1
|
Meng Y, Huang X, Zhang G, Fu S, Li Y, Song J, Zhu Y, Xu X, Peng X. MicroRNA-450b-5p modulated RPLP0 promotes hepatocellular carcinoma progression via activating JAK/STAT3 pathway. Transl Oncol 2024; 50:102150. [PMID: 39383650 PMCID: PMC11490897 DOI: 10.1016/j.tranon.2024.102150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/07/2024] [Accepted: 10/02/2024] [Indexed: 10/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is distinguished by its insidious onset, difficult treatment, and poor prognosis. Ribosomal Protein Lateral Stalk Subunit P0 (RPLP0) is implicated in numerous tumor progression processes. Nevertheless, the regulatory mechanism of RPLP0 in HCC progression remains unclear. Our study suggested that RPLP0 exhibits high expression levels in HCC and possesses promising diagnostic capabilities, as indicated by its area under the curve (AUC) of 0.908. Further analysis showed that RPLP0 was a significant independent prognostic factor, and elevated expression levels of RPLP0 were linked with poorer overall survival (OS) and progression-free interval (PFI) outcomes. Additionally, reducing RPLP0 levels led to a decrease in HCC cell proliferation, clonality, invasion, migration, and xenograft tumor growth, as well as an increase in apoptosis. Furthermore, our findings indicated that microRNA(miR)-450b-5p induced downregulation of RPLP0, leading to the suppression of the JAK/STAT3 pathway and consequently hindering the advancement of HCC. The study indicates that RPLP0 plays a role as a carcinogenic factor in HCC and carries important diagnostic and prognostic implications. Targeting the miR-450b-5p/RPLP0/JAK/STAT3 axis has potential clinical value in treating HCC.
Collapse
Affiliation(s)
- Yanqiu Meng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Xianbin Huang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Guangxin Zhang
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Sansan Fu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Youhua Li
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Jielong Song
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Yizi Zhu
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China
| | - Xinping Xu
- Jiangxi Clinical Research Center for Respiratory Diseases, Jiangxi Institute of Respiratory Diseases, The Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| | - Xiaodong Peng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, PR China.
| |
Collapse
|
2
|
Tsai YC, Chang CH, Chong YB, Wu CH, Tsai HP, Cheng TL, Lin CL. MicroRNA-195-5p Attenuates Intracerebral-Hemorrhage-Induced Brain Damage by Inhibiting MMP-9/MMP-2 Expression. Biomedicines 2024; 12:1373. [PMID: 38927580 PMCID: PMC11201846 DOI: 10.3390/biomedicines12061373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/14/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
Intracerebral hemorrhage (ICH) remains a devastating disease with high mortality, and there is a lack of effective strategies to improve functional outcomes. The primary injury of ICH is mechanical damage to brain tissue caused by the hematoma. Secondary injury, resulting from inflammation, red cell lysis, and thrombin production, presents a potential target for therapeutic intervention. Inflammation, crucial in secondary brain injury, involves both cellular and molecular components. MicroRNAs (miRNAs) are vital regulators of cell growth, differentiation, and apoptosis. Their deregulation may lead to diseases, and modulating miRNA expression has shown therapeutic potential, especially in cancer. Recent studies have implicated miRNAs in the pathogenesis of stroke, affecting endothelial dysfunction, neurovascular integrity, edema, apoptosis, inflammation, and extracellular matrix remodeling. Preclinical and human studies support the use of miRNA-directed gene modulation as a therapeutic strategy for ICH. Our study focused on the effects of miR-195 in ICH models. Neurological tests, including the corner turn and grip tests, indicated that miR-195 treatment led to improvements in motor function impairments caused by ICH. Furthermore, miR-195-5p significantly reduced brain edema in the ipsilateral hemisphere and restored blood-brain barrier (BBB) integrity, as shown by reduced Evans blue dye extravasation. These results suggest miR-195-5p's potential in attenuating ICH-induced apoptosis, possibly related to its influence on MMP-9 and MMP-2 expression, enzymes associated with secondary brain injury. The anti-apoptotic effects of miR-195-5p, demonstrated through TUNEL assays, further underscore its therapeutic promise in addressing the secondary brain injury and apoptosis associated with ICH. In conclusion, miR-195-5p demonstrates a significant neuroprotective effect against ICH-induced neural damage, brain edema, and BBB disruption, primarily through the downregulation of MMP-9 and MMP-2. Our findings indicate that miR-195-5p holds therapeutic potential in managing cerebral cell death following ICH.
Collapse
Affiliation(s)
- Yi-Cheng Tsai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chih-Hui Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Yoon Bin Chong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| | - Chieh-Hsin Wu
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
- Department of Surgery, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hung-Pei Tsai
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Tian-Lu Cheng
- Department of Biochemistry, School of Post Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chih-Lung Lin
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-C.T.); (C.-H.C.); (Y.B.C.)
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan; (C.-H.W.); (H.-P.T.)
| |
Collapse
|
3
|
Hu Y, He Z, Han B, Lin Z, Zhou P, Li S, Huang S, Chen X. miR-107 Targets NSG1 to Regulate Hypopharyngeal Squamous Cell Carcinoma Progression through ERK Pathway. Int J Mol Sci 2024; 25:5961. [PMID: 38892156 PMCID: PMC11172869 DOI: 10.3390/ijms25115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Hypopharyngeal squamous cell carcinoma (HSCC) is a kind of malignant tumor with a poor prognosis and low quality of life in the otolaryngology department. It has been found that microRNA (miRNA) plays an important role in the occurrence and development of various tumors. This study found that the expression level of miRNA-107 (miR-107) in HSCC was significantly reduced. Subsequently, we screened out the downstream direct target gene Neuronal Vesicle Trafficking Associated 1 (NSG1) related to miR-107 through bioinformatics analysis and found that the expression of NSG1 was increased in HSCC tissues. Following the overexpression of miR-107 in HSCC cells, it was observed that miR-107 directly suppressed NSG1 expression, leading to increased apoptosis, decreased proliferation, and reduced invasion capabilities of HSCC cells. Subsequent experiments involving the overexpression and knockdown of NSG1 in HSCC cells demonstrated that elevated NSG1 levels enhanced cell proliferation, migration, and invasion, while the opposite effect was observed upon NSG1 knockdown. Further investigations revealed that changes in NSG1 levels in the HSCC cells were accompanied by alterations in ERK signaling pathway proteins, suggesting a potential regulatory role of NSG1 in HSCC cell proliferation, migration, and invasion through the ERK pathway. These findings highlight the significance of miR-107 and NSG1 in hypopharyngeal cancer metastasis, offering promising targets for therapeutic interventions and prognostic evaluations for HSCC.
Collapse
Affiliation(s)
- Yifan Hu
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Zhizhen He
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Baoai Han
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Zehua Lin
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Peng Zhou
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Shuang Li
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Shuo Huang
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
| | - Xiong Chen
- Department of Otolaryngology, Head and Neck Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; (Y.H.)
- Sleep Medicine Centre, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| |
Collapse
|
4
|
Ni S, Wei Z, Li D. Effect of lncRNA LINC00324 on cervical cancer progression through down-regulation of miR-195-5p. J OBSTET GYNAECOL 2023; 43:2285384. [PMID: 38059417 DOI: 10.1080/01443615.2023.2285384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) have been widely used in the exploration of diseases in recent years. This paper introduced the significance of lncRNA LINC00324 (LINC00324) on the progression of cervical cancer and explored the mechanism of action and potential prognosis of LINC00324. METHODS The cervical cancer tissues and adjacent normal tissues of 120 people were collected as research samples. The expression level of LINC00324 was assessed by RT-qPCR, as was miR-195-5p. Knockdown of LINC00324 on the proliferation ability of cervical cancer cells was determined with the help of cell counting kit-8 (CCK-8), and the number of cell migration and invasion was detected by the Transwell method. Luciferase reporter gene assay was used to analyse the correlation of LINC00324 and miR-195-5p. Kaplan-Meier survival curves and multivariate Cox analysis explained the potential prognostic significance of LINC00324 in cervical cancer. RESULTS Significantly increased expression of LINC00324 and down-regulated miR-195-5p were negatively correlated in cervical cancer. Knockdown of LINC00324 inhibited the progression of cervical cancer, which was related to its mechanism of targeting and downregulating miR-195-5p. In addition, low expression of LINC00324 may prolong the survival period of patients with cervical cancer. CONCLUSIONS LINC00324 targets miR-195-5p to regulate the progression of cervical cancer and have potential as a prognostic molecular marker for cervical cancer.
Collapse
Affiliation(s)
- Suna Ni
- Department of Obstetrics Clinic, ShiJiaZhuang Maternity & Child Healthcare Hospital, ShiJiaZhuang, China
| | - Zhixia Wei
- Department of Obstetrics Clinic, ShiJiaZhuang Maternity & Child Healthcare Hospital, ShiJiaZhuang, China
| | - Dandan Li
- Department of Breast Clinic, ShiJiaZhuang Maternity & Child Healthcare Hospital, ShiJiaZhuang, China
| |
Collapse
|
5
|
He KX, Xu L, Ning JZ, Cheng F. MiR-195-5p is involved in testicular ischemia/reperfusion injury by directly targeting PELP1 and regulating spermatogonia pyroptosis. Int Immunopharmacol 2023; 121:110427. [PMID: 37290329 DOI: 10.1016/j.intimp.2023.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVE Ischemia/reperfusion injury (IRI), which is characterized by testicular torsion and causes permanent impairment of spermatogenic function, is linked with pyroptosis. Studies have implicated endogenous small non-coding RNAs in IRI development across various organs. In this study, we elucidated the mechanism underlying miR-195-5p's action in regulating pyroptosis in testicular IRI. METHODS We established two models, namely a testicular torsion/ detorsion (T/D) mouse model and an oxygen-glucose deprivation/reperfusion (OGD/R)-treated germ cell model. Hematoxylin and eosin staining was performed to evaluate the testicular ischemic injury. The expression of pyroptosis-related proteins and reactive oxygen species production in testis tissues were detected using Western blotting, quantitative real-time PCR, malondialdehyde and superoxide dismutase assay kits and immunohistochemistry. Cell viability and cytotoxicity were evaluated using CCK-8 and LDH assays, whereas expression patterns of inflammatory proteins were measured using ELISA, immunofluorescence, and western blot assays. miR-195-5p interaction with PELP1 was validated by conducting the luciferase enzyme reporter test. RESULTS Pyroptosis-related proteins NLRP3, GSDMD, IL-1β, and IL-18 were significantly upregulated following testicular IRI. A similar pattern was observed in the OGD/R model. miR-195-5p was significantly downregulated in mouse IRI testis tissue and OGD/R-treated GC-1 cells. Notably, miR-195-5p downregulation promoted whereas its upregulation attenuated pyroptosis in OGD/R-treated GC-1 cells. Furthermore, we found that PELP1 is a miR-195-5p target. miR-195-5p attenuated pyroptosis in GC-1 cells by inhibiting PELP1 expression during OGD/R, and this protective effect was blocked upon miR-195-5p downregulation. Collectively, these results indicated that miR-195-5p inhibits testicular IRI-induced pyroptosis by targeting PELP1, suggesting that it has the potential to serve as a novel target for the future development of therapies for testicular torsion.
Collapse
Affiliation(s)
- Kai-Xiang He
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Lizhe Xu
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China
| | - Jin-Zhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, PR China.
| |
Collapse
|
6
|
Fu L, Li Z, Wu Y, Zhu T, Ma Z, Dong L, Ding J, Zhang C, Yu G. Hsa-miR-195-5p Inhibits Autophagy and Gemcitabine Resistance of Lung Adenocarcinoma Cells via E2F7/CEP55. Biochem Genet 2023:10.1007/s10528-023-10330-y. [PMID: 36658310 DOI: 10.1007/s10528-023-10330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/02/2023] [Indexed: 01/21/2023]
Abstract
Lung adenocarcinoma (LUAD) is a common malignancy. Many studies have shown that LUAD is resistant to gemcitabine chemotherapy, resulting in poor treatment outcomes in patients. We designed this study to reveal influences of hsa-miR-195-5p/E2F7/CEP55 axis on gemcitabine resistance and autophagy of LUAD cells. The expression data of LUAD-related mRNAs were downloaded from TCGA-LUAD database for differential expression analysis. The bioinformatics databases (hTFtarget, starBase and TargetScan) were used to predict the upstream and downstream regulatory molecules of E2F7. Then the binding relationships between E2F7 and regulatory molecules were verified by ChIP and dual-luciferase reporter assay. qRT-PCR and western blot were used to detect the mRNA and protein levels of has-miR-195-5p, E2F7, and CEP55. CCK-8 assay was used to analyze the half-maximal inhibitory concentration (IC50) and cell proliferation ability of LUAD cells after gemcitabine treatment. Apoptosis was detected by flow cytometry. Apoptosis/autophagy markers and LC3 aggregation were detected by western blot and immunofluorescence, respectively. Finally, the mouse transplantation model was constructed to verify the regulation mechanism in vivo. In LUAD cells and tissues, E2F7 and CEP55 were highly expressed, while has-miR-195-5p was relatively less expressed. The ChIP or dual-luciferase assays demonstrated the binding relationships of E2F7 to the CEP55 promoter region and has-miR-195-5p to the 3'-UTR of E2F7. Cell experiments demonstrated that overexpression of hsa-miR-195-5p stimulated LUAD cell apoptosis and inhibited autophagy and gemcitabine resistance, while further overexpression E2F7/CEP55 could reverse the impact by hsa-miR-195-5p overexpression. In vivo experiments identified that hsa-miR-195-5p/E2F7/CEP55 axis constrained the growth of LUAD tumor. Hsa-miR-195-5p promoted apoptosis, repressed proliferation, and autophagy via E2F7/CEP55 and reduced gemcitabine resistance in LUAD, indicating that hsa-miR-195-5p/E2F7/CEP55 may be a novel target for LUAD.
Collapse
Affiliation(s)
- Linhai Fu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhupeng Li
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Ting Zhu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Zhifeng Ma
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Lingjun Dong
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Jianyi Ding
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Chu Zhang
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), 568 Zhongxing North Road, Shaoxing, 312000, Zhejiang, China.
| |
Collapse
|
7
|
miRNA-195-5p/PSAT1 feedback loop in human triple-negative breast cancer cells. Genes Genomics 2023; 45:39-47. [PMID: 36371491 DOI: 10.1007/s13258-022-01327-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 10/08/2022] [Indexed: 11/13/2022]
Abstract
BACKGROUND Substantial evidence suggests that non-coding RNAs, such as microRNAs (miRNAs), play a vital role in human cancer. Phosphoserine aminotransferase 1 (PSAT1) is a serine biosynthesis-related member of the aminotransferase family and is closely associated with worse prognosis in triple-negative breast cancer (TNBC). OBJECTIVE The present study elucidated the molecular mechanisms underlying PSAT1 regulation by miRNAs in TNBC. METHODS After collecting breast cancer and para-cancerous tissues, expression and functional testing of microRNA-195-5p (miR-195-5p) and PSAT1 were implemented both in vivo and in vitro. RESULTS Abnormally low miR-195-5p expression was confirmed in TNBC tissues and cells. The specific targeting effect of miR-195-5p on PSAT1 was screened. Our observations revealed that biological tumor behavior was inhibited after miR-195-5p upregulation and this inhibition could be reversed by PSAT1 overexpression both in vivo and in vitro. CONCLUSION Our study revealed the regulatory axis of miR-195-5p/PSAT1 in TNBC, suggesting a promising targeted therapy for clinical application.
Collapse
|
8
|
Construction of lncRNA TYMSOS/hsa-miR-101-3p/CEP55 and TYMSOS/hsa-miR-195-5p/CHEK1 Axis in Non-small Cell Lung Cancer. Biochem Genet 2022; 61:995-1014. [DOI: 10.1007/s10528-022-10299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 10/21/2022] [Indexed: 11/10/2022]
|
9
|
Zhang Y, Xiao P, Hu X. LINC00511 enhances LUAD malignancy by upregulating GCNT3 via miR-195-5p. BMC Cancer 2022; 22:389. [PMID: 35399076 PMCID: PMC8994914 DOI: 10.1186/s12885-022-09459-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/08/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Accumulating evidence suggests that LINC00511 acts as an oncogenic long non-coding RNA (lncRNA) in various cancers, including lung adenocarcinoma (LUAD). Hence, we attempted to elucidate the potential role of LINC00511 in LUAD. METHODS LINC00511, miR-195-5p, and GCNT3 expression in LUAD was detected by qRT-PCR. Changes in the proliferation, migration, and invasion of LUAD cells after abnormal regulation of LINC00511, miR-195-5p, or GCNT3 were detected by CCK-8, BrdU, wound healing, and transwell assays. Bax and Bcl-2 protein expression was measured by western blotting. Additionally, we identified the targeting effects of LINC00511, miR-195-5p, and GCNT3 using luciferase and RNA immunoprecipitation (RIP) assays. RESULTS LINC00511 and GCNT3 were found to be upregulated in LUAD, while miR-195-5p was downregulated. Silencing LINC00511 or GCNT3 decreased the proliferation, migration, invasion, and Bcl-2 protein content in LUAD cells and increased the expression of Bax. Interference with miR-195-5p promoted malignant proliferation of cancer cells. miR-195-5p expression was affected by LINC00511and targeted GCNT3. CONCLUSION Silencing LINC00511 promotes GCNT3 expression by inhibiting miR-195-5p and ultimately stimulates the malignant progression of LUAD.
Collapse
Affiliation(s)
- Youyi Zhang
- Department of Radiology, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, Chengdu, 610072, Sichuan, China
| | - Ping Xiao
- Department of Thoracic Surgery, Sichuan Cancer Hospital&Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610041, Sichuan, China
| | - Xiaobo Hu
- Department of Respiratory Diseases, Chengdu First People's Hospital, No. 18, North Wanxiang Road, Gaoxin District, Chengdu, 610016, Sichuan, China.
| |
Collapse
|
10
|
MiR-186 Suppressed Growth, Migration, and Invasion of Lung Adenocarcinoma Cells via Targeting Dicer1. JOURNAL OF ONCOLOGY 2021; 2021:6217469. [PMID: 34804161 PMCID: PMC8601821 DOI: 10.1155/2021/6217469] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 02/08/2023]
Abstract
Objective Globally, the fatal form of lung cancer is non-small-cell lung cancer (NSCLC), and its most common subtype is lung adenocarcinoma (LUAD). In cancer development and progression, miRNAs play key roles primarily in interacting with cancer-related genes. The main focus of this research was to examine the biological roles of miR-186 in LUAD. Methods We examined tissues of LUAD and lung cancer cell lines. The expressions of miR-186, Dicer1, Ki-67, and PCNA were determined by immunohistochemistry (IHC), real-time quantitative PCR (RT-PCR), and western blot assays. The CCK-8 and transwell assays were used to determine cell proliferation, migration, and invasion. To determine the association between miR-186 and Dicer1, a luciferase assay was used. Results MiR-186 expression was found to be lower in LUAD tissues, and this was correlated to TNM stage and lymph node metastasis in LUAD patients. miR-186 upregulation significantly reduced the proliferation rate and the level of Ki67 and PCNA of LUAD cell lines HCC827 and A549. Transwell assay exhibited that miR-186 upregulation considerably reduced HCC827 and A549 cells' migration and invasion abilities. Furthermore, we also confirmed that Dicer1 was a direct target of miR-186. Importantly, Dicer1 overexpression abolished the suppression of miR-186 mimics on cell proliferation, migration, and invasion of HCC827 and A549 cells. Conclusion These results indicated that the miR-186/Dicer1 pathway is critical for regulating LUAD cell proliferation, migration, and invasion.
Collapse
|
11
|
Chen J, Gao C, Zhu W. Long non-coding RNA SLC25A25-AS1 exhibits oncogenic roles in non-small cell lung cancer by regulating the microRNA-195-5p/ITGA2 axis. Oncol Lett 2021; 22:529. [PMID: 34055094 PMCID: PMC8138898 DOI: 10.3892/ol.2021.12790] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNA SLC25A25 antisense RNA 1 (SLC25A25-AS1) exerts antitumour activity in colorectal cancer. The present study investigated whether SLC25A25-AS1 is implicated in the aggressiveness of non-small cell lung cancer (NSCLC) and the possible underlying mechanism. SLC25A25-AS1 expression in NSCLC was determined by reverse transcription-quantitative PCR. The proliferation, apoptosis, migration and invasion of NSCLC cells were tested in vitro through cell counting kit-8 assay, flow cytometry analysis, Transwell migration and invasion assays, followed by in vivo validation using animal experiments. Additionally, the competitive endogenous RNA theory for SLC25A25-AS1, microRNA-195-5p (miR-195-5p) and integrin α2 (ITGA2) was identified using subcellular fractionation, bioinformatics analysis, reverse transcription-quantitative PCR, western blotting, a luciferase assay and RNA immunoprecipitation. As compared with normal lung tissues, increased expression of SLC25A25-AS1 was demonstrated in NSCLC tissues using The Cancer Genome Atlas database.. In addition, SLC25A25-AS1 was overexpressed in both NSCLC tissues and cell lines. High SLC25A25-AS1 expression was markedly associated with shorter overall survival time of patients with NSCLC. SLC25A25-AS1 silencing impeded NSCLC cell proliferation and triggered apoptosis, while restricting cell migration and invasion. Tumour growth in vivo was also impaired by SLC25A25-AS1 silencing. Mechanistically, SLC25A25-AS1 was demonstrated to be an miR-195-5p sponge in NSCLC cells. miR-195-5p mimics decreased ITGA2 expression in NSCLC cells by directly targeting ITGA2, and SLC25A25-AS1 interference decreased ITGA2 expression by sequestering miR-195-5p. Furthermore, the antitumour effects of SLC25A25-AS1 silencing on malignant behaviours were counteracted when ITGA2 was restored or when miR-195-5p was silenced. In summary, by controlling the miR-195-5p/ITGA2 axis, SLC25A25-AS1 served tumour-promoting roles in NSCLC cells. Therefore, the SLC25A25-AS1/miR-195-5p/ITGA2 signalling pathway might be an attractive target for future therapeutic options in NSCLC.
Collapse
Affiliation(s)
- Jinqin Chen
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Chengpeng Gao
- Department of Respiratory Medicine, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| | - Wei Zhu
- Department of Chest Surgery, Weifang People's Hospital, Weifang, Shandong 261401, P.R. China
| |
Collapse
|