 05/31/2024]
Abstract
The induction of immunogenic cell death is a promising therapeutic option for gliomas. Pyroptosis is a type of programmed immunogenic cell death and its role in gliomas remains unclear. Differentially expressed genes (DEGs) were obtained from GSE4290 and GSE31262 datasets. Hub genes were screened from protein-protein interaction networks and assessed using principal component analysis and receiver operating characteristic curves. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to measure the mRNA expression of hub genes. Pyroptosis and pathway-related proteins were assessed using western blotting. Inflammatory factor levels were determined using enzyme-linked immunosorbent assay. The effect of guanine nucleotide-binding protein-4 (GNB4) on proliferation, migration, and invasion was evaluated using a cell viability test kit and wound-healing and transwell assays. In total, 202 DEGs were identified. Among them, F2R, GNG4, GNG3, PRKCB, and GNB4 were identified as hub genes in gliomas after comprehensive bioinformatics analysis. GNB4 was significantly upregulated in glioma cells compared to normal brain glial cells. Silencing GNB4 significantly inhibited proliferation, invasion, and migration of glioma cells. The expression of pyroptosis-related proteins increased after GNB4 silencing, with elevated levels of inflammatory factors. Pyroptosis inhibitors reversed the inhibitory effects of GNB4 silencing on cell proliferation, migration, and invasion. Additionally, GNB4 silencing activated the cGAS-STING pathway. Treatment with a cGAS-STING pathway inhibitor reversed the inhibition of proliferation, migration, and invasion while downregulating the expression of pyroptosis-related proteins. Silencing GNB4 promotes pyroptosis and thus inhibits the proliferation, migration, and invasion of glioma cells by activating the cGAS-STING pathway, which is a promising biomarker and therapeutic target for glioma.
Collapse
Affiliation(s)
- Zhiqiang Gao
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China
| | - Jing Yang
- Department of Oncology, First Affiliated Hospital of Gannan Medical University, No. 23, Qingnian Road, Ganzhou City, 341000, Jiangxi Province, China.
| |
Collapse
|
3
|
Chen H, Wang X, Cheng H, Deng Y, Chen J, Wang B. CircRNA circRREB1 promotes tumorigenesis and progression of breast cancer by activating Erk1/2 signaling through interacting with GNB4. Heliyon 2024; 10:e28785. [PMID: 38617926 PMCID: PMC11015410 DOI: 10.1016/j.heliyon.2024.e28785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/24/2024] [Accepted: 03/25/2024] [Indexed: 04/16/2024] Open
Abstract
Current investigations have illuminated the essential roles played by circular RNAs (circRNAs) in driving breast cancer (BC) tumorigenesis. However, the functional implications and molecular underpinnings of most circRNAs in BC are not well characterized. Here, Circular RNA (circRNA) expression profiles were analyzed in four surgically resected BC cases along with adjacent non-cancerous tissues applying RNA microarray analysis. The levels and prognostic implications of circRREB1 in BC were subjected to quantitative real-time PCR (qRT-PCR) and in situ hybridization (ISH). Experimental manipulation of circRREB1 levels in both in vivo and in vitro settings further delineated its role in BC cell growth, invasion, and metastasis. The mechanical verification of circRREB1's interaction with GNB4 was established through RNA pull-down, mass spectrometry, Western blot analysis, RNA immunoprecipitation assays (RIP), fluorescence ISH (FISH), and rescue experiments. We found that circRREB1 exhibited significant upregulation in BC tissues and cells, implicating its association with an unfavorable prognosis in BC patients. CircRREB1 knockdown elicited anti-proliferative, anti-migratory, anti-invasive, and pro-apoptotic effects in BC cells, whereas its upregulation exerted opposing influences. Follow-up mechanistic examinations suggested that circRREB1 might interact with GNB4 directly, inducing the activation of Erk1/2 signaling and driving BC progression. Our findings collectively indicate that the interplay of circRREB1 with GNB4 promotes Erk1/2 signaling, thereby fostering BC progression, and positioning circRREB1 as a candidate therapeutic target for intervention in BC.
Collapse
Affiliation(s)
- Hong Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Xiaosong Wang
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Hang Cheng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Yumei Deng
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Junxia Chen
- Department of Cell Biology and Genetics, Chongqing Medical University, Chongqing 400016, China
| | - Bin Wang
- Department of Oncology, The Seventh People's Hospital of Chongqing (Affiliated Central Hospital of Chongqing University of Technology), Chongqing 400054, China
| |
Collapse
|
4
|
Liu D, Liu Y, Zhu W, Lu Y, Zhu J, Ma X, Xing Y, Yuan M, Ning B, Wang Y, Jia Y. Helicobacter pylori-induced aberrant demethylation and expression of GNB4 promotes gastric carcinogenesis via the Hippo-YAP1 pathway. BMC Med 2023; 21:134. [PMID: 37016382 PMCID: PMC10073623 DOI: 10.1186/s12916-023-02842-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/20/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) infection causes aberrant DNA methylation and contributes to the risk of gastric cancer (GC). Guanine nucleotide-binding protein subunit beta-4 (GNB4) is involved in various tumorigenic processes. We found an aberrant methylation level of GNB4 in H. pylori-induced GC in our previous bioinformatic analysis; however, its expression and underlying molecular mechanisms are poorly understood. METHODS The expression, underlying signaling pathways, and clinical significance of GNB4 were analyzed in a local cohort of 107 patients with GC and several public databases. H. pylori infection was induced in in vitro and in vivo models. Methylation-specific PCR, pyrosequencing, and mass spectrometry analysis were used to detect changes in methylation levels. GNB4, TET1, and YAP1 were overexpressed or knocked down in GC cell lines. We performed gain- and loss-of-function experiments, including CCK-8, EdU, colony formation, transwell migration, and invasion assays. Nude mice were injected with genetically manipulated GC cells, and the growth of xenograft tumors and metastases was measured. Real-time quantitative PCR, western blotting, immunofluorescence, immunohistochemistry, chromatin immunoprecipitation, and co-immunoprecipitation experiments were performed to elucidate the underlying molecular mechanisms. RESULTS GNB4 expression was significantly upregulated in GC and correlated with aggressive clinical characteristics and poor prognosis. Increased levels of GNB4 were associated with shorter survival times. Infection with H. pylori strains 26695 and SS1 induced GNB4 mRNA and protein expression in GC cell lines and mice. Additionally, silencing of GNB4 blocked the pro-proliferative, metastatic, and invasive ability of H. pylori in GC cells. H. pylori infection remarkably decreased the methylation level of the GNB4 promoter region, particularly at the CpG#5 site (chr3:179451746-179451745). H. pylori infection upregulated TET1 expression via activation of the NF-κB. TET binds to the GNB4 promoter region which undergoes demethylation modification. Functionally, we identified that GNB4 induced oncogenic behaviors of tumors via the Hippo-YAP1 pathway in both in vitro and in vivo models. CONCLUSIONS Our findings demonstrate that H. pylori infection activates the NF-κB-TET1-GNB4 demethylation-YAP1 axis, which may be a potential therapeutic target for GC.
Collapse
Affiliation(s)
- Duanrui Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunyun Liu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Wenshuai Zhu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yi Lu
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Jingyu Zhu
- Department of Gastroenterology, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Xiaoli Ma
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yuanxin Xing
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Mingjie Yuan
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China
| | - Bin Ning
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University, Jinan, 250013, People's Republic of China
| | - Yunshan Wang
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China.
| | - Yanfei Jia
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong University, Jinan, 250013, People's Republic of China.
- Research Center of Basic Medicine, Jinan Central Hospital, Shandong First Medical University, Jinan, 250013, People's Republic of China.
| |
Collapse
|
5
|
Prognostic and Immunological Value of GNB4 in Gastric Cancer by Analyzing TCGA Database. DISEASE MARKERS 2022; 2022:7803642. [PMID: 35756485 PMCID: PMC9225895 DOI: 10.1155/2022/7803642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/03/2022]
Abstract
Background Gastric cancer (GC) represents a universal malignant tumor of the digestive system. Stromal and immune cells belong to two main nontumor components exerting a vital function in the tumor microenvironment. Methods Based on TCGA database, this study downloaded clinical information and gene profiles of GC. The ESTIMATE algorithm was adopted for evaluating the score of immune-infiltrating cells. This work employed Sangerbox to explore the differentially denoted genes (DEGs) related to stromal, immunity, and prognosis. Besides, the STRING database was involved in order to detect the association among the proteins. The MCODE module of Cytoscape software was used to screen key genes. Oncomine and GEPIA databases were used, aiming to study the differences in key genes in healthy gastric mucosa and GC. At last, we adopted TISDIB and TIMER databases for analyzing the association of guanine nucleotide binding protein subunit-4 (GNB4) between gastric cancer and tumor immune cells. qRT-PCR was applied for exploring differential GNB4 expression between GC and normal gastric mucosa and investigating the relation of GNB4 with tumor-infiltrating lymphocytes (TILs). Results Patients undergoing a great stromal score exhibited worse prognostic outcome, and cases having a low immune score had better prognosis. Overall, altogether 656 genes were upregulated with 5 genes being downregulated, which were matrix immune-related differential genes. Furthermore, 18 genes were screened as hub genes on the basis of the univariate Cox risk model of TCGA database (82 differential genes predicted poor GC survival). Oncomine and GEPIA databases revealed that GNB4 expression in gastric cancer was obviously higher in comparison with that in normal gastric mucosa. The GSEA, TISDIB, and TIMER databases revealed that GNB4 is involved in various tumor signal pathways and immune and metabolic processes. qRT-PCR demonstrated that GNB4 expression in gastric cancer was notably higher in comparison with that in normal gastric mucosa, showing significant association with matrix TILs. Conclusion The selected key gene GNB4 is a potential biomarker to guide the immunotherapy of gastric cancer.
Collapse
|
6
|
Gao J, Song J, Zhang Y, Zhu Z. CPT1C promotes the potential of gastric cancer ovarian metastasis through up-regulating fatty acid oxidation. Acta Biochim Biophys Sin (Shanghai) 2022; 54:752-755. [PMID: 35593464 PMCID: PMC9827756 DOI: 10.3724/abbs.2022027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Affiliation(s)
- Jianpeng Gao
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China,Correspondence address. Tel: +86-21-38196215; E-mail: (J.G.) / Tel: +86-21-64370045-671301; E-mail: (Z.Z.)@rjh.com.cn
| | - Junquan Song
- Department of Gastric SurgeryFudan University Shanghai Cancer CenterShanghai200032China,Department of OncologyShanghai Medical CollegeFudan UniversityShanghai200032China
| | - Yu Zhang
- Department of PathologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China
| | - Zhenglun Zhu
- Department of General SurgeryShanghai Key Laboratory of Gastric NeoplasmsShanghai Institute of Digestive SurgeryRuijin HospitalShanghai Jiao Tong University School of MedicineShanghai200025China,Correspondence address. Tel: +86-21-38196215; E-mail: (J.G.) / Tel: +86-21-64370045-671301; E-mail: (Z.Z.)@rjh.com.cn
| |
Collapse
|
7
|
Song G, Zhang Y, Li H, Liu Z, Song W, Li R, Wei C, Wang T, Liu J, Liu X. Identification of a Ubiquitin Related Genes Signature for Predicting Prognosis of Prostate Cancer. Front Genet 2022; 12:778503. [PMID: 35111198 PMCID: PMC8801742 DOI: 10.3389/fgene.2021.778503] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Ubiquitin and ubiquitin-like (UB/UBL) conjugations are one of the most important post-translational modifications and involve in the occurrence of cancers. However, the biological function and clinical significance of ubiquitin related genes (URGs) in prostate cancer (PCa) are still unclear. Methods: The transcriptome data and clinicopathological data were downloaded from The Cancer Genome Atlas (TCGA), which was served as training cohort. The GSE21034 dataset was used to validate. The two datasets were removed batch effects and normalized using the “sva” R package. Univariate Cox, LASSO Cox, and multivariate Cox regression were performed to identify a URGs prognostic signature. Then Kaplan-Meier curve and receiver operating characteristic (ROC) curve analyses were used to evaluate the performance of the URGs signature. Thereafter, a nomogram was constructed and evaluated. Results: A six-URGs signature was established to predict biochemical recurrence (BCR) of PCa, which included ARIH2, FBXO6, GNB4, HECW2, LZTR1 and RNF185. Kaplan-Meier curve and ROC curve analyses revealed good performance of the prognostic signature in both training cohort and validation cohort. Univariate and multivariate Cox analyses showed the signature was an independent prognostic factor for BCR of PCa in training cohort. Then a nomogram based on the URGs signature and clinicopathological factors was established and showed an accurate prediction for prognosis in PCa. Conclusion: Our study established a URGs prognostic signature and constructed a nomogram to predict the BCR of PCa. This study could help with individualized treatment and identify PCa patients with high BCR risks.
Collapse
Affiliation(s)
- Guoda Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Second Clinical College, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yucong Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhuo Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wen Song
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Wei
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Wang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jihong Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Xiaming Liu,
| | - Xiaming Liu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Jihong Liu, ; Xiaming Liu,
| |
Collapse
|
8
|
Sauerer T, Lischer C, Weich A, Berking C, Vera J, Dörrie J. Single-Molecule RNA Sequencing Reveals IFNγ-Induced Differential Expression of Immune Escape Genes in Merkel Cell Polyomavirus-Positive MCC Cell Lines. Front Microbiol 2021; 12:785662. [PMID: 35003017 PMCID: PMC8727593 DOI: 10.3389/fmicb.2021.785662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cancer, which is mainly caused by genomic integration of the Merkel cell polyomavirus and subsequent expression of a truncated form of its large T antigen. The resulting primary tumor is known to be immunogenic and under constant pressure to escape immune surveillance. Because interferon gamma (IFNγ), a key player of immune response, is secreted by many immune effector cells and has been shown to exert both anti-tumoral and pro-tumoral effects, we studied the transcriptomic response of MCC cells to IFNγ. In particular, immune modulatory effects that may help the tumor evade immune surveillance were of high interest to our investigation. The effect of IFNγ treatment on the transcriptomic program of three MCC cell lines (WaGa, MKL-1, and MKL-2) was analyzed using single-molecule sequencing via the Oxford Nanopore platform. A significant differential expression of several genes was detected across all three cell lines. Subsequent pathway analysis and manual annotation showed a clear upregulation of genes involved in the immune escape of tumor due to IFNγ treatment. The analysis of selected genes on protein level underlined our sequencing results. These findings contribute to a better understanding of immune escape of MCC and may help in clinical treatment of MCC patients. Furthermore, we demonstrate that single-molecule sequencing can be used to assess characteristics of large eukaryotic transcriptomes and thus contribute to a broader access to sequencing data in the community due to its low cost of entry.
Collapse
Affiliation(s)
- Tatjana Sauerer
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christopher Lischer
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Adrian Weich
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Carola Berking
- Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Julio Vera
- Systems Tumor Immunology, Hautklinik, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Erlangen, Germany
| | - Jan Dörrie
- RNA-based Immunotherapy, Hautklinik, Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg, Deutsches Zentrum Immuntherapie, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
9
|
Chen TJ, Dehghanian SZ, Chan TC, He HL, Li WS, Abdollahi S, Chen NY, Li CF, Shiue YL. High G protein subunit beta 4 protein level is correlated to poor prognosis of urothelial carcinoma. Med Mol Morphol 2021; 54:356-367. [PMID: 34398348 DOI: 10.1007/s00795-021-00301-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022]
Abstract
Data mining on a public domain detected eight potential transcripts which were upregulated in advanced UBUCs, suggesting that they may take part in UC development or/and progression. Retrospectively, immunohistochemistry along with H-score recording was carried out to evaluate the GNB4 protein levels on tissues from UC patients. Correlations between GNB4 H-score and imperative clinicopathological factors, as well as the implication of GNB4 protein level on disease-specific and metastasis-free survivals were assessed. In UTUCs (n = 340) and UBUCs (n = 295), 170 (50.0%) and 148 (50.0%) cases, respectively, were identified to be of high GNB4 expression. The GNB4 protein levels were correlated to numerous clinicopathological features and patients' survivals. Upregulation of the GNB4 protein was significantly associated with primary tumor, nodal metastasis, histological grade, vascular invasion and mitotic rate. High GNB4 protein levels independently and significantly predicted poor disease-specific and metastasis-free in UTUC and UBUC, respectively. Ingenuity pathway analysis furthermore showed that multiple signaling pathways were enriched including 'Communication between Innate and Adaptive Immune Cells' and 'NFκB Signaling'. Our findings demonstrated that the upregulation of the GNB4 protein is an independent unfavorable prognosticator in UC. High GNB4 gene expression plays an important role in UC progression.
Collapse
Affiliation(s)
- Tzu-Ju Chen
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan
| | - Seyedeh Zahra Dehghanian
- Institute of Biomedical Sciences, National Sun Yat-Sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan
| | - Ti-Chun Chan
- Department of Medical Research, Chi Mei Medical Center, 901 Zhanghua Rd, 71004, Tainan, Taiwan.,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan
| | - Hong-Lin He
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Optometry, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Wan-Shan Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.,Department of Medical Technology, Chung Hwa University of Medical Technology, Tainan, Taiwan
| | - Sina Abdollahi
- Department of Computer Science and Information Engineering, National Cheng-Kung University, Tainan, Taiwan
| | - Nai-Yu Chen
- Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan. .,Department of Medical Research, Chi Mei Medical Center, 901 Zhanghua Rd, 71004, Tainan, Taiwan. .,National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan. .,Department of Pathology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
| | - Yow-Ling Shiue
- Institute of Biomedical Sciences, National Sun Yat-Sen University, 70 Lienhai Rd., 80424, Kaohsiung, Taiwan. .,Institute of Precision Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Cai Z, Yu C, Li S, Wang C, Fan Y, Ji Q, Chen F, Li W. A Novel Classification of Glioma Subgroup, Which Is Highly Correlated With the Clinical Characteristics and Tumor Tissue Characteristics, Based on the Expression Levels of Gβ and Gγ Genes. Front Oncol 2021; 11:685823. [PMID: 34222011 PMCID: PMC8250418 DOI: 10.3389/fonc.2021.685823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Purpose Glioma is a classical type of primary brain tumors that is most common seen in adults, and its high heterogeneity used to be a reference standard for subgroup classification. Glioma has been diagnosed based on histopathology, grade, and molecular markers including IDH mutation, chromosome 1p/19q loss, and H3K27M mutation. This subgroup classification cannot fully meet the current needs of clinicians and researchers. We, therefore, present a new subgroup classification for glioma based on the expression levels of Gβ and Gγ genes to complement studies on glioma and Gβγ subunits, and to support clinicians to assess a patient’s tumor status. Methods Glioma samples retrieved from the CGGA database and the TCGA database. We clustered the gliomas into different groups by using expression values of Gβ and Gγ genes extracted from RNA sequencing data. The Kaplan–Meier method with a two-sided log-rank test was adopted to compare the OS of the patients between GNB2 group and non-GNB2 group. Univariate Cox regression analysis was referred to in order to investigate the prognostic role of each Gβ and Gγ genes. KEGG and ssGSEA analysis were applied to identify highly activated pathways. The “estimate” package, “GSVA” package, and the online analytical tools CIBERSORTx were employed to evaluate immune cell infiltration in glioma samples. Results Three subgroups were identified. Each subgroup had its own specific pathway activation pattern and other biological characteristics. High M2 cell infiltration was observed in the GNB2 subgroup. Different subgroups displayed different sensitivities to chemotherapeutics. GNB2 subgroup predicted poor survival in patients with gliomas, especially in patients with LGG with mutation IDH and non-codeleted 1p19q. Conclusion The subgroup classification we proposed has great application value. It can be used to select chemotherapeutic drugs and the prognosis of patients with target gliomas. The unique relationships between subgroups and tumor-related pathways are worthy of further investigation to identify therapeutic Gβγ heterodimer targets.
Collapse
Affiliation(s)
- Zehao Cai
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Chunna Yu
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Shenglan Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Can Wang
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Yaqiong Fan
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Qiang Ji
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Feng Chen
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| | - Wenbin Li
- Department of Neuro-oncology, Cancer Center, Beijing Tiantan Hospital, Capital Medical Unversity, Beijing, China
| |
Collapse
|
11
|
Tennakoon M, Senarath K, Kankanamge D, Ratnayake K, Wijayaratna D, Olupothage K, Ubeysinghe S, Martins-Cannavino K, Hébert TE, Karunarathne A. Subtype-dependent regulation of Gβγ signalling. Cell Signal 2021; 82:109947. [PMID: 33582184 PMCID: PMC8026654 DOI: 10.1016/j.cellsig.2021.109947] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 01/04/2023]
Abstract
G protein-coupled receptors (GPCRs) transmit information to the cell interior by transducing external signals to heterotrimeric G protein subunits, Gα and Gβγ subunits, localized on the inner leaflet of the plasma membrane. Though the initial focus was mainly on Gα-mediated events, Gβγ subunits were later identified as major contributors to GPCR-G protein signalling. A broad functional array of Gβγ signalling has recently been attributed to Gβ and Gγ subtype diversity, comprising 5 Gβ and 12 Gγ subtypes, respectively. In addition to displaying selectivity towards each other to form the Gβγ dimer, numerous studies have identified preferences of distinct Gβγ combinations for specific GPCRs, Gα subtypes and effector molecules. Importantly, Gβ and Gγ subtype-dependent regulation of downstream effectors, representing a diverse range of signalling pathways and physiological functions have been found. Here, we review the literature on the repercussions of Gβ and Gγ subtype diversity on direct and indirect regulation of GPCR/G protein signalling events and their physiological outcomes. Our discussion additionally provides perspective in understanding the intricacies underlying molecular regulation of subtype-specific roles of Gβγ signalling and associated diseases.
Collapse
Affiliation(s)
- Mithila Tennakoon
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kanishka Senarath
- Genetics and Molecular Biology Unit, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Dinesh Kankanamge
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Kasun Ratnayake
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dhanushan Wijayaratna
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Koshala Olupothage
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | - Sithurandi Ubeysinghe
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA
| | | | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Ajith Karunarathne
- Department of Chemistry and Biochemistry, The University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|