1
|
Magnetofection In Vivo by Nanomagnetic Carriers Systemically Administered into the Bloodstream. Pharmaceutics 2021; 13:pharmaceutics13111927. [PMID: 34834342 PMCID: PMC8619128 DOI: 10.3390/pharmaceutics13111927] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/11/2022] Open
Abstract
Nanoparticle-based technologies are rapidly expanding into many areas of biomedicine and molecular science. The unique ability of magnetic nanoparticles to respond to the magnetic field makes them especially attractive for a number of in vivo applications including magnetofection. The magnetofection principle consists of the accumulation and retention of magnetic nanoparticles carrying nucleic acids in the area of magnetic field application. The method is highly promising as a clinically efficient tool for gene delivery in vivo. However, the data on in vivo magnetofection are often only descriptive or poorly studied, insufficiently systematized, and sometimes even contradictory. Therefore, the aim of the review was to systematize and analyze the data that influence the in vivo magnetofection processes after the systemic injection of magnetic nanostructures. The main emphasis is placed on the structure and coating of the nanomagnetic vectors. The present problems and future trends of the method development are also considered.
Collapse
|
2
|
Acharya R. The recent progresses in shRNA-nanoparticle conjugate as a therapeutic approach. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109928. [PMID: 31500065 DOI: 10.1016/j.msec.2019.109928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/16/2019] [Accepted: 06/26/2019] [Indexed: 01/06/2023]
Abstract
The recent trend of gene therapy is using short hairpin RNA conjugated with different types of nanoparticles. shRNAs have a significant role in gene silencing and have a promising role in treating several genetic and infectious diseases. There are several drawbacks of delivering bare shRNA in the blood as they are fragile in nature and readily degradable. To overcome this problem shRNAs can be conjugated with nanoparticles for a safe deliver. In this article several nanoparticles are mentioned which play significant role in delivery of this payload. On one hand they protect the shRNA from degradation on the other they help to penetrate this large molecule in to the cell. Some of these nanoconjugates are in clinical trials and have a promising role in treatment of diseases.
Collapse
Affiliation(s)
- Rituparna Acharya
- School of Bio-science and Engineering, Jadavpur University, 188, Raja S.C.Mullick Road, Kolkata 700 032, India.
| |
Collapse
|
3
|
Abstract
Although viral vectors comprise the majority of gene delivery vectors, their various safety, production, and other practical concerns have left a research gap to be addressed. The non-viral vector space encompasses a growing variety of physical and chemical methods capable of gene delivery into the nuclei of target cells. Major physical methods described in this chapter are microinjection, electroporation, and ballistic injection, magnetofection, sonoporation, optical transfection, and localized hyperthermia. Major chemical methods described in this chapter are lipofection, polyfection, gold complexation, and carbon-based methods. Combination approaches to improve transfection efficiency or reduce immunological response have shown great promise in expanding the scope of non-viral gene delivery.
Collapse
Affiliation(s)
- Chi Hong Sum
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | | - Shirley Wong
- University of Waterloo, School of Pharmacy, Waterloo, ON, Canada
| | | |
Collapse
|
4
|
Przybylski S, Gasch M, Marschner A, Ebert M, Ewe A, Helmig G, Hilger N, Fricke S, Rudzok S, Aigner A, Burkhardt J. Influence of nanoparticle-mediated transfection on proliferation of primary immune cells in vitro and in vivo. PLoS One 2017; 12:e0176517. [PMID: 28463994 PMCID: PMC5412997 DOI: 10.1371/journal.pone.0176517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 03/19/2017] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION One of the main obstacles in the widespread application of gene therapeutic approaches is the necessity for efficient and safe transfection methods. For the introduction of small oligonucleotide gene therapeutics into a target cell, nanoparticle-based methods have been shown to be highly effective and safe. While immune cells are a most interesting target for gene therapy, transfection might influence basic immune functions such as cytokine expression and proliferation, and thus positively or negatively affect therapeutic intervention. Therefore, we investigated the effects of nanoparticle-mediated transfection such as polyethylenimine (PEI) or magnetic beads on immune cell proliferation. METHODS Human adherent and non-adherent PBMCs were transfected by various methods (e.g. PEI, Lipofectamine® 2000, magnetofection) and stimulated. Proliferation was measured by lymphocyte transformation test (LTT). Cell cycle stages as well as expression of proliferation relevant genes were analyzed. Additionally, the impact of nanoparticles was investigated in vivo in a murine model of the severe systemic immune disease GvHD (graft versus host disease). RESULTS The proliferation of primary immune cells was influenced by nanoparticle-mediated transfection. In particular in the case of magnetic beads, proliferation inhibition coincided with short-term cell cycle arrest and reduced expression of genes relevant for immune cell proliferation. Notably, proliferation inhibition translated into beneficial effects in a murine GvHD model with animals treated with PEI-nanoparticles showing increased survival (pPEI = 0.002) most likely due to reduced inflammation. CONCLUSION This study shows for the first time that nanoparticles utilized for gene therapeutic transfection are able to alter proliferation of immune cells and that this effect depends on the type of nanoparticle. For magnetic beads, this was accompanied by temporary cell cycle arrest. Notably, in GvHD this nonspecific anti-proliferative effect might contribute to reduced inflammation and increased survival.
Collapse
Affiliation(s)
- Susanne Przybylski
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Michaela Gasch
- Translationszentrum für Regenerative Medizin (TRM), University of Leipzig, Leipzig, Germany
| | - Anne Marschner
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Marcus Ebert
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Alexander Ewe
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Gisa Helmig
- Institute for Clinical Immunology, University of Leipzig, Leipzig, Germany
| | - Nadja Hilger
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Stephan Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
| | - Susanne Rudzok
- Translationszentrum für Regenerative Medizin (TRM), University of Leipzig, Leipzig, Germany
| | - Achim Aigner
- Rudolf-Boehm-Institute for Pharmacology and Toxicology, Clinical Pharmacology, University of Leipzig, Leipzig, Germany
| | - Jana Burkhardt
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany
- * E-mail:
| |
Collapse
|
5
|
Fathi Karkan S, Mohammadhosseini M, Panahi Y, Milani M, Zarghami N, Akbarzadeh A, Abasi E, Hosseini A, Davaran S. Magnetic nanoparticles in cancer diagnosis and treatment: a review. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:1-5. [PMID: 27015806 DOI: 10.3109/21691401.2016.1153483] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diagnosis and treatment of lung cancer have been characterized with a variety of challenges. However, with the advancement in magnetic nanoparticle (MNP) technology, many challenges in the diagnosis and treatment of lung cancer are on the decline. The MNPs have led to many break-through in cancer therapy. This paper seeks to establish the role of MNPs in diagnosis and treatment of lung cancer. It proposes that the existing challenges in the diagnosis and treatment of lung cancer can be addressed through application of MNPs in the process.
Collapse
Affiliation(s)
- Sonia Fathi Karkan
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Nanotechnology Faculty of Advanced Medical Science , Medical University of Tabriz , Tabriz , Iran
| | | | - Yunes Panahi
- d Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Morteza Milani
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Nosratollah Zarghami
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Abolfazl Akbarzadeh
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Nanotechnology Faculty of Advanced Medical Science , Medical University of Tabriz , Tabriz , Iran.,d Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences , Tehran , Iran
| | - Elham Abasi
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran
| | - Arastoo Hosseini
- e Department of Medical Nanotechnology Faculty of Advanced Medical Science , Iran University of Medical Sicences , Tehran , Iran
| | - Soodabeh Davaran
- a Drug Applied Research Center, Tabriz University of Medical Sciences , Tabriz , Iran.,b Department of Medical Nanotechnology Faculty of Advanced Medical Science , Medical University of Tabriz , Tabriz , Iran
| |
Collapse
|
6
|
Gorjikhah F, Azizi Jalalian F, Salehi R, Panahi Y, Hasanzadeh A, Alizadeh E, Akbarzadeh A, Davaran S. Preparation and characterization of PLGA-β-CD polymeric nanoparticles containing methotrexate and evaluation of their effects on T47D cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2016; 45:432-440. [DOI: 10.3109/21691401.2016.1160915] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Fatemeh Gorjikhah
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Farid Azizi Jalalian
- Department of Medical Virology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Roya Salehi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Yunes Panahi
- Chemical Injuries Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Arash Hasanzadeh
- Laboratory of Biochemistry, Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abolfazl Akbarzadeh
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Nanotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
7
|
Mcam Silencing With RNA Interference Using Magnetofection has Antitumor Effect in Murine Melanoma. MOLECULAR THERAPY-NUCLEIC ACIDS 2014; 3:e205. [PMID: 25350580 PMCID: PMC4217080 DOI: 10.1038/mtna.2014.56] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/09/2014] [Indexed: 01/27/2023]
Abstract
The melanoma cell adhesion molecule (MCAM) is involved in melanoma development and its progression, including invasiveness, metastatic potential and angiogenesis. Therefore, MCAM represents a potential target for gene therapy of melanoma, whose expression could be hindered with posttranscriptional specific gene silencing with RNA interference technology. In this study, we constructed a plasmid DNA encoding short hairpin RNA against MCAM (pMCAM) to explore the antitumor and antiangiogenic effects. The experiments were performed in vitro on murine melanoma and endothelial cells, as well as in vivo on melanoma tumors in mice. The antiproliferative, antimigratory, antiangiogenic and antitumor effects were examined after gene therapy with pMCAM. Gene delivery was performed by magnetofection, and its efficacy compared to gene electrotransfer. Gene therapy with pMCAM has proved to be an effective approach in reducing the proliferation and migration of melanoma cells, as well as having antiangiogenic effect in endothelial cells and antitumor effect on melanoma tumors. Magnetofection as a developing nonviral gene delivery system was effective in the transfection of melanoma cells and tumors with pMCAM, but less efficient than gene electrotransfer in in vivo tumor gene therapy due to the lack of antiangiogenic effect after silencing Mcam by magnetofection.
Collapse
|
8
|
Development of Magnetic Nanoparticles for Cancer Gene Therapy: A Comprehensive Review. ACTA ACUST UNITED AC 2013. [DOI: 10.1155/2013/646284] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Since they were first proposed as nonviral transfection agents for their gene-carrying capacity, magnetic nanoparticles have been studied thoroughly, both in vitro and in vivo. Great effort has been made to manufacture biocompatible magnetic nanoparticles for use in the theragnosis of cancer and other diseases. Here we survey recent advances in the study of magnetic nanoparticles, as well as the polymers and other coating layers currently available for gene therapy, their synthesis, and bioconjugation processes. In addition, we review several gene therapy models based on magnetic nanoparticles.
Collapse
|