Han LL, Hou L, Zhou MJ, Ma ZL, Lin DL, Wu L, Ge YL. Aberrant NDRG1 methylation associated with its decreased expression and clinicopathological significance in breast cancer.
J Biomed Sci 2013;
20:52. [PMID:
23899187 PMCID:
PMC3751627 DOI:
10.1186/1423-0127-20-52]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Accepted: 07/21/2013] [Indexed: 12/18/2022] Open
Abstract
Background
Cancer cell differentiation is an important characteristic of malignant tumor and has a great impact on prognosis and therapeutic decision for patients. The N-myc downstream regulated gene 1 (NDRG1), a putative tumor suppression gene, is involved in the regulation of human cell differentiation and metastasis in various cancers. Changes in the status of methylation of the NDRG1 gene have not been studied in detail in human breast cancer.
Results
The MDA-MB-231 breast tumor cell line could express NDRG1. However, it was only expressed after treatment with 5-Aza-2'-deoxycytidine (AZA) in T47D cell line, which revealed that NDRG1 expression could modulated by DNA methylation. Therefore, the fragment surrounding the transcript start site of NDRG1 gene promoter was cloned after sodium bisulfite DNA treatment. A high density (66%) of methylation for human NDRG1 gene promoter was detected in T47D; however, there was only 16% of methylated CpG dinucleotides in the NDRG1 gene promoter in MDA-MB-231. DNA methylation in the NDRG1 promoter was detected in 31.1% of primary breast cancer samples. Furthermore, the NDRG1 promoter methylation correlated with the Tumor Node Metastasis (TNM) at stage III/IV, metastasis, lymph invasion, moderate and poor histological grade in the breast cancer patients.
Conclusion
These findings suggest that the DNA methylation status of NDRG1 gene may play an important role in the pathogenesis and/or development of breast cancer, and the expression could be regulated by aberrant DNA methylation.
Collapse