1
|
Chen Y, Chen X, Li Z, Zhu Y, Liu F, Cai J. CircDENND2D Inhibits PD-L1-Mediated Non-Small Cell Lung Cancer Metastasis and Immune Escape by Regulating miR-130b-3p/STK11 Axis. Biochem Genet 2023; 61:2691-2709. [PMID: 37222962 DOI: 10.1007/s10528-023-10401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/08/2023] [Indexed: 05/25/2023]
Abstract
Local recurrence and distant metastasis of non-small cell lung cancer (NSCLC) caused by immune escape is one of the root causes of treatment difficulties. We aim to investigate the mechanism of immune escape in NSCLC. NSCLC tissues were collected. Cell proliferation was detected by CCK-8 assay. Cell migration and invasion ability was measured by Transwell assay. The expressions of E-cadherin, N-cadherin and PD-L1 were detected by Western blot. NSCLC cells were co-cultured with CD8+ T cells to simulate tumor microenvironment in vitro. The proportion of CD8+ T cells and apoptosis were detected by flow cytometry. Dual-luciferase reporter gene assay confirmed the targeting relationship of circDENND2D and STK11. The expressions of circDENND2D and STK1 were down-regulated, while miR-130b-3p expression was up-regulated in NSCLC tissues. Overexpression of circDENND2D or STK11 inhibited NSCLC cells proliferation, migration and invasion, and attenuated the immune escape of NSCLC cells. CircDENND2D targeted miR-130b-3p to competitively promote STK11 expression. STK11 knockdown or miR-130b-3p overexpression attenuated the function of circDENND2D overexpression on NSCLC cells. CircDENND2D inhibited metastasis and immune escape of NSCLC by regulating miR-130b-3p/STK11 axis.
Collapse
Affiliation(s)
- Yongxing Chen
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Xianshan Chen
- Department of Thoracic Surgery, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Zhao Li
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Yike Zhu
- Department of Respiratory and Critical Care Medicine, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Fujin Liu
- Department of Pathology, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, Haikou, 570311, Hainan Province, People's Republic of China
| | - Junhong Cai
- Medical Laboratory Center, Hainan Affiliated Hospital of Hainan Medical University/Hainan General Hospital, No.19, Xiuhua Road, Haikou, 570311, Hainan Province, People's Republic of China.
| |
Collapse
|
2
|
Wang T, Xin C, Zhang S, Tian X, Hu Y, Wang Y, Wang J, Ji N, Zeng X, Li J. Circular RNA from Tyrosylprotein Sulfotransferase 2 Gene Inhibits Cisplatin Sensitivity in Head and Neck Squamous Cell Carcinoma by Sponging miR-770-5p and Interacting with Nucleolin. Cancers (Basel) 2023; 15:5351. [PMID: 38001611 PMCID: PMC10669990 DOI: 10.3390/cancers15225351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Chemoresistance poses a significant challenge in the treatment of advanced head and neck squamous cell cancer (HNSCC). The role and mechanism of circular RNAs (circRNAs) in HNSCC chemoresistance remain understudied. We conducted circRNA microarray analysis to identify differentially expressed circRNAs in HNSCC. The expression of circRNAs from the tyrosylprotein sulfotransferase 2 (TPST2) gene and miRNAs was evaluated through qPCR, while the circular structure of circTPST2 was verified using Sanger sequencing and RNase R. Through Western blotting, biotin-labeled RNA pulldown, RNA immunoprecipitation, mass spectrometry, and rescue experiments, we discovered miR-770-5p and nucleolin as downstream targets of circTPST2. Functional tests, including CCK8 assays and flow cytometry, assessed the chemoresistance ability of circTPST2, miR-770-5p, and Nucleolin. Additionally, FISH assays determined the subcellular localization of circTPST2, miR-770-5p, and Nucleolin. IHC staining was employed to detect circTPST2 and Nucleolin expression in HNSCC patients. circTPST2 expression was inversely correlated with cisplatin sensitivity in HNSCC cell lines. Remarkably, high circTPST2 expression correlated with lower overall survival rates in chemotherapeutic HNSCC patients. Mechanistically, circTPST2 reduced chemosensitivity through sponge-like adsorption of miR-770-5p and upregulation of the downstream protein Nucleolin in HNSCC cells. The TCGA database revealed improved prognosis for patients with low circTPST2 expression after chemotherapy. Moreover, analysis of HNSCC cohorts demonstrated better prognosis for patients with low Nucleolin protein expression after chemotherapy. We unveil circTPST2 as a circRNA associated with chemoresistance in HNSCC, suggesting its potential as a marker for selecting chemotherapy regimens in HNSCC patients. Further exploration of the downstream targets of circTPST2 advanced our understanding and improved treatment strategies for HNSCC.
Collapse
Affiliation(s)
- Tianqing Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Chuan Xin
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Stomatology Hospital, Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Shiyu Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Xin Tian
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Yuting Hu
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Ying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Jiongke Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Ning Ji
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Xin Zeng
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology, National Clinical Research Center for Oral Diseases, Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (T.W.); (C.X.); (S.Z.); (X.T.); (Y.H.); (Y.W.); (J.W.); (N.J.)
| |
Collapse
|
3
|
Yang S, Hui TL, Wang HQ, Zhang X, Mi YZ, Cheng M, Gao W, Geng CZ, Li SN. High expression of autophagy-related gene EIF4EBP1 could promote tamoxifen resistance and predict poor prognosis in breast cancer. World J Clin Cases 2023; 11:4788-4799. [PMID: 37583983 PMCID: PMC10424051 DOI: 10.12998/wjcc.v11.i20.4788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 06/13/2023] [Indexed: 07/06/2023] Open
Abstract
BACKGROUND Breast cancer (BC) remains a public health problem. Tamoxifen (TAM) resistance has caused great difficulties for treatment of BC patients. Eukaryotic translation initiation factor 4E binding protein 1 (EIF4EBP1) plays critical roles in the tumorigenesis and progression of BC. However, the expression and mechanism of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients are still unclear. AIM To investigate the expression and functions of EIF4EBP1 in determining the efficacy of TAM therapy in BC patients. METHODS High-throughput sequencing data of breast tumors were downloaded from the Gene Expression Omnibus database. Differential gene expression analysis identified EIF4EBP1 to be significantly upregulated in cancer tissues. Its prognostic value was analyzed. The biological function and related pathways of EIF4EBP1 was analyzed. Subsequently, the expression of EIF4EBP1 was determined by real-time reverse transcription polymerase chain reaction and western blotting. Cell Counting Kit-8 assays, colony formation assay and wound healing assay were used to understand the phenotypes of function of EIF4EBP1. RESULTS EIF4EBP1 was upregulated in the TAM-resistant cells, and EIF4EBP1 was related to the prognosis of BC patients. Gene Set Enrichment Analysis showed that EIF4EBP1 might be involved in Hedgehog signaling pathways. Decreasing the expression of EIF4EBP1 could reverse TAM resistance, whereas overexpression of EIF4EBP1 promoted TAM resistance. CONCLUSION This study indicated that EIF4EBP1 was overexpressed in the BC and TAM-resistant cell line, which increased cell proliferation, invasion, migration and TAM resistance in BC cells.
Collapse
Affiliation(s)
- Shan Yang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Tian-Li Hui
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Hao-Qi Wang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Xi Zhang
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Yun-Zhe Mi
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Meng Cheng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Wei Gao
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Cui-Zhi Geng
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| | - Sai-Nan Li
- Department of Breast Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050011, Hebei Province, China
| |
Collapse
|
4
|
Yi Q, Feng J, Liao Y, Sun W. Circular RNAs in chemotherapy resistance of lung cancer and their potential therapeutic application. IUBMB Life 2023; 75:225-237. [PMID: 35594011 DOI: 10.1002/iub.2624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/25/2022] [Indexed: 11/10/2022]
Abstract
Lung cancer is one of the high malignancy-related incidence and mortality worldwide, accounting for about 13% of total cancer diagnoses. Currently, the use of anti-cancer agents is still the main therapeutic method for lung cancer. However, cancer cells will gradually show resistance to these drugs with the progress of treatment. And the molecular mechanisms underlying chemotherapy agents resistance remain unclear. circRNAs are newly identified noncoding RNAs molecules with covalently closed circular structures. Previous studies have shown that circRNAs are associated with tumorigenesis and progression of various cancers, including lung cancer. Recently, growing reports have suggested that circRNAs could contribute to drug resistance of lung cancer cell through different mechanisms. Therefore, in this review, we summarized the functions and underlying mechanisms of circRNAs in regulating chemoresistance of lung cancer and discussed their potential applications for diagnosis, prognosis, and treatment of lung cancer.
Collapse
Affiliation(s)
- Qian Yi
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yi Liao
- Department of Thoracic Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Weichao Sun
- The Central Laboratory, Shenzhen Second People's Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China.,Department of Orthopedics, Shenzhen Second People's Hospital (First Affiliated Hospital of Shenzhen University), Shenzhen, Guangdong, China
| |
Collapse
|
5
|
Nie J, Yang R, Zhou R, Deng Y, Li D, Gou D, Zhang Y. Circular RNA circFARSA promotes the tumorigenesis of non-small cell lung cancer by elevating B7H3 via sponging miR-15a-5p. Cell Cycle 2022; 21:2575-2589. [PMID: 35920698 PMCID: PMC9704387 DOI: 10.1080/15384101.2022.2105087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Non-small cell lung cancer (NSCLC) is currently one of the malignant tumors with the highest incidence and mortality rate in China. Circular RNA hsa_circ_0000896 (circFARSA) has been reported as being an oncogene and a potential biomarker for NSCL. However, the functional role and action mechanism of circFARSA in NSCLC progression have not been fully elucidated. The present study demonstrated that circFRASA was upregulated in NSCLC tissues and cell lines, and its expression was positively correlated with poor prognosis of patients with NSCLC. Further experiments revealed that circFARSA knockdown inhibited cell proliferation, migration, and invasion in vitro experiments, but overexpression of circFARSA exhibited opposite results. Mechanistically, circFARSA facilitated the malignant phenotype of NSCLC cells by enhancing B7H3 expression through sponging miR-15a-5p. In vivo experiments, knockdown of circFARSA restricted tumor growth and metastasis. In conclusion, circFARSA served as a sponge of miR-15a-5p to promote tumorigenesis and development of NSCLC by upregulation of B7H3 expression, which provided evidence of circFARSA maybe act as a novel therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Ji Nie
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ruian Yang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ran Zhou
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yi Deng
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Dengyuan Li
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Deming Gou
- Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China,Deming Gou Vascular Disease Research Center, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, China,CONTACT Yunhui Zhang Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province. The Affiliated Hospital of Kunming University of Science and Technology, No. 157 Jinbi Road, Xishan District, Kunming, 650032, China
| |
Collapse
|
6
|
Knockdown of circLRWD1 weakens DDP resistance via reduction of SIRT5 expression through releasing miR-507 in non-small cell lung cancer. Anticancer Drugs 2022; 33:861-870. [PMID: 35946561 DOI: 10.1097/cad.0000000000001364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cisplatin (DDP) is an antineoplastic agent for non-small cell lung cancer (NSCLC). Hsa_circ_0081664 (circLRWD1) is overexpressed in DDP-resistant NSCLC cells, but its function is unclear. Thus, this study is to investigate whether circLRWD1 participates in DDP resistance in NSCLC. Changes in circLRWD1 expression were determined by real-time quantitative PCR. Effects of circLRWD1 inhibition on DDP-resistant NSCLC cell viability, proliferation, migration, invasion, and apoptosis were analyzed. The sponge function of circLRWD1 was predicted by bioinformatics analysis and verified by dual-luciferase reporter, RNA immunoprecipitation, and RNA pull-down assays. The function of circLRWD1 in DDP resistance was verified by xenograft models. CircLRWD1 was unconventionally overexpressed in DDP-resistant NSCLC samples and cells. Moreover, circLRWD1 silencing decreased IC50 value, restrained cell proliferation, reduced cell migration and invasion, and facilitated cell apoptosis in DDP-resistant NSCLC cells. Also, circLRWD1 knockdown elevated DDP-resistant NSCLC cell sensitivity to DDP in xenograft models. Furthermore, circLRWD1 regulated SIRT5 expression via adsorbing miR-507. SIRT5 overexpression weakened circLRWD1 silencing-mediated suppression of cell resistance to DDP in DDP-resistant NSCLC cells. In conclusion, circLRWD1 elevated SIRT5 expression via adsorbing miR-507, resulting in promoting NSCLC cell resistance to DDP, providing evidence to explain the significant role of circLRWD1 in DDP resistance in NSCLC.
Collapse
|
7
|
Zhou Q, Fu Q, Shaya M, Kugeluke Y, Li S, Dilimulati Y. Knockdown of circ_0055412 promotes cisplatin sensitivity of glioma cells through modulation of CAPG and Wnt/β-catenin signaling pathway. CNS Neurosci Ther 2022; 28:884-896. [PMID: 35332692 PMCID: PMC9062567 DOI: 10.1111/cns.13820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 01/20/2022] [Accepted: 02/09/2022] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Glioma is the most frequent primary cerebral tumor in adults. Recent evidence has suggested that circular RNAs (circRNAs) are associated with the pathological processes in glioma. In our study, we aimed to investigate the function and mechanism of circ_CAPG (circ_0055412) in glioma. METHODS Firstly, circ_0055412 expression was examined through RT-qPCR analysis. Loss-of-function assays and animal experiments were implemented to evaluate the role of circ_0055412 on cisplatin resistance of glioma cells. Moreover, mechanism assays were done to probe into the regulatory mechanism of circ_0055412 in glioma cells. RESULTS Circ_0055412 was found to be notably upregulated in glioma cells. Moreover, depletion of circ_0055412 enhanced cisplatin sensitivity of glioma cells in vitro and in vivo. Moreover, circ_0055412 recruited eukaryotic translation initiation factor 4A3 (EIF4A3) protein to stabilize capping actin protein, gelsolin like (CAPG) mRNA. Furthermore, circ_0055412 served as a sponge for microRNA-330-3p (miR-330-3p) and regulated nuclear factor of activated T cells 3 (NFATC3) expression to activate the transcription of catenin beta 1 (CTNNB1), thus participating in the activation of Wnt/β-catenin signaling pathway. CONCLUSION Circ_0055412 contributed to cisplatin resistance of glioma cells via stabilizing CAPG mRNA and modulating Wnt/β-catenin signaling pathway. This finding might provide novel information for the treatment of glioma.
Collapse
Affiliation(s)
- Qingjiu Zhou
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Qiang Fu
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Mahati Shaya
- Department of Oncology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yalikun Kugeluke
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shaoshan Li
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Yisireyili Dilimulati
- Department of Neurosurgery, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| |
Collapse
|
8
|
A Novel Hypoxia-Related Gene Signature with Strong Predicting Ability in Non-Small-Cell Lung Cancer Identified by Comprehensive Profiling. Int J Genomics 2022; 2022:8594658. [PMID: 35634481 PMCID: PMC9135579 DOI: 10.1155/2022/8594658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 12/10/2021] [Accepted: 04/16/2022] [Indexed: 12/24/2022] Open
Abstract
Background Non-small-cell lung cancer (NSCLC) is the most common malignant tumor among males and females worldwide. Hypoxia is a typical feature of the tumor microenvironment, and it affects cancer development. Circular RNAs (circRNAs) have been reported to sponge miRNAs to regulate target gene expression and play an essential role in tumorigenesis and progression. This study is aimed at identifying whether circRNAs could be used as the diagnostic biomarkers for NSCLC. Methods The heterogeneity of samples in this study was assessed by principal component analysis (PCA). Furthermore, the Gene Expression Omnibus (GEO) database was normalized by the affy R package. We further screened the differentially expressed genes (DEGs) and differentially expressed circular RNAs (DEcircRNAs) using the DEseq2 R package. Moreover, we analyzed the Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment of DEGs using the cluster profile R package. Besides, the Gene Set Enrichment Analysis (GSEA) was used to identify the biological function of DEGs. The interaction between DEGs and the competing endogenous RNAs (ceRNA) network was detected using STRING and visualized using Cytoscape. Starbase predicted the miRNAs of target hub genes, and miRanda predicted the target miRNAs of circRNAs. The RNA-seq profiler and clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. Then, the variables were assessed by the univariate and multivariate Cox proportional hazard regression models. Significant variables in the univariate Cox proportional hazard regression model were included in the multivariate Cox proportional hazard regression model to analyze the association between the variables of clinical features. Furthermore, the overall survival of variables was determined by the Kaplan-Meier survival curve, and the time-dependent receiver operating characteristic (ROC) curve analysis was used to calculate and validate the risk score in NSCLC patients. Moreover, predictive nomograms were constructed and used to predict the prognostic features between the high-risk and low-risk score groups. Results We screened a total of 2039 DEGs, including 1293 upregulated DEGs and 746 downregulated DEGs in hypoxia-treated A549 cells. A549 cells treated with hypoxia had a total of 70 DEcircRNAs, including 21 upregulated and 49 downregulated DEcircRNAs, compared to A549 cells treated with normoxia. The upregulated genes were significantly enriched in 284 GO terms and 42 KEGG pathways, while the downregulated genes were significantly enriched in 184 GO terms and 25 KEGG pathways. Moreover, the function analysis by GSEA showed enrichment in the enzyme-linked receptor protein signaling pathway, hypoxia-inducible factor- (HIF-) 1 signaling pathway, and G protein-coupled receptor (GPCR) downstream signaling. Furthermore, six hub modules and 10 hub genes, CDC45, EXO1, PLK1, RFC4, CCNB1, CDC6, MCM10, DLGAP5, AURKA, and POLE2, were identified. The ceRNA network was constructed, and it consisted of 4 circRNAs, 14 miRNAs, and 38 mRNAs. The ROC curve was constructed and calculated. The area under the curve (AUC) value was 0.62, and the optimal threshold was 0.28. Based on the optimal threshold, the patients were divided into the high-risk score and low-risk score groups. The survival rate in the high-risk score group was lower than that in the low-risk score group. The expression of SERPINE1, STC2, and LPCAT1; clinical stage; and age of the patient were significantly correlated with the high-risk score. Moreover, nomograms were established based on the risk factors in multivariate analysis, and the median survival time, 3-year survival probability, and 5-year survival were possibly predicted according to nomograms. Conclusion The ceRNA network associated with NSCLC was identified, and the hub genes, circRNAs, might act as the potential biomarkers for NSCLC.
Collapse
|
9
|
Jin M, Zhang F, Li Q, Xu R, Liu Y, Zhang Y. Circ_0011292 knockdown mitigates progression and drug resistance in PTX-resistant non-small-cell lung cancer cells by regulating miR-433-3p/CHEK1 axis. Thorac Cancer 2022; 13:1276-1288. [PMID: 35348291 PMCID: PMC9058294 DOI: 10.1111/1759-7714.14378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/17/2022] [Accepted: 02/21/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Non-small-cell lung cancer (NSCLC) is one of the most common malignant tumors on earth. Circular RNAs have been disclosed to be vital regulators in the chemoresistance and development of diverse cancers, including NSCLC. Here, we attempted to explore the function of circ_0011292 in paclitaxel (PTX)-resistant NSCLC cells. METHODS Quantitative real-time polymerase chain reaction or western blot was performed to detect the expression of circ_0011292, microRNA-433-3p (miR-433-3p), and checkpoint kinase 1 (CHEK1). Ribonuclease R (RNase R) assay was performed to assess the stability of circ_0011292. Cell Counting Kit-8 assay was conducted to evaluate the half maximal inhibitory concentration of PTX and cell viability. Cell proliferation was monitored by Edu incorporation and colony formation assays. Cell cycle and apoptosis were detected by flow cytometry. Transwell assay was implemented to assess cell migration and invasion. Western blot assay was utilized to determine the protein levels. Dual-luciferase reporter assay was carried out to verify the targeted interaction between miR-433-3p and circ_0011292 or CHEK1. Xenograft tumor model was constructed for determining the effect of circ_0011292 in NSCLC growth in vivo. RESULTS Circ_0011292 was upregulated in PTX-resistant NSCLC tissues and cells. Circ_0011292 or CHEK1 knockdown enhanced PTX sensitivity and cell apoptosis, and repressed cell proliferation, migration, and invasion in PTX-resistant NSCLC cells. Mechanistically, circ_0011292 was a sponge of miR-433-3p and miR-433-3p directly targeted CHEK1. Meanwhile, silencing miR-433-3p or overexpressing CHEK1 respectively abrogated the impacts of circ_0011292 deletion or miR-433-3p introduction on PTX resistance and cell progression in PTX-resistant NSCLC cells in vitro. Moreover, circ_0011292 could positively modulate CHEK1 expression through sponging miR-433-3p. In addition, circ_0011292 knockdown retarded tumor growth of NSCLC in vivo. CONCLUSION Circ_0011292 could accelerate PTX resistance and cell malignant progression of NSCLC cells partially through the regulation of circ_0011292/miR-433-3p/CHEK1 axis.
Collapse
Affiliation(s)
- Ming Jin
- Department of Respiratory and Critical Care Medicine, Jingmen No.1 People's Hospital, Jingmen City, China
| | - Fengping Zhang
- Department of Reprodutive Medicine Center, Jingmen No.1 People's Hospital, Jingmen City, China
| | - Qiubo Li
- Department of Oncology, Jingmen No.1 People's Hospital, Jingmen City, China
| | - Ruiqi Xu
- Department of Oncology, Jingmen No.1 People's Hospital, Jingmen City, China
| | - Ying Liu
- Department of Oncology, Jingmen No.1 People's Hospital, Jingmen City, China
| | - Yong Zhang
- Department of Oncology, Jingmen No.1 People's Hospital, Jingmen City, China
| |
Collapse
|
10
|
Cui X, Zhang B, Li B, Li X. Circular RNA circ_0002360 regulates the Taxol resistance and malignant behaviors of Taxol-resistant non-small cell lung cancer cells by microRNA-585-3p-dependent modulation of G protein regulated inducer of neurite outgrowth 1. Bioengineered 2022; 13:9070-9085. [PMID: 35293280 PMCID: PMC9162002 DOI: 10.1080/21655979.2022.2053803] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Drug resistance has become the major obstacle for the treatment of non-small cell lung cancer (NSCLC). Circular RNAs (circRNAs) are tightly linked to the development of drug resistance of NSCLC. Herein, we tested the function of circ_0002360 in the Taxol resistance of NSCLC. Circ_0002360, microRNA (miR)-585-3p and G protein regulated inducer of neurite outgrowth 1 (GPRIN1) were quantified by quantitative real-time PCR (qRT-PCR). To identify the circular structure of circ_0002360, RNase R digestion was applied. To detect cell proliferation, colony formation and 5-ethynyl-2’-deoxyuridine (EdU) assays were used. For assessment of cell apoptosis, flow cytometry was adopted. For motility and invasion analyses, transwell assay was employed. Our data showed that circ_0002360 was mainly located in the cytoplasm and was highly expressed in the Taxol-resistant NSCLC. Silencing of circ_0002360 inhibited cell Taxol resistance, proliferation, motility, and invasiveness and induced apoptosis in vitro. MiR-585-3p was underexpressed in Taxol-resistant NSCLC and was targeted by circ_0002360. MiR-585-3p knockdown alleviated the influence of circ_0002360 silence on Taxol-resistant cells. GPRIN1 was directly targeted by miR-585-3p. The influence of miR-585-3p on cell Taxol resistance and functional behaviors was reversed by GPRIN1 overexpression. Moreover, circ_0002360 modulated GPRIN1 through miR-585-3p. Additionally, silencing of circ_0002360 weakened the growth of xenografts in vivo. Our study demonstrated that silencing of circ_0002360 enhanced the Taxol sensitivity and suppressed the malignant behaviors of Taxol-resistant NSCLC cells by miR-585-3p/GPRIN1 axis, providing novel targets for improving the anti-tumor efficacy of Taxol in NSCLC.
Collapse
Affiliation(s)
- Xiaohai Cui
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi, China
| | - Boxiang Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi, China
| | - Baocheng Li
- Department of Thoracic Surgery, the First Hospital of Weinan City, Weinan City, 714000, Shaanxi Province
| | - Xinju Li
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an City, 710061, Shaanxi, China
| |
Collapse
|
11
|
Chang F, Li J, Sun Q, Wei S, Song Y. Hsa_circ_0017639 regulates cisplatin resistance and tumor growth via acting as a miR-1296-5p molecular sponge and modulating sine oculis homeobox 1 expression in non-small cell lung cancer. Bioengineered 2022; 13:8806-8822. [PMID: 35287543 PMCID: PMC9161884 DOI: 10.1080/21655979.2022.2053810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Cisplatin (DDP)-induced chemoresistance is an important reason for the failure of non-small cell lung cancer (NSCLC) treatment. Circular RNAs (circRNAs) participate in the chemoresistance of diverse cancers. However, the function of hsa_circ_0017639 (circ_0017639) in the DDP resistance of NSCLC is unclear. Forty-one NSCLC samples (21 DDP-resistant samples and 20 DDP-sensitive samples) were utilized in the research. The relative expression levels of some genes were determined by real-time quantitative polymerase chain reaction (RT-qPCR). 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay for half-maximal inhibitory concentration (IC50) value of DDP and cell viability, colony formation and 5-ethynyl-2’-deoxyuridine (EDU) assays for cell proliferation, flow cytometry assay for cell apoptosis, transwell assay for cell invasion and wound-healing assay for cell migration were performed. The regulation mechanism of circ_0017639 was demonstrated by a dual-luciferase reporter assay. We observed higher levels of circ_0017639 in DDP-resistant NSCLC samples and cells. Functionally, circ_0017639 silencing decreased tumor growth and elevated DDP sensitivity in vivo and induced apoptosis, repressed proliferation, invasion, and migration of DDP-resistant NSCLC cells in vitro. Mechanically, circ_0017639 modulated sine oculis homeobox 1 (SIX1) expression via sponging microRNA (miR)-1296-5p. Also, miR-1296-5p inhibitor restored circ_0017639 knockdown-mediated impacts on cell DDP resistance in DDP-resistant NSCLCs. Furthermore, SIX1 overexpression counteracted the inhibiting impact of miR-1296-5p upregulation on DDP resistance and malignant phenotypes of DDP-resistant NSCLC cells. In conclusion, circ_0017639 conferred DDP resistance and promoted tumor growth via elevating SIX1 expression through sequestering miR-1296-5p in NSCLC, providing a new mechanism for understanding the chemoresistance and progression of NSCLC.
Collapse
Affiliation(s)
- Feiyun Chang
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Jiali Li
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Quan Sun
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Shuqing Wei
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| | - Yongming Song
- Department of Thoracic Surgery, Shanxi Province Cancer Hospital, Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, Shanxi, China
| |
Collapse
|
12
|
Zou C, Rong F, Zeng Y, Zeng J, Wei R, Wei D. Circ-SNAP47 (hsa_circ_0016760) and miR-625-5p are regulators of WEE1 in regulation of chemoresistance, growth and invasion of DDP-tolerant NSCLC cells via ceRNA pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:224-236. [PMID: 34664776 DOI: 10.1002/tox.23391] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/22/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Abstract
Circular RNA-synaptosome associated protein 47 (circ-SNAP47; Hsa_circ_0016760) is oncogenic in non-small-cell lung cancer (NSCLC); however, its role is undescribed in cis-diamminedichloroplatinum II (DDP) resistance. We attempted to investigate its expression, role and mechanism in DDP-tolerant NSCLC. As a result, circ-SNAP47 expression was upregulated in human DDP-tolerant NSCLC tissues and cells, accompanied with WEE1 G2 checkpoint kinase (WEE1) upregulation and microRNA (miR)-625-5p downregulation. Functionally, interfering circ-SNAP47 and/or restoring miR-625-5p curbed the 50% inhibitory concentration of DDP, colony formation, cell proliferation and invasion, accompanied with apoptotic rate promotion and depressions of multidrug resistance (MDR) markers MDR1 and MRP1, anti-apoptosis protein Bcl-2, and pro-invasion protein MMP9. Notably, circ-SNAP47 interference suppressed xenograft tumor growth of DDP-tolerant NSCLC cells by elevating miR-625-5p and descending WEE1. Mechanistically, circ-SNAP47 directly targeted miR-625-5p, and miR-625-5p further targeted WEE1. Therefore, circ-SNAP47-miR-625-5p-WEE1 axis might participate in chemoresistance and progression of DDP-tolerant NSCLC.
Collapse
Affiliation(s)
- Can Zou
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Feng Rong
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Yan Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Jing Zeng
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Rong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| | - Dong Wei
- Department of Respiratory Medicine, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, China
| |
Collapse
|
13
|
Fan D, Yang Y, Zhang W. A novel circ_MACF1/miR-942-5p/TGFBR2 axis regulates the functional behaviors and drug sensitivity in gefitinib-resistant non-small cell lung cancer cells. BMC Pulm Med 2022; 22:27. [PMID: 34996416 PMCID: PMC8742390 DOI: 10.1186/s12890-021-01731-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 10/30/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Resistance to gefitinib remains a major obstacle for the successful treatment of non-small cell lung cancer (NSCLC) with epidermal growth factor receptor (EGFR) mutations. In this paper, we studied the precise actions of circular RNA (circRNA) microtubule actin crosslinking factor 1 (circ_MACF1) in gefitinib resistance. METHODS We established gefitinib-resistant NSCLC cells (PC9/GR and A549/GR). The levels of circ_MACF1, microRNA (miR)-942-5p, and transforming growth factor beta receptor 2 (TGFBR2) were gauged by quantitative real-time PCR (qRT-PCR) or western blot. Subcellular fractionation and Ribonuclease R (RNase R) assays were done to characterize circ_MACF1. Cell survival, proliferation, colony formation, apoptosis, migration, and invasion were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), 5-Ethynyl-2'-Deoxyuridine (EdU), colony formation, flow cytometry, and transwell assays, respectively. Dual-luciferase reporter assays were used to verify the direct relationship between miR-942-5p and circ_MACF1 or TGFBR2. The xenograft assays were used to assess the role of circ_MACF1 in vivo. RESULTS Circ_MACF1 was down-regulated in A549/GR and PC9/GR cells. Overexpression of circ_MACF1 repressed proliferation, migration, invasion, and promoted apoptosis and gefitinib sensitivity of A549/GR and PC9/GR cells in vitro, as well as inhibited tumor growth under gefitinib in vivo. Circ_MACF1 directly targeted miR-942-5p, and miR-942-5p mediated the regulatory effects of circ_MACF1. TGFBR2 was identified as a direct and functional target of miR-942-5p. Circ_MACF1 modulated TGFBR2 expression through miR-942-5p. CONCLUSION Our findings demonstrated that circ_MACF1 regulated cell functional behaviors and gefitinib sensitivity of A549/GR and PC9/GR cells at least partially by targeting miR-942-5p to induce TGFBR2 expression.
Collapse
Affiliation(s)
- Daping Fan
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Yue Yang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China
| | - Wei Zhang
- Department of Respiratory Care, The First Affiliated Hospital of Harbin Medical University, No. 23, Post Street, Nangang District, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
14
|
Circular RNA FOXO3 accelerates glycolysis and improves cisplatin sensitivity in lung cancer cells via the miR-543/Foxo3 axis. Oncol Lett 2021; 22:839. [PMID: 34712363 PMCID: PMC8548806 DOI: 10.3892/ol.2021.13100] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 09/02/2021] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) is the most common cause of cancer-associated mortality worldwide. Our previous study revealed that circular RNA (circRNA)-FOXO3 is highly expressed in lung cancer and inhibits cell proliferation. However, to the best of our knowledge, at present, no study has focused on the specific mechanism of circRNA-FOXO3 in drug resistance. Therefore, the present study aimed to provide novel perspectives on the role of circRNA-FOXO3 in cisplatin (DDP) resistance in NSCLC. A Cell Counting Kit-8 assay was used to determine the viability of cells overexpressed with circRNA-FOXO3 and under DDP treatment. Glycolysis was analyzed by measuring glucose consumption and lactate production. The interaction of circRNA-FOXO3, microRNA 543 (miR-543) and Foxo3 was confirmed using a dual-luciferase reporter assay. It was revealed that circRNA-FOXO3 improved cell sensitivity to DDP and repressed glycolysis in DDP-sensitive and DDP-resistant NSCLC cells. Bioinformatics analysis, luciferase reporter assays, quantitative PCR and RNA pull-down assays were employed to verify the binding of circRNA-FOXO3 to miR-543. Functionally, inhibition of miR-543 could sensitize NSCLC cells to DDP, and overexpression of miR-543 at least partially abolished the circRNA-FOXO3-induced decrease in chemoresistance. Furthermore, it was revealed that Foxo3 was a direct target of miR-543. Notably, the inhibitory action of miR-543 silencing on DDP resistance and glycolysis was reversed by overexpression of Foxo3 in DDP-sensitive and DDP-resistant NSCLC cells. In conclusion, the present study demonstrated that circRNA-FOXO3 promoted DDP sensitivity in NSCLC cells by regulating the miR-543/Foxo3 axis-mediated glycolysis balance. The present findings may provide novel perspectives for the treatment of patients with NSCLC resistant to DDP.
Collapse
|
15
|
Chu D, Li P, Li Y, Shi J, Huang S, Jiao P. Identification of circ_0058357 as a regulator in non-small cell lung cancer cells resistant to cisplatin by miR-361-3p/ABCC1 axis. Thorac Cancer 2021; 12:2894-2906. [PMID: 34523261 PMCID: PMC8563160 DOI: 10.1111/1759-7714.14150] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 02/06/2023] Open
Abstract
Background Drug resistance is a major clinical drawback behind the failure of chemotherapy in non‐small cell lung cancer (NSCLC). In this study, we undertook to identify the precise role of circular RNA (circRNA) circ_0058357 in the functional properties of DDP‐resistant NSCLC cells. Methods Circ_0058357, miR‐361‐3p and ATP‐binding cassette (ABC) subfamily C member 1 (ABCC1) were quantified by qRT‐PCR and western blot. Cell survival and viability were gauged by MTT assay. Cell proliferation, apoptosis, invasion and migration were measured by EdU, flow cytometry, transwell and wound‐healing assays, respectively. The direct relationship between miR‐361‐3p and circ_0058357 or ABCC1 was validated by dual‐luciferase reporter assay. Results Our data showed that circ_0058357 was highly expressed in DDP‐resistant NSCLC tissues and cells. Inhibition of circ_0058357 repressed cell growth, invasion, migration, and promoted DDP sensitivity and cell apoptosis of H1299/DDP and A549/DDP cells in vitro. Moreover, inhibition of circ_0058357 diminished the growth of A549/DDP cells and sensitized them to the cytotoxic effect of DDP in vivo. Mechanistically, circ_0058357 contained a miR‐361‐3p binding site and miR‐361‐3p was identified as a molecular mediator of circ_0058357 regulation. MiR‐361‐3p suppressed ABCC1 expression by binding to ABCC1 3′UTR, and miR‐361‐3p‐mediated inhibition of ABCC1 affected the growth, invasion, migration, apoptosis and DDP sensitivity of H1299/DDP and A549/DDP cells. Furthermore, circ_0058357 regulated ABCC1 expression by competitively binding to shared miR‐361‐3p. Conclusions Our findings identified that inhibition of circ_0058357 suppresses the growth and metastasis of H1299/DDP and A549/DDP cells and sensitizes them to DDP therapy partially by targeting the miR‐361‐3p/ABCC1 axis.
Collapse
Affiliation(s)
- Dan Chu
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengpeng Li
- Cancer Gamma Knife Center, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yameng Li
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiang Shi
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Siyuan Huang
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengfei Jiao
- Department of Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
16
|
Chen KB, Yang W, Xuan Y, Lin AJ. miR-526b-3p inhibits lung cancer cisplatin-resistance and metastasis by inhibiting STAT3-promoted PD-L1. Cell Death Dis 2021; 12:748. [PMID: 34321456 PMCID: PMC8319181 DOI: 10.1038/s41419-021-04033-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/15/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Chemotherapy remains the primary treatment of advanced solid cancer, including lung cancer. However, as first-line treatment, cisplatin-based therapy is restricted by the frequent development of drug resistance. Increasing data showed that the programmed cell death protein ligand 1 (PD-L1) plays a vital role in regulating cisplatin resistance. However, the underlying mechanisms are not fully understood. We found that miR-526b-3p expression declined while PD-L1 was elevated in cisplatin-resistant lung cancer compared to that in cisplatin-sensitive lung cancer by analyzing clinical samples. Significantly, miR-526b-3p was associated with response to cisplatin negatively. We further demonstrated that miR-526b-3p reversed cisplatin resistance, suppressed metastasis, and activated CD8+ T cells in a STAT3/PD-L1-dependent manner. Thus, our findings extended the knowledge of PD-L1-mediated cisplatin resistance of lung cancer. In addition, the introduction of miR-526b-3p provided a new clue to improve the anti-tumor effects of the combination of immunotherapy and chemotherapy.
Collapse
Affiliation(s)
- Kuan-Bing Chen
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Wei Yang
- Department of Thoracic Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Ying Xuan
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ai-Jun Lin
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
17
|
Wang Y, Li L, Zhang W, Zhang G. Circular RNA circLDB2 functions as a competing endogenous RNA to suppress development and promote cisplatin sensitivity in non-squamous non-small cell lung cancer. Thorac Cancer 2021; 12:1959-1972. [PMID: 34096174 PMCID: PMC8258361 DOI: 10.1111/1759-7714.13993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/26/2022] Open
Abstract
Background Circular RNAs (circRNAs) are covalently closed RNAs and are implicated in the development of non‐small cell lung cancer (NSCLC). Here, we identified the precise actions of circRNA LIM domain binding 2 (circLDB2, hsa_circ_0069244) in non‐squamous NSCLC development and drug sensitivity. Methods CircLDB2, microRNA (miR)‐346, and LIM and calponin‐homology domains 1 (LIMCH1) were quantified by quantitative real‐time polymerase chain reaction (qRT‐PCR) or western blot. Ribonuclease R (RNase R), actinomycin D, and subcellular localization assays were used to characterize circLDB2. Cell proliferation and viability, colony formation, apoptosis, migration, and invasion were gauged by Cell Counting Kit‐8 (CCK‐8), colony formation, flow cytometry, wound‐healing, and transwell assays, respectively. RNA immunoprecipitation (RIP), RNA pull‐down, and dual‐luciferase reporter assays were used to verify the direct relationship between miR‐346 and circLDB2 or LIMCH1. Animal studies were performed to evaluate the impact of circLDB2 in vivo. Results CircLDB2 was underexpressed in non‐squamous NSCLC and was identified as a bona fide circular transcript. Overexpression of circLDB2 impeded cell proliferation, migration, invasion, and enhanced apoptosis and cisplatin sensitivity in vitro, as well as promoted the antitumor effect of cisplatin in vivo. CircLDB2 regulated cell functional behaviors and cisplatin sensitivity by sponging miR‐346. LIMCH1 was a direct and functional target of miR‐346. Furthermore, circLDB2 acted as a competing endogenous RNA (ceRNA) for miR‐346 to induce LIMCH1 expression. Conclusion Our findings demonstrated that circLDB2 impeded non‐squamous NSCLC development and enhanced cisplatin sensitivity partially by acting as a ceRNA, highlighting circLDB2 as a promising candidate for the development of novel antitumor therapies.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Luguang Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Weiyu Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, China
| | - Guojun Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
18
|
Cao Y, Xie X, Li M, Gao Y. CircHIPK2 Contributes to DDP Resistance and Malignant Behaviors of DDP-Resistant Ovarian Cancer Cells Both in vitro and in vivo Through circHIPK2/miR-338-3p/CHTOP ceRNA Pathway. Onco Targets Ther 2021; 14:3151-3165. [PMID: 34012271 PMCID: PMC8128508 DOI: 10.2147/ott.s291823] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/01/2021] [Indexed: 12/17/2022] Open
Abstract
Background Cisplatin (DDP) is standard-of-care and first-line management for ovarian cancer (OvCa). Circular RNA HIPK2 (circHIPK2) is abnormally upregulated in serum of OvCa patients. However, its role in DDP resistance remains unclear. Methods Expression of cirHIPK2, microRNA (miR)-338-3p and chromatin target of protein arginine methyltransferase (CHTOP) was detected by quantitative reverse transcription PCR and Western blotting. Functional experiments were performed using cell counting kit-8 assay, flow cytometry, transwell assays, Western blotting, and xenograft experiment. The interaction among cirHIPK2, miR-338-3p and CHTOP was confirmed by dual-luciferase reporter assay and RNA pull-down assay. Results Expression of circHIPK2 and CHTOP was upregulated, and miR-338-3p was downregulated in human DDP-resistant OvCa tumors and cells. Blocking circHIPK2 could promote apoptosis and suppress the 50% inhibitory concentration (IC50) of DDP, cell proliferation, cell cycle entrance, migration and invasion in SKOV3/DDP and A2780/DDP cells. Allied with that was decreased B cell lymphoma (Bcl)-2, matrix metalloproteinase 2 (MMP2) and MMP9 levels, and increased Bcl-2-associated X protein (Bax) level. Similarly, overexpression of miR-338-3p functioned suppressive role in SKOV3/DDP and A2780/DDP cells. MiR-338-3p was a target for circHIPK2, and CHTOP was targeted by miR-338-3p, whereas silencing miR-338-3p counteracted the role of circHIPK2 knockdown, and restoring CHTOP either cancelled miR-338-3p role. The growth of A2780/DDP cells in nude mice was restrained by silencing circHIPK2 under DDP treatment or not. Conclusion CircHIPK2 might be a tumor promoter in OvCa and was associated with DDP resistance. Silencing circHIPK2 might suppress DDP-resistant OvCa through regulating miR-338-3p/CHTOP axis.
Collapse
Affiliation(s)
- Yang Cao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| | - Xin Xie
- Department of Teaching and Research Center, Liaoning University of Traditional Chinese Medicine, Shenyang City, Liaoning Province, People's Republic of China
| | - Mingzhu Li
- Department of Integrated Traditional Chinese and Western Medicine Medical Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| | - Yuhua Gao
- Department of Gynaecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang City, Liaoning Province, People's Republic of China
| |
Collapse
|