1
|
Odunitan TT, Apanisile BT, Afolabi JA, Adeniwura PO, Akinboade MW, Ibrahim NO, Alare KP, Saibu OA, Adeosun OA, Opeyemi HS, Ayiti KS. Beyond Conventional Drug Design: Exploring the Broad-Spectrum Efficacy of Antimicrobial Peptides. Chem Biodivers 2024:e202401349. [PMID: 39480053 DOI: 10.1002/cbdv.202401349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/02/2024]
Abstract
In the fight against pathogenic infections, antimicrobial peptides (AMPs) constitute a novel and promising class of compounds that defies accepted drug development conventions like Lipinski's rule. AMPs are remarkably effective against a variety of pathogens, including viruses, bacteria, parasites, and fungi. Their effectiveness, despite differing from traditional drug-like properties defies accepted standards. This review investigates the complex world of AMPs with an emphasis on their structural and physicochemical properties, which include size, sequence, structure, charge, and half-life. These distinguishing characteristics set AMPs apart from conventional therapeutics that adhere to Lipinski's rules and greatly contribute to their selective targeting, reduction of resistance, multifunctionality, and broad-spectrum efficacy. In contrast to traditional drugs that follow Lipinski's guidelines, AMPs have special qualities that play a big role in their ability to target specific targets, lower resistance, and work across a wide range of conditions. Our work is unique because of this nuanced investigation, which offers a new viewpoint on the potential of AMPs in tackling the worldwide problem of antibiotic resistance. In the face of the escalating global challenge of antibiotic resistance, antimicrobial peptides (AMPs) are innovative antimicrobial agents with unique mechanisms of action that challenge traditional Lipinski's Rule. They can withstand various microbial threats through membrane disruption, intracellular targeting, and immunomodulation. AMP versatility sets them apart from other antibiotics and their potential to address microbial infections and antibiotic resistance is growing. To fully unlock their potential, traditional drug development approaches need to be reconsidered. AMPs have revolutionary potential, paving the way for innovative solutions to health issues and transforming the antimicrobial therapy landscape.
Collapse
Affiliation(s)
- Tope T Odunitan
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Boluwatife T Apanisile
- Department of Nutrition and Dietetics, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Justinah A Afolabi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Praise O Adeniwura
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Modinat W Akinboade
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
- Genomics Unit, Helix Biogen Institute, Ogbomosho, Nigeria
| | - Najahtulahi O Ibrahim
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kehinde P Alare
- Department of Medicine and Surgery, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Oluwatosin A Saibu
- Department of Chemistry and Biochemistry, New Mexico State University, USA, Ibadan
| | - Oyindamola A Adeosun
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Hammed S Opeyemi
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomosho, Oyo State, Nigeria
| | - Kolawole S Ayiti
- Department of Biochemistry, College of Medicine, University of Ibadan, Nigeria
| |
Collapse
|
2
|
Chen X, Su S, Yan Y, Yin L, Liu L. Anti- Pseudomonas aeruginosa activity of natural antimicrobial peptides when used alone or in combination with antibiotics. Front Microbiol 2023; 14:1239540. [PMID: 37731929 PMCID: PMC10508351 DOI: 10.3389/fmicb.2023.1239540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/22/2023] [Indexed: 09/22/2023] Open
Abstract
The World Health Organization has recently published a list of 12 drug-resistant bacteria that posed a significant threat to human health, and Pseudomonas aeruginosa (P. aeruginosa) was among them. In China, P. aeruginosa is a common pathogen in hospital acquired pneumonia, accounting for 16.9-22.0%. It is a ubiquitous opportunistic pathogen that can infect individuals with weakened immune systems, leading to hospital-acquired acute and systemic infections. The excessive use of antibiotics has led to the development of various mechanisms in P. aeruginosa to resist conventional drugs. Thus, there is an emergence of multidrug-resistant strains, posing a major challenge to conventional antibiotics and therapeutic approaches. Antimicrobial peptides are an integral component of host defense and have been found in many living organisms. Most antimicrobial peptides are characterized by negligible host toxicity and low resistance rates, making them become promising for use as antimicrobial products. This review particularly focuses on summarizing the inhibitory activity of natural antimicrobial peptides against P. aeruginosa planktonic cells and biofilms, as well as the drug interactions when these peptides used in combination with conventional antibiotics. Moreover, the underlying mechanism of these antimicrobial peptides against P. aeruginosa strains was mainly related to destroy the membrane structure through interacting with LPS or increasing ROS levels, or targeting cellular components, leaded to cell lysis. Hopefully, this analysis will provide valuable experimental data on developing novel compounds to combat P. aeruginosa.
Collapse
Affiliation(s)
- Xueqi Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Shan Su
- Department of Pharmacy, The Affiliated Taian City Central Hospital of Qingdao University, Taian, China
| | - Yan Yan
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Limei Yin
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lihong Liu
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
An J, Tsopmejio ISN, Wang Z, Li W. Review on Extraction, Modification, and Synthesis of Natural Peptides and Their Beneficial Effects on Skin. Molecules 2023; 28:molecules28020908. [PMID: 36677965 PMCID: PMC9863410 DOI: 10.3390/molecules28020908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/19/2023] Open
Abstract
Peptides, functional nutrients with a size between those of large proteins and small amino acids, are easily absorbed by the human body. Therefore, they are seeing increasing use in clinical medicine and have revealed immunomodulatory and anti-inflammatory properties which could make them effective in healing skin wounds. This review sorted and summarized the relevant literature about peptides during the past decade. Recent works on the extraction, modification and synthesis of peptides were reviewed. Importantly, the unique beneficial effects of peptides on the skin were extensively explored, providing ideas for the development and innovation of peptides and laying a knowledge foundation for the clinical application of peptides.
Collapse
Affiliation(s)
- Jiabing An
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | | | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| | - Wei Li
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (Z.W.); (W.L.); Tel./Fax: +86-431-84533304 (W.L.)
| |
Collapse
|
4
|
Tian M, Wang K, Liang Y, Chai J, Wu J, Zhang H, Huang X, Chen X, Xu X. The first Brevinin-1 antimicrobial peptide with LPS-neutralizing and anti-inflammatory activities in vitro and in vivo. Front Microbiol 2023; 14:1102576. [PMID: 36937273 PMCID: PMC10020232 DOI: 10.3389/fmicb.2023.1102576] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
Antimicrobial peptide is one important component of the first protective barrier of organisms. They not only have potent antimicrobial activity which can protect the body from the invading pathogens, but also participate in the immune regulation of the body. In this study, a Brevinin-1 peptide named by Brevinin-1GHd was identified from Hoplobatrachus rugulosus, and the similarity of mature peptide sequence among Brevinin-1GHd, Brevinin-1HL and Brevinin-1GHa supported the close species relationship between H. rugulosus, Hylarana latouchii and Hylarana guertheri. Moreover, the secondary structure of Brevinin-1GHd was found to possess α-helical characteristics and high thermal stability. In addition, Brevinin-1GHd could bind to LPS with a Kd value of 6.49 ± 5.40 mM and suppress the release of TNF-α, NO, IL-6 and IL-1β by inactivation of MAPK signaling pathway in RAW 264.7 cells induced by LPS. Furtherly, Brevinin-1GHd had a significant inhibitory effect on acute edema development in the right paw of mice injected by carrageenan. Thus, the significant LPS-neutralizing and anti-inflammatory activities of Brevinin-1GHd were demonstrated in this study, which made it become the first Brevinin-1 family peptide with anti-inflammatory activity reported so far, and the biological activity of Brevinin-1GHd made it promising to be a novel therapeutic drug for infectious inflammation.
Collapse
Affiliation(s)
- Maolin Tian
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Kai Wang
- Department of Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Liang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jinwei Chai
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Haiyun Zhang
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaowen Huang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Pulmonary and Critical Care Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Xin Chen,
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
- *Correspondence: Xueqing Xu,
| |
Collapse
|
5
|
Zou W, Zhang Y, Zhou M, Chen X, Ma C, Wang T, Jiang Y, Chen T, Shaw C, Wang L. Exploring the active core of a novel antimicrobial peptide, palustrin-2LTb, from the Kuatun frog, Hylarana latouchii, using a bioinformatics-directed approach. Comput Struct Biotechnol J 2022; 20:6192-6205. [DOI: 10.1016/j.csbj.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/04/2022] [Accepted: 11/07/2022] [Indexed: 11/13/2022] Open
|
6
|
Lin T, Huang L, Cheng N, Wang Y, Ning Z, Huang S, Wu Y, Chen T, Su S, Lin Y. The in vitro and in vivo antibacterial activities of uniflorous honey from a medicinal plant, Scrophularia ningpoensis Hemsl., and characterization of its chemical profile with UPLC-MS/MS. JOURNAL OF ETHNOPHARMACOLOGY 2022; 296:115499. [PMID: 35752262 DOI: 10.1016/j.jep.2022.115499] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/10/2022] [Accepted: 06/18/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE According to the Compendium of Materia Medica, honey has been used as a traditional medicine in treatment against mucositis, tinea, hemorrhoids and psoriasis. In complementary medicine, due to its significant antimicrobial activity, honey has been widely used as a remedy for skin wounds and gastrohelcosis for thousands of years. AIM OF THE STUDY This study is aimed at exploring the antimicrobial activity and mechanisms of honey sourced from medicinal plants, and revealing the composition-activity relationship, to facilitate their complementary and alternative application in the therapy of bacterial infectious diseases. MATERIALS AND METHODS Eight kinds of medicinal plant-derived uniflorous honey, native to China, were gathered. Their antimicrobial activities were evaluated in vitro, and then in vivo with the systemically infected mouse model and the acute skin infection model. SYTOX uptake assay, scanning electron microscopy, DNA binding assay, and quantitative real-time PCR, were carried out to elucidate the antibacterial mechanisms. This was followed by an investigation of the componential profile with the UPLC-MS/MS technique. RESULTS It was found that Scrophularia ningpoensis Hemsl. (figwort) honey (S. ningpoensis honey) exhibited broad-spectrum and the strongest antibacterial potency (MICs of 7.81-125.00%, w/v), comparable to manuka honey. In the in vivo assays, S. ningpoensis honey significantly decreased the bacterial load of the muscles under the acute MRSA-infected skin wounds; the sera level of TNF-α in the S. aureus and P. aeruginosa-infected mice decreased by 45.38% and 51.75%, respectively, after the treatment of S. ningpoensis honey (125 mg/10 g). It was capable of killing bacteria through disrupting the cell membranes and the genomic DNA, as well as down-regulating the expression of genes associated with virulence, biofilm formation and invasion, including icaA, icaD, eno, sarA, agrA, sigB, fib and ebps in S. aureus, and lasI, lasR, rhlI, rhlR and algC in P. aeruginosa. Apart from H2O2, some other nonperoxide compounds such as adenosine, chavicol, 4-methylcatechol, trehalose, palmitoleic acid and salidroside, might play a vital role in the antibacterial properties of S. ningpoensis honey. CONCLUSIONS This is the first study to thoroughly investigate the antibacterial activity, mode of action, and componential profile of S. ningpoensis honey. It suggested that S. ningpoensis honey might be a potential supplement or substitute for manuka honey, for the prevention or treatment of bacterial infections. It will facilitate the precise application of medicinal plant-sourced honey, provide a new thread for the development of antibacterial drugs, and assist in the distinction of different kinds of honey.
Collapse
Affiliation(s)
- Tianxing Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lei Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ningna Cheng
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuzhen Wang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhen Ning
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaokang Huang
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuanhua Wu
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tianbao Chen
- Natural Drug Discovery Group, School of Pharmacy, Queen's University, Belfast BT9 7BL, Northern Ireland, UK
| | - Songkun Su
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yan Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|