1
|
Liang Y, Lu H, Tang J, Ye X, Wei Y, Liao B, Liu L, Xu H. ActO, a positive cluster-situated regulator for actinomycins biosynthesis in Streptomyces antibioticus ZS. Gene 2025; 933:148962. [PMID: 39321948 DOI: 10.1016/j.gene.2024.148962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 09/27/2024]
Abstract
Actinomycins are a class of cyclic lipopeptide antibiotics produced by Streptomyces, which have rich biological activities and demonstrate great potential value. Among them, actinomycin D is currently the effective drug for some malignant tumor diseases. Although the chemical properties, biological activities and biosynthesis of actinomycins have been extensively studied, the regulation of their biosynthesis remains poorly understood. Streptomyces antibioticus ZS isolated from deep-sea corals is a producer of actinomycin D and actinomycin V. Here, we reported the characterization of a cluster-situated regulator ActO in actinomycins biosynthetic gene cluster (act cluster) of S. antibioticus ZS, which belongs to LmbU family. Deletion of actO completely blocked the synthesis of actinomycins. Overexpression of actO increased the yields of actinomycin D and actinomycin V by 4.4 fold and 2.6 fold, respectively. The result of RT-qPCR showed that ActO activates the transcription of all genes in act cluster. However, no specific binding of His6-ActO to the promoters of target genes was observed after electrophoretic mobility shift assay (EMSA). These results proved that ActO serves as a positive regulator involved in the biosynthesis of actinomycins, affecting the transcription of all genes related to the synthesis of intermediates, skeleton modification and extracellular transportation of final products. Moreover, we demonstrated that overexpression of actO is a novel strategy to increase the yields of actinomycins.
Collapse
Affiliation(s)
- Yingxin Liang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Huaqiang Lu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jie Tang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaofang Ye
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanshan Wei
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Boxuan Liao
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Hui Xu
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; Key Laboratory of Chinese Medicinal Resource from Lingnan, Ministry of Education and Research Center of Chinese Herbal Resource Science and Engineering, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
2
|
Tang H, Yang X, Wang W, Cui X, Wei W, Wu J, Sun P, Ye BC. Heterologous activation and metabolites identification of the pks7 gene cluster from Saccharopolyspora erythraea. Synth Syst Biotechnol 2024; 9:828-833. [PMID: 39099750 PMCID: PMC11295457 DOI: 10.1016/j.synbio.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/28/2024] [Accepted: 05/07/2024] [Indexed: 08/06/2024] Open
Abstract
The microbial genome remains a huge treasure trove for the discovery of diverse natural products. Saccharopolyspora erythraea NRRL23338, the industry producer of erythromycin, has a dozen of biosynthetic gene clusters whose encoding products are unidentified. Heterologous expression of one of the polyketide clusters pks7 in Streptomyces albus B4 chassis resulted in the characterization of its function responsible for synthesizing both 6-methylsalicyclic acid and 6-ethylsalicyclic acid. Meanwhile, two new 6-ethylsalicyclic acid ester derivatives were isolated as shunt metabolites. Their structures were identified by comprehensive analysis of MS and NMR experiments. Putative functions of genes within the pks7 BGC were also discussed.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingchi Yang
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Peng Sun
- School of Pharmacy, Naval Medical University, Shanghai, 200433, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
3
|
Wang S, Zeng X, Jiang Y, Wang W, Bai L, Lu Y, Zhang L, Tan GY. Unleashing the potential: type I CRISPR-Cas systems in actinomycetes for genome editing. Nat Prod Rep 2024; 41:1441-1455. [PMID: 38888887 DOI: 10.1039/d4np00010b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Covering: up to the end of 2023Type I CRISPR-Cas systems are widely distributed, found in over 40% of bacteria and 80% of archaea. Among genome-sequenced actinomycetes (particularly Streptomyces spp.), 45.54% possess type I CRISPR-Cas systems. In comparison to widely used CRISPR systems like Cas9 or Cas12a, these endogenous CRISPR-Cas systems have significant advantages, including better compatibility, wide distribution, and ease of operation (since no exogenous Cas gene delivery is needed). Furthermore, type I CRISPR-Cas systems can simultaneously edit and regulate genes by adjusting the crRNA spacer length. Meanwhile, most actinomycetes are recalcitrant to genetic manipulation, hindering the discovery and engineering of natural products (NPs). The endogenous type I CRISPR-Cas systems in actinomycetes may offer a promising alternative to overcome these barriers. This review summarizes the challenges and recent advances in CRISPR-based genome engineering technologies for actinomycetes. It also presents and discusses how to establish and develop genome editing tools based on type I CRISPR-Cas systems in actinomycetes, with the aim of their future application in gene editing and the discovery of NPs in actinomycetes.
Collapse
Affiliation(s)
- Shuliu Wang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Xiaoqian Zeng
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Yue Jiang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Weishan Wang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing 100101, China
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lixin Zhang
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| | - Gao-Yi Tan
- State Key Laboratory of Bioreactor Engineering (SKLBE), School of Biotechnology, East China University of Science and Technology (ECUST), Shanghai 200237, China.
| |
Collapse
|
4
|
Sang M, Yang Q, Guo J, Feng P, Ma W, Zhang W. Functional investigation of the SAM-dependent methyltransferase RdmB in anthracycline biosynthesis. Synth Syst Biotechnol 2024; 10:102-109. [PMID: 39308748 PMCID: PMC11415531 DOI: 10.1016/j.synbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/30/2024] [Accepted: 09/06/2024] [Indexed: 09/25/2024] Open
Abstract
A novel sub-class of S-adenosyl-l-methionine (SAM)-dependent methyltransferases catalyze atypical chemical transformations in the biosynthesis of anthracyclines. Exemplified by RdmB from Streptomyces purpurascens, it was found with 10-decarboxylative hydroxylation activity on anthracyclines. We herein investigated the catalytic activities of RdmB and discovered a previously unknown 4-O-methylation activity. The site-directed mutagenesis studies proved that the residue at position R307 and N260 are vital for the decarboxylative hydroxylation and 4-O-methylation, respectively, which define two distinct catalytic centers in RdmB. Furthermore, the multifunctionality of RdmB activity was found as cofactor-dependent and stepwise. Our findings expand the versatility and importance of methyltransferases and should aid studies to enrich the structural diversity and bioactivities of anthracyclines.
Collapse
Affiliation(s)
- Moli Sang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Qingyu Yang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Jiawei Guo
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Peiyuan Feng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Wencheng Ma
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
| | - Wei Zhang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, Shandong, 266237, China
| |
Collapse
|
5
|
Tang H, Wei W, Wu J, Cui X, Wang W, Qian T, Wo J, Ye BC. Engineering Streptomyces albus B4 for Enhanced Production of ( R)-Mellein: A High-Titer Heterologous Biosynthesis Approach. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:17499-17509. [PMID: 39045837 DOI: 10.1021/acs.jafc.4c02463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The natural compound (R)-(-)-mellein exhibits antiseptic and fungicidal activities. We investigated its biosynthesis using the polyketide synthase encoded by SACE_5532 (pks8) from Saccharopolyspora erythraea heterologously expressed in Streptomyces albus B4, a chassis chosen for its fast growth, genetic manipulability, and ample large short-chain acyl-CoA precursor supply. High-level heterologous (R)-(-)-mellein yield was achieved by pks8 overexpression and duplication. The precursor supply pathways were strengthened by overexpression of SACE_0028 (encoding acetyl-CoA carboxylase) and four genes involved in β-oxidation (fadD, fadE, fadB, and fadA). Cell growth inhibition by (R)-(-)-mellein production at high concentration was relieved by in situ adsorption using Amberlite XAD16 resin. The final strain, B4mel12, produced (R)-(-)-mellein at 6395.2 mg/L in shake-flask fermentation. Overall, this is the first report of heterologous (R)-(-)-mellein synthesis in microorganism with a high titer. (R)-(-)-mellein prototype in this study opens a possibility for the overproduction of valuable melleins in S. albus B4.
Collapse
Affiliation(s)
- Hao Tang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenping Wei
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wu
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Xingjun Cui
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Wenzong Wang
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Tao Qian
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Jing Wo
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| | - Bang-Ce Ye
- Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
- Laboratory of Biosystems and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Wang J, Wang K, Deng Z, Zhong Z, Sun G, Mei Q, Zhou F, Deng Z, Sun Y. Engineered cytosine base editor enabling broad-scope and high-fidelity gene editing in Streptomyces. Nat Commun 2024; 15:5687. [PMID: 38971862 PMCID: PMC11227558 DOI: 10.1038/s41467-024-49987-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024] Open
Abstract
Base editing (BE) faces protospacer adjacent motif (PAM) constraints and off-target effects in both eukaryotes and prokaryotes. For Streptomyces, renowned as one of the most prolific bacterial producers of antibiotics, the challenges are more pronounced due to its diverse genomic content and high GC content. Here, we develop a base editor named eSCBE3-NG-Hypa, tailored with both high efficiency and -fidelity for Streptomyces. Of note, eSCBE3-NG-Hypa recognizes NG PAM and exhibits high activity at challenging sites with high GC content or GC motifs, while displaying minimal off-target effects. To illustrate its practicability, we employ eSCBE3-NG-Hypa to achieve precise key amino acid conversion of the dehydratase (DH) domains within the modular polyketide synthase (PKS) responsible for the insecticide avermectins biosynthesis, achieving domains inactivation. The resulting DH-inactivated mutants, while ceasing avermectins production, produce a high yield of oligomycin, indicating competitive relationships among multiple biosynthetic gene clusters (BGCs) in Streptomyces avermitilis. Leveraging this insight, we use eSCBE3-NG-Hypa to introduce premature stop codons into competitor gene cluster of ave in an industrial S. avermitilis, with the mutant Δolm exhibiting the highest 4.45-fold increase in avermectin B1a compared to the control. This work provides a potent tool for modifying biosynthetic pathways and advancing metabolic engineering in Streptomyces.
Collapse
Affiliation(s)
- Jian Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Ke Wang
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhe Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zhiyu Zhong
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Guo Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qing Mei
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Zixin Deng
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuhui Sun
- Department of Hematology, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China.
- School of Pharmacy, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
7
|
Pai H, Liu Y, Zhang C, Su J, Lu W. Effects of the pleiotropic regulator DasR on lincomycin production in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2024; 108:373. [PMID: 38878095 PMCID: PMC11180011 DOI: 10.1007/s00253-024-13201-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/06/2024] [Accepted: 05/22/2024] [Indexed: 06/19/2024]
Abstract
The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.
Collapse
Affiliation(s)
- Huihui Pai
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Yiying Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
| | - Chuanbo Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China
| | - Jianyu Su
- Key Laboratory of the Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western, Yinchuan, 750021, China.
- College of Life Science, Ningxia University, Yinchuan, 750021, Ningxia, China.
| | - Wenyu Lu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, PR China.
- Frontiers Science Center for Synthetic Biology, Tianjin University, Tianjin, PR China.
- Key Laboratory of System Bioengineering (Tianjin University), Ministry of Education, Tianjin, PR China.
| |
Collapse
|
8
|
Ji CH, Je HW, Kim H, Kang HS. Promoter engineering of natural product biosynthetic gene clusters in actinomycetes: concepts and applications. Nat Prod Rep 2024; 41:672-699. [PMID: 38259139 DOI: 10.1039/d3np00049d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Covering 2011 to 2022Low titers of natural products in laboratory culture or fermentation conditions have been one of the challenging issues in natural products research. Many natural product biosynthetic gene clusters (BGCs) are also transcriptionally silent in laboratory culture conditions, making it challenging to characterize the structures and activities of their metabolites. Promoter engineering offers a potential solution to this problem by providing tools for transcriptional activation or optimization of biosynthetic genes. In this review, we summarize the 10 years of progress in promoter engineering approaches in natural products research focusing on the most metabolically talented group of bacteria actinomycetes.
Collapse
Affiliation(s)
- Chang-Hun Ji
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hyun-Woo Je
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hiyoung Kim
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| | - Hahk-Soo Kang
- Department of Biomedical Science and Engineering, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
9
|
Hua HM, Xu JF, Huang XS, Zimin AA, Wang WF, Lu YH. Low-Toxicity and High-Efficiency Streptomyces Genome Editing Tool Based on the Miniature Type V-F CRISPR/Cas Nuclease AsCas12f1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5358-5367. [PMID: 38427033 DOI: 10.1021/acs.jafc.3c09101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Genome editing tools based on SpCas9 and FnCpf1 have facilitated strain improvements for natural product production and novel drug discovery in Streptomyces. However, due to high toxicity, their editing requires high DNA transformation efficiency, which is unavailable in most streptomycetes. The transformation efficiency of an all-in-one editing tool based on miniature Cas nuclease AsCas12f1 was significantly higher than those of SpCas9 and FnCpf1 in tested streptomycetes, which is due to its small size and weak DNA cleavage activity. Using this tool, in Streptomyces coelicolor, we achieved 100% efficiency for single gene or gene cluster deletion and 46.7 and 40% efficiency for simultaneous deletion of two genes and two gene clusters, respectively. AsCas12f1 was successfully extended to Streptomyces hygroscopicus SIPI-054 for efficient genome editing, in which SpCas9/FnCpf1 does not work well. Collectively, this work offers a low-toxicity, high-efficiency genome editing tool for streptomycetes, particularly those with low DNA transformation efficiency.
Collapse
Affiliation(s)
- Hui-Min Hua
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Jia-Feng Xu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Xue-Shuang Huang
- Hunan Provincial Key Laboratory for Synthetic Biology of Traditional Chinese Medicine, Hunan University of Medicine, Huaihua 418000, China
| | - Andrei A Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russia
| | - Wen-Fang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
10
|
Lee Y, Hwang S, Kim W, Kim JH, Palsson BO, Cho BK. CRISPR-aided genome engineering for secondary metabolite biosynthesis in Streptomyces. J Ind Microbiol Biotechnol 2024; 51:kuae009. [PMID: 38439699 PMCID: PMC10949845 DOI: 10.1093/jimb/kuae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/02/2024] [Indexed: 03/06/2024]
Abstract
The demand for discovering novel microbial secondary metabolites is growing to address the limitations in bioactivities such as antibacterial, antifungal, anticancer, anthelmintic, and immunosuppressive functions. Among microbes, the genus Streptomyces holds particular significance for secondary metabolite discovery. Each Streptomyces species typically encodes approximately 30 secondary metabolite biosynthetic gene clusters (smBGCs) within its genome, which are mostly uncharacterized in terms of their products and bioactivities. The development of next-generation sequencing has enabled the identification of a large number of potent smBGCs for novel secondary metabolites that are imbalanced in number compared with discovered secondary metabolites. The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated (Cas) system has revolutionized the translation of enormous genomic potential into the discovery of secondary metabolites as the most efficient genetic engineering tool for Streptomyces. In this review, the current status of CRISPR/Cas applications in Streptomyces is summarized, with particular focus on the identification of secondary metabolite biosynthesis gene clusters and their potential applications.This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production. ONE-SENTENCE SUMMARY This review summarizes the broad range of CRISPR/Cas applications in Streptomyces for natural product discovery and production.
Collapse
Affiliation(s)
- Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Graduate school of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
11
|
Fluegel LL, Deng MR, Su P, Kalkreuter E, Yang D, Rudolf JD, Dong LB, Shen B. Development of platensimycin, platencin, and platensilin overproducers by biosynthetic pathway engineering and fermentation medium optimization. J Ind Microbiol Biotechnol 2024; 51:kuae003. [PMID: 38262768 PMCID: PMC10847714 DOI: 10.1093/jimb/kuae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 01/25/2024]
Abstract
The platensimycin (PTM), platencin (PTN), and platensilin (PTL) family of natural products continues to inspire the discovery of new chemistry, enzymology, and medicine. Engineered production of this emerging family of natural products, however, remains laborious due to the lack of practical systems to manipulate their biosynthesis in the native-producing Streptomyces platensis species. Here we report solving this technology gap by implementing a CRISPR-Cas9 system in S. platensis CB00739 to develop an expedient method to manipulate the PTM, PTN, and PTL biosynthetic machinery in vivo. We showcase the utility of this technology by constructing designer recombinant strains S. platensis SB12051, SB12052, and SB12053, which, upon fermentation in the optimized PTM-MS medium, produced PTM, PTN, and PTL with the highest titers at 836 mg L-1, 791 mg L-1, and 40 mg L-1, respectively. Comparative analysis of these resultant recombinant strains also revealed distinct chemistries, catalyzed by PtmT1 and PtmT3, two diterpene synthases that nature has evolved for PTM, PTN, and PTL biosynthesis. The ΔptmR1/ΔptmT1/ΔptmT3 triple mutant strain S. platensis SB12054 could be envisaged as a platform strain to engineer diterpenoid biosynthesis by introducing varying ent-copalyl diphosphate-acting diterpene synthases, taking advantage of its clean metabolite background, ability to support diterpene biosynthesis in high titers, and the promiscuous tailoring biosynthetic machinery. ONE-SENTENCE SUMMARY Implementation of a CRISPR-Cas9 system in Streptomyces platensis CB00739 enabled the construction of a suite of designer recombinant strains for the overproduction of platensimycin, platencin, and platensilin, discovery of new diterpene synthase chemistries, and development of platform strains for future diterpenoid biosynthesis engineering.
Collapse
Affiliation(s)
- Lucas L Fluegel
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
| | - Ming-Rong Deng
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ping Su
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Edward Kalkreuter
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Dong Yang
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Jeffrey D Rudolf
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Liao-Bin Dong
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| | - Ben Shen
- Department of Chemistry, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Skaggs Graduate School of Chemical and Biological Sciences, Scripps Research, Jupiter, FL 33458, USA
- Natural Products Discovery Center, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, University of Florida, Jupiter, FL 33458, USA
| |
Collapse
|
12
|
Mao Y, Zhang X, Zhou T, Hou B, Ye J, Wu H, Wang R, Zhang H. Three new LmbU targets outside lmb cluster inhibit lincomycin biosynthesis in Streptomyces lincolnensis. Microb Cell Fact 2024; 23:3. [PMID: 38172890 PMCID: PMC10763038 DOI: 10.1186/s12934-023-02284-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Antibiotics biosynthesis is usually regulated by the cluster-situated regulatory gene(s) (CSRG(s)), which directly regulate the genes within the corresponding biosynthetic gene cluster (BGC). Previously, we have demonstrated that LmbU functions as a cluster-situated regulator (CSR) of lincomycin. And it has been found that LmbU regulates twenty non-lmb genes through comparative transcriptomic analysis. However, the regulatory mode of CSRs' targets outside the BGC remains unknown. RESULTS We screened the targets of LmbU in the whole genome of Streptomyces lincolnensis and found fourteen candidate targets, among which, eight targets can bind to LmbU by electrophoretic mobility shift assays (EMSA). Reporter assays in vivo revealed that LmbU repressed the transcription of SLINC_0469 and SLINC_1037 while activating the transcription of SLINC_8097. In addition, disruptions of SLINC_0469, SLINC_1037, and SLINC_8097 promoted the production of lincomycin, and qRT-PCR showed that SLINC_0469, SLINC_1037, and SLINC_8097 inhibited transcription of the lmb genes, indicating that all the three regulators can negatively regulate lincomycin biosynthesis. CONCLUSIONS LmbU can directly regulate genes outside the lmb cluster, and these genes can affect both lincomycin biosynthesis and the transcription of lmb genes. Our results first erected the cascade regulatory circuit of LmbU and regulators outside lmb cluster, which provides the theoretical basis for the functional research of LmbU family proteins.
Collapse
Affiliation(s)
- Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xianyan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
13
|
Lin CY, Ru Y, Jin Y, Lin Q, Zhao GR. PAS domain containing regulator SLCG_7083 involved in morphological development and glucose utilization in Streptomyces lincolnensis. Microb Cell Fact 2023; 22:257. [PMID: 38093313 PMCID: PMC10717218 DOI: 10.1186/s12934-023-02263-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 11/30/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Streptomyces lincolnensis is well known for producing the clinically important antimicrobial agent lincomycin. The synthetic and regulatory mechanisms on lincomycin biosynthesis have been deeply explored in recent years. However, the regulation involved in primary metabolism have not been fully addressed. RESULTS SLCG_7083 protein contains a Per-Arnt-Sim (PAS) domain at the N-terminus, whose homologous proteins are highly distributed in Streptomyces. The inactivation of the SLCG_7083 gene indicated that SLCG_7083 promotes glucose utilization, slows mycelial growth and affects sporulation in S. lincolnensis. Comparative transcriptomic analysis further revealed that SLCG_7083 represses eight genes involved in sporulation, cell division and lipid metabolism, and activates two genes involved in carbon metabolism. CONCLUSIONS SLCG_7083 is a PAS domain-containing regulator on morphological development and glucose utilization in S. lincolnensis. Our results first revealed the regulatory function of SLCG_7083, and shed new light on the transcriptional effects of SLCG_7083-like family proteins in Streptomyces.
Collapse
Affiliation(s)
- Chun-Yan Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Yixian Ru
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Yanchao Jin
- College of Environmental and Resource Sciences, Fujian Normal University, Fuzhou, Fujian, 350117, China
| | - Qi Lin
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, China.
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China.
- Georgia Tech Shenzhen Institute, Tianjin University, Dashi Road 1, Nanshan District, Shenzhen, 518055, China.
| |
Collapse
|
14
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [DOI: doi.org/10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/09/2023]
|
15
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:7501-7514. [PMID: 37768348 DOI: 10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023]
Abstract
The Actinomycetes Streptomyces lincolnensis is the producer of lincosamide-type antibiotic lincomycin, a widely utilized drug against Gram-positive bacteria and protozoans. In this work, through gene knockout, complementation, and overexpression experiments, we identified LcbR1 (SLINC_1595), a GntR family transcriptional regulator, as a repressor for lincomycin biosynthesis. Deletion of lcbR1 boosted lincomycin production by 3.8-fold, without obvious change in morphological development or cellular growth. The homologues of LcbR1 are widely distributed in Streptomyces. Heterologous expression of SCO1410 from Streptomyces coelicolor resulted in the reduction of lincomycin yield, implying that the function of LcbR1 is conserved across different species. Alignment among sequences upstream of lcbR1 and their homologues revealed a conserved 16-bp palindrome (-TTGAACGATCCTTCAA-), which was further proven to be the recognition motif of LcbR1 by electrophoretic mobility shift assays (EMSAs). Via this motif, LcbR1 suppressed the transcription of lcbR1 and SLINC_1596 sharing the same bi-directional promoter. SLINC_1596, one important target of LcbR1, exerted a positive effect on lincomycin production. As detected by quantitative real-time PCR (qRT-PCR) analyses, the expressions of all selected structural (lmbA, lmbC, lmbJ, lmbV, and lmbW), resistance (lmrA and lmrB) and regulatory genes (lmrC and lmbU) from lincomycin biosynthesis cluster were upregulated in deletion strain ΔlcbR1 at 48 h of fermentation, while the mRNA amounts of bldD, glnR, ramR, SLCG_Lrp, and SLCG_2919, previously characterized as the regulators on lincomycin production, were decreased in strain ΔlcbR1, although the regulatory effects of LcbR1 on the above differential expression genes seemed to be indirect. Besides, indicated by EMSAs, the expression of lcbR1 might be regulated by GlnR, SLCG_Lrp, and SLCG_2919, which shows the complexity of the regulatory network on lincomycin biosynthesis. KEY POINTS: • LcbR1 is a novel and conservative GntR family regulator regulating lincomycin production. • LcbR1 modulates the expressions of lcbR1 and SLINC_1596 through a palindromic motif. • GlnR, SLCG_Lrp, and SLCG_2919 can control the expression of lcbR1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaqi Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Lei Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
16
|
Lu Y, Li Y, Fan J, Li X, Sun H, Wang L, Han X, Zhu Y, Zhang T, Shi Y, Xie Y, Hong B. Expanding structural diversity of 5'-aminouridine moiety of sansanmycin via mutational biosynthesis. Front Bioeng Biotechnol 2023; 11:1278601. [PMID: 38026887 PMCID: PMC10643210 DOI: 10.3389/fbioe.2023.1278601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sansanmycins represent a family of uridyl peptide antibiotics with antimicrobial activity specifically against Mycobacterium tuberculosis (including drug-resistant M. tuberculosis) and Pseudomonas aeruginosa. They target translocase I (MraY) to inhibit bacterial cell wall assembly. Given the unique mechanism of action, sansanmycin has emerged as a potential lead compound for developing new anti-tuberculosis drugs, while the 5'-aminouridine moiety plays a crucial role in the pharmacophore of sansanmycin. For expanding the structural diversity of the 5'-aminouridine moiety of sansanmycin through biosynthetic methods, we firstly demonstrated that SsaM and SsaK are responsible for the biosynthesis of the 5'-aminouridine moiety of sansanmycin in vivo. Using the ssaK deletion mutant (SS/KKO), we efficiently obtained a series of new analogues with modified 5'-aminouridine moieties through mutational biosynthesis. Based on molecular networking analysis of MS/MS, twenty-two new analogues (SS-KK-1 to -13 and SS-KK-A to -I) were identified. Among them, four new analogues (SS-KK-1 to -3 and SS-KK-C) were purified and bioassayed. SS-KK-2 showed better antibacterial activity against E. coli ΔtolC than the parent compound sansanmycin A. SS-KK-3 showed the same anti-TB activity as sansanmycin A against M. tuberculosis H37Rv as well as clinically isolated, drug-sensitive and multidrug-resistant M. tuberculosis strains. Furthermore, SS-KK-3 exhibited significantly improved structural stability compared to sansanmycin A. The results suggested that mutasynthesis is an effective and practical strategy for expanding the structural diversity of 5'-aminouridine moiety in sansanmycin.
Collapse
Affiliation(s)
- Yuan Lu
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yihong Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Fan
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingxing Li
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongmin Sun
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lifei Wang
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuting Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou, China
- University of Chinese Academy of Sciences (UCAS), Beijing, China
| | - Yuanyuan Shi
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunying Xie
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Hong
- CAMS Key Laboratory of Synthetic Biology for Drug Innovation and NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
17
|
Ma JX, He WY, Hua HM, Zhu Q, Zheng GS, Zimin AA, Wang WF, Lu YH. Development of a CRISPR/Cas9 D10A Nickase (nCas9)-Mediated Genome Editing Tool in Streptomyces. ACS Synth Biol 2023; 12:3114-3123. [PMID: 37722085 DOI: 10.1021/acssynbio.3c00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Streptomycetes have a strong ability to produce a vast array of bioactive natural products (NPs) widely used in agriculture and veterinary/human medicine. The recently developed CRISPR/Cas9-based genome editing tools have greatly facilitated strain improvement for target NP overproduction as well as novel NP discovery in Streptomyces. However, CRISPR/Cas9 shows high toxicity to the host, limiting its application in many Streptomyces strains with a low DNA transformation efficiency. In this study, we developed a low-toxicity CRISPR/Cas9D10A nickase (nCas9)-based genome editing tool in the model strain Streptomyces coelicolor M145. We showed that in the presence of both targeting sgRNA and Cas proteins, utilization of nCas9 instead of Cas9 significantly reduced the toxicity to the host and greatly enhanced cell survival. Using this tool, we achieved deletion of single genes and gene clusters with efficiencies of 87-100 and 63-87%, and simultaneous deletion of two genes or gene clusters with efficiencies of 47 and 43%, respectively. The editing efficiency of nCas9 is comparable to that of the Cas9-mediated editing tool. Finally, the nCas9-based editing tool was successfully applied for genome editing in the industrial rapamycin-producing strain Streptomyces rapamycinicus, in which CRISPR/Cas9 cannot work well. We achieved the deletion of three tested genes with an efficiency of 27.2-30%. Collectively, the CRISPR/nCas9-based editing tool offers a convenient and efficient genetic modification system for the engineering of streptomycetes, particularly those with low DNA transformation efficiency.
Collapse
Affiliation(s)
- Jia-Xiang Ma
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Wen-Yan He
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Hui-Min Hua
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Qian Zhu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Guo-Song Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Andrei A Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino 142290, Russia
| | - Wen-Fang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
- Shanghai Collaborative Innovation Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| |
Collapse
|
18
|
Gu B, Kim DG, Kim DK, Kim M, Kim HU, Oh MK. Heterologous overproduction of oviedomycin by refactoring biosynthetic gene cluster and metabolic engineering of host strain Streptomyces coelicolor. Microb Cell Fact 2023; 22:212. [PMID: 37838667 PMCID: PMC10576301 DOI: 10.1186/s12934-023-02218-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Oviedomycin is one among several polyketides known for their potential as anticancer agents. The biosynthetic gene cluster (BGC) for oviedomycin is primarily found in Streptomyces antibioticus. However, because this BGC is usually inactive under normal laboratory conditions, it is necessary to employ systematic metabolic engineering methods, such as heterologous expression, refactoring of BGCs, and optimization of precursor biosynthesis, to allow efficient production of these compounds. RESULTS Oviedomycin BGC was captured from the genome of Streptomyces antibioticus by a newly constructed plasmid, pCBA, and conjugated into the heterologous strain, S. coelicolor M1152. To increase the production of oviedomycin, clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system was utilized in an in vitro setting to refactor the native promoters within the ovm BGC. The target promoters of refactoring were selected based on examination of factors such as transcription levels and metabolite profiling. Furthermore, genome-scale metabolic simulation was applied to find overexpression targets that could enhance the biosynthesis of precursors or cofactors related to oviedomycin production. The combined approach led to a significant increase in oviedomycin production, reaching up to 670 mg/L, which is the highest titer reported to date. This demonstrates the potential of the approach undertaken in this study. CONCLUSIONS The metabolic engineering approach used in this study led to the successful production of a valuable polyketide, oviedomycin, via BGC cloning, promoter refactoring, and gene manipulation of host metabolism aided by genome-scale metabolic simulation. This approach can be also useful for the efficient production of other secondary molecules encoded by 'silent' BGCs.
Collapse
Affiliation(s)
- Boncheol Gu
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Duck Gyun Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Do-Kyung Kim
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Minji Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Li JY, Liang JY, Liu ZY, Yi YZ, Zhao J, Huang ZY, Chen J. Multicopy Chromosome Integration and Deletion of Negative Global Regulators Significantly Increased the Heterologous Production of Aborycin in Streptomyces coelicolor. Mar Drugs 2023; 21:534. [PMID: 37888469 PMCID: PMC10608281 DOI: 10.3390/md21100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Aborycin is a type I lasso peptide with a stable interlocked structure, offering a favorable framework for drug development. The aborycin biosynthetic gene cluster gul from marine sponge-associated Streptomyces sp. HNS054 was cloned and integrated into the chromosome of S. coelicolor hosts with different copies. The three-copy gul-integration strain S. coelicolor M1346::3gul showed superior production compared to the one-copy or two-copy gul-integration strains, and the total titer reached approximately 10.4 mg/L, i.e., 2.1 times that of the native strain. Then, five regulatory genes, phoU (SCO4228), wblA (SCO3579), SCO1712, orrA (SCO3008) and gntR (SCO1678), which reportedly have negative effects on secondary metabolism, were further knocked out from the M1346::3gul genome by CRISPR/Cas9 technology. While the ΔSCO1712 mutant showed a significant decrease (4.6 mg/L) and the ΔphoU mutant showed no significant improvement (12.1 mg/L) in aborycin production, the ΔwblA, ΔorrA and ΔgntR mutations significantly improved the aborycin titers to approximately 23.6 mg/L, 56.3 mg/L and 48.2 mg/L, respectively, which were among the highest heterologous yields for lasso peptides in both Escherichia coli systems and Streptomyces systems. Thus, this study provides important clues for future studies on enhancing antibiotic production in Streptomyces systems.
Collapse
Affiliation(s)
- Jia-Yi Li
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Jun-Yu Liang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Zhao-Yuan Liu
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Yue-Zhao Yi
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
| | - Jing Zhao
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| | - Zhi-Yong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, Tianjin 300308, China
| | - Jun Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (J.-Y.L.); (J.-Y.L.); (Z.-Y.L.); (Y.-Z.Y.); (J.Z.)
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
- Xiamen City Key Laboratory of Urban Sea Ecological Conservation and Restoration, Xiamen University, Xiamen 361102, China
| |
Collapse
|
20
|
Zou J, Mao Y, Hou B, Kang Y, Wang R, Wu H, Ye J, Zhang H. DeoR regulates lincomycin production in Streptomyces lincolnensis. World J Microbiol Biotechnol 2023; 39:332. [PMID: 37801155 DOI: 10.1007/s11274-023-03788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Regulators belonging to the DeoR family are widely distributed among the bacteria. Few studies have reported that DeoR family proteins regulate secondary metabolism of Streptomyces. This study explored the function of DeoR (SLINC_8027) in Streptomyces lincolnensis. Deletion of deoR in NRRL 2936 led to an increase in cell growth. The lincomycin production of the deoR deleted strain ΔdeoR was 3.4-fold higher than that of the wild strain. This trait can be recovered to a certain extent in the deoR complemented strain ΔdeoR::pdeoR. According to qRT-PCR analysis, DeoR inhibited the transcription of all detectable genes in the lincomycin biosynthesis cluster and repressed the expression of glnR, bldD, and SLCG_Lrp, which encode regulators outside the cluster. DeoR also inhibited the transcription of itself, as revealed by the XylE reporter. Furthermore, we demonstrated that DeoR bound directly to the promoter region of deoR, lmbA, lmbC-D, lmbJ-K, lmrA, lmrC, glnR, and SLCG_Lrp, by recognizing the 5'-CGATCR-3' motif. This study found that versatile regulatory factor DeoR negatively regulates lincomycin biosynthesis and cellular growth in S. lincolnensis, which expanded the regulatory network of lincomycin biosynthesis.
Collapse
Affiliation(s)
- Jingyun Zou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yue Mao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yajing Kang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
- Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
21
|
Jiang YX, Zheng GF, Chen LC, Yang N, Xin XJ, Ma JY, Ju JH, Wu H, Zhao M, Wang R, An FL. Efficient ilamycins production utilizing Enteromorpha prolifera by metabolically engineered Streptomyces atratus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:151. [DOI: doi.org/10.1186/s13068-023-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/09/2023]
Abstract
AbstractWith the invasion of green tides and the increase of urban green areas worldwide, multimillion tons of Enteromorpha need to be reutilized. In this study, Enteromorpha prolifera powder is considered a promising biomass resource for the production of commercial chemical products production. Ilamycins, novel cyclic heptapeptides with significant anti-TB activities, are isolated from Streptomyces atratus SCSIO ZH16, a deep-sea-derived strain. Using EP powder as a nitrogen source, the production of ilamycins reached 709.97 mg/L through optimization of the nitrogen source using the engineered strain S. atratus SCSIO ZH16 ΔR. After mutant strain constructions and tests, strain S. atratus SCSIO ZH16 ΔR::bldD EP powder achieved a higher production titer of ilamycins. Furthermore, the production titer of ilamycins and ilamycin E reached 1561.77 mg/L and 745.44 mg/L, respectively, in a 5 L bioreactor. This study suggests that E. prolifera is a promising and eco-friendly nitrogen source for the production of ilamycins.
Collapse
|
22
|
Jiang YX, Zheng GF, Chen LC, Yang N, Xin XJ, Ma JY, Ju JH, Wu H, Zhao M, Wang R, An FL. Efficient ilamycins production utilizing Enteromorpha prolifera by metabolically engineered Streptomyces atratus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:151. [PMID: 37798770 PMCID: PMC10552367 DOI: 10.1186/s13068-023-02398-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/18/2023] [Indexed: 10/07/2023]
Abstract
With the invasion of green tides and the increase of urban green areas worldwide, multimillion tons of Enteromorpha need to be reutilized. In this study, Enteromorpha prolifera powder is considered a promising biomass resource for the production of commercial chemical products production. Ilamycins, novel cyclic heptapeptides with significant anti-TB activities, are isolated from Streptomyces atratus SCSIO ZH16, a deep-sea-derived strain. Using EP powder as a nitrogen source, the production of ilamycins reached 709.97 mg/L through optimization of the nitrogen source using the engineered strain S. atratus SCSIO ZH16 ΔR. After mutant strain constructions and tests, strain S. atratus SCSIO ZH16 ΔR::bldD EP powder achieved a higher production titer of ilamycins. Furthermore, the production titer of ilamycins and ilamycin E reached 1561.77 mg/L and 745.44 mg/L, respectively, in a 5 L bioreactor. This study suggests that E. prolifera is a promising and eco-friendly nitrogen source for the production of ilamycins.
Collapse
Affiliation(s)
- Yu-Xi Jiang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Gao-Fan Zheng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Long-Chao Chen
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Na Yang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xiu-Juan Xin
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Jun-Ying Ma
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 528225, China
| | - Jian-Hua Ju
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 528225, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ming Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biology and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Ruida Wang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Department of Applied Biology, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Fa-Liang An
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Marine Biomedical Science and Technology Innovation Platform of Lin-Gang Special Area, No.4, Lane 218, Haiji Sixth Road, Shanghai, 201306, China.
| |
Collapse
|
23
|
Wang R, Zhao J, Chen L, Ye J, Wu H, Zhang H. LcbR1, a newly identified GntR family regulator, represses lincomycin biosynthesis in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023. [DOI: doi.org/10.1007/s00253-023-12756-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 10/09/2023]
|
24
|
Junaid M, Thirapanmethee K, Khuntayaporn P, Chomnawang MT. CRISPR-Based Gene Editing in Acinetobacter baumannii to Combat Antimicrobial Resistance. Pharmaceuticals (Basel) 2023; 16:920. [PMID: 37513832 PMCID: PMC10384873 DOI: 10.3390/ph16070920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance (AMR) poses a significant threat to the health, social, environment, and economic sectors on a global scale and requires serious attention to addressing this issue. Acinetobacter baumannii was given top priority among infectious bacteria because of its extensive resistance to nearly all antibiotic classes and treatment options. Carbapenem-resistant A. baumannii is classified as one of the critical-priority pathogens on the World Health Organization (WHO) priority list of antibiotic-resistant bacteria for effective drug development. Although available genetic manipulation approaches are successful in A. baumannii laboratory strains, they are limited when employed on newly acquired clinical strains since such strains have higher levels of AMR than those used to select them for genetic manipulation. Recently, the CRISPR-Cas (Clustered regularly interspaced short palindromic repeats/CRISPR-associated protein) system has emerged as one of the most effective, efficient, and precise methods of genome editing and offers target-specific gene editing of AMR genes in a specific bacterial strain. CRISPR-based genome editing has been successfully applied in various bacterial strains to combat AMR; however, this strategy has not yet been extensively explored in A. baumannii. This review provides detailed insight into the progress, current scenario, and future potential of CRISPR-Cas usage for AMR-related gene manipulation in A. baumannii.
Collapse
Affiliation(s)
- Muhammad Junaid
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Krit Thirapanmethee
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Piyatip Khuntayaporn
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| | - Mullika Traidej Chomnawang
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
- Antimicrobial Resistance Interdisciplinary Group (AmRIG), Faculty of Pharmacy, Mahidol University, Bangkok 10400, Thailand
| |
Collapse
|
25
|
Wang R, Zhou T, Kong F, Hou B, Ye J, Wu H, Zhang H. AflQ1-Q2 represses lincomycin biosynthesis via multiple cascades in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:2933-2945. [DOI: doi.org/10.1007/s00253-023-12429-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 10/09/2023]
|
26
|
Tang SK, Zhi XY, Zhang Y, Makarova KS, Liu BB, Zheng GS, Zhang ZP, Zheng HJ, Wolf YI, Zhao YR, Jiang SH, Chen XM, Li EY, Zhang T, Chen PR, Feng YZ, Xiang MX, Lin ZQ, Shi JH, Chang C, Zhang X, Li R, Lou K, Wang Y, Chang L, Yin M, Yang LL, Gao HY, Zhang ZK, Tao TS, Guan TW, He FC, Lu YH, Cui HL, Koonin EV, Zhao GP, Xu P. Cellular differentiation into hyphae and spores in halophilic archaea. Nat Commun 2023; 14:1827. [PMID: 37005419 PMCID: PMC10067837 DOI: 10.1038/s41467-023-37389-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 03/14/2023] [Indexed: 04/04/2023] Open
Abstract
Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.
Collapse
Affiliation(s)
- Shu-Kun Tang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China.
| | - Xiao-Yang Zhi
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Bing-Bing Liu
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Guo-Song Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhen-Peng Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Hua-Jun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai and Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai, 201203, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA
| | - Yu-Rong Zhao
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Song-Hao Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Xi-Ming Chen
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - En-Yuan Li
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Tao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Pei-Ru Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Yu-Zhou Feng
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ming-Xian Xiang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Zhi-Qian Lin
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Jia-Hui Shi
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China
| | - Cheng Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Xue Zhang
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, College of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Rui Li
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Kai Lou
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Yun Wang
- Xinjiang Institute of Microbiology, Xinjiang Academy of Agricultural Science, Urumqi, 830091, China
| | - Lei Chang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Min Yin
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Ling-Ling Yang
- Yunnan Institute of Microbiology, Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, China
| | - Hui-Ying Gao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Zhong-Kai Zhang
- Biotechnology and Genetic Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Tian-Shen Tao
- Department of Microbiology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China
| | - Tong-Wei Guan
- College of Food and Biological Engineering, Xihua University, Chengdu, 610039, China
| | - Fu-Chu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China
| | - Yin-Hua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Heng-Lin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| | - Guo-Ping Zhao
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, 200032, China.
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug,Research Unit of Proteomics Driven Cancer Precision Medicine, Chinese Academy of Medical Sciences, Institute of Lifeomics, Beijing, 102206, China.
- Hebei Province Key Lab of Research and Application on Microbial Diversity, College of Life Sciences, Hebei University, Hebei, 071002, China.
- Department of Microbiology, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430072, China.
- Guizhou University, School of Medicine, Guiyang, 550025, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
27
|
Li Q, Sun M, Lv L, Zuo Y, Zhang S, Zhang Y, Yang S. Improving the Editing Efficiency of CRISPR-Cas9 by Reducing the Generation of Escapers Based on the Surviving Mechanism. ACS Synth Biol 2023; 12:672-680. [PMID: 36867054 DOI: 10.1021/acssynbio.2c00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
Due to the high specificity in targeting DNA and highly convenient programmability, CRISPR-Cas-based antimicrobials applied for eliminating specific strains such as antibiotic-resistant bacteria in the microbiome were gradually developed. However, the generation of escapers makes the elimination efficiency far lower than the acceptable rate (10-8) recommended by the National Institutes of Health. Here, a systematic study was carried out providing insight into the escaping mechanisms in Escherichia coli, and strategies for reducing the escapers were devised accordingly. We first showed an escape rate of 10-5-10-3 in E. coli MG1655 under the editing of pEcCas/pEcgRNA established previously. Detailed analysis of the escapers obtained at ligA site in E. coli MG1655 uncovered that the disruption of cas9 was the main cause of the generation of survivors, notably the frequent insertion of IS5. Hence, the sgRNA was next designed to target the "perpetrator" IS5, and subsequently the killing efficiency was improved 4-fold. Additionally, the escape rate in IS-free E. coli MDS42 was also tested at the ligA site, ∼10-fold decrease compared with MG1655, but the disruption of cas9 was still observed in all survivors manifested in the form of frameshifts or point mutations. Thus, we optimized the tool itself by increasing the copy number of cas9 to retain some cas9 that still has the correct DNA sequence. Fortunately, the escape rates dropped below 10-8 at 9 of the 16 tested genes. Furthermore, the λ-Red recombination system was added to generate the pEcCas-2.0, and a 100% gene deletion efficiency was achieved at genes cadA, maeB, and gntT in MG1655, whereas those genes were edited with low efficiency previously. Last, the application of pEcCas-2.0 was then expanded to the E. coli B strain BL21(DE3) and W strain ATCC9637. This study reveals the mechanism of E. coli surviving Cas9-mediated death, and a highly efficient editing tool is established based on the mechanism, which will accelerate the further application of CRISPR-Cas.
Collapse
Affiliation(s)
- Qi Li
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Mingjun Sun
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Lu Lv
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Yong Zuo
- College of Life Sciences, Sichuan Normal University, Chengdu 610101, China
| | - Suyi Zhang
- Luzhou Laojiao Co., Ltd, Luzhou 646000, Sichuan China
| | - Ying Zhang
- BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), Biodiscovery Institute, School of Life Sciences, The University of Nottingham, Nottingham NG7 2RD, United Kingdom
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou 313000, China
| |
Collapse
|
28
|
Wang R, Zhou T, Kong F, Hou B, Ye J, Wu H, Zhang H. AflQ1-Q2 represses lincomycin biosynthesis via multiple cascades in Streptomyces lincolnensis. Appl Microbiol Biotechnol 2023; 107:2933-2945. [PMID: 36930277 DOI: 10.1007/s00253-023-12429-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 03/18/2023]
Abstract
Lincomycin is a broad-spectrum antibiotic and particularly effective against Gram-positive pathogens. Albeit familiar with the biosynthetic mechanism of lincomycin, we know less about its regulation, limiting the rational design for strain improvement. We therefore analyzed two-component systems (TCSs) in Streptomyces lincolnensis, and selected eight TCS gene(s) to construct their deletion mutants utilizing CRISPR/Cas9 system. Among them, lincomycin yield increased in two strains (Δ3900-3901 and Δ5290-5291) while decreased in other four strains (Δ3415-3416, Δ4153-4154, Δ4985, and Δ7949). Considering the conspicuous effect, SLINC_5291-5290 (AflQ1-Q2) was subsequently studied in detail. Its repression on lincomycin biosynthesis was further proved by gene complementation and overexpression. By binding to a 16-bp palindromic motif, the response regulator AflQ1 inhibits the transcription of its encoding gene and the expression of eight operons inside the lincomycin synthetic cluster (headed by lmbA, lmbJ, lmbK, lmbV, lmbW, lmbU, lmrA, and lmrC), as demonstrated by quantitative RT-PCR and electrophoretic mobility shift assays. Besides, the regulatory genes including bldD, glnR, lcbR1, and ramR are also regulated by the TCS. According to the screening towards nitrogen sources, aspartate affects the regulatory behavior of histidine kinase AflQ2. And in return, AflQ1 accelerates aspartate metabolism via ask-asd, asd2, and thrA. In summary, we acquired six novel regulators related to lincomycin biosynthesis, and elucidated the regulatory mechanism of AflQ1-Q2. This highly conserved TCS is a promising target for the construction of antibiotic high-yield strains. KEY POINTS: • AflQ1-Q2 is a repressor for lincomycin production. • AflQ1 modulates the expression of lincomycin biosynthetic and regulatory genes. • Aspartate affects the behavior of AflQ2, and its metabolism is promoted by AflQ1.
Collapse
Affiliation(s)
- Ruida Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Tianyu Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Fanjing Kong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Bingbing Hou
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiang Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Haizhen Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China. .,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Huizhan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Department of Applied Biology, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
29
|
Li Z, He L, Wang X, Huo Q, Zheng G, Kong D, Lu Y, Xia H, Niu G. Elucidation of the ferrichrome siderophore biosynthetic pathway in albomycin-producing Streptomyces sp. ATCC 700974. J Biol Chem 2023; 299:104573. [PMID: 36870685 PMCID: PMC10124919 DOI: 10.1016/j.jbc.2023.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
Sideromycins are a unique subset of siderophores comprising of a siderophore conjugated to an antimicrobial agent. The "Trojan horse" antibiotic albomycins are unique sideromycins consisting of a ferrichrome-type siderophore conjugated to a peptidyl nucleoside antibiotic. They exhibit potent antibacterial activities against many model bacteria and a number of clinical pathogens. Earlier studies have provided significant insight into the biosynthetic pathway of the peptidyl nucleoside moiety. We herein decipher the biosynthetic pathway of the ferrichrome-type siderophore in Streptomyces sp. ATCC 700974. Our genetic studies suggested that abmA, abmB, and abmQ are involved in the formation of the ferrichrome-type siderophore. Additionally, we performed biochemical studies to demonstrate that a flavin-dependent monooxygenase AbmB and an N-acyltransferase AbmA catalyze sequential modifications of L-ornithine to generate N5-acetyl-N5-hydroxyornithine. Three molecules of N5-acetyl-N5-hydroxyornithine are then assembled to generate the tripeptide ferrichrome through the action of a non-ribosomal peptide synthetase AbmQ. Of special note, we found out that orf05026 and orf03299, two genes scattered elsewhere in the chromosome of Streptomyces sp. ATCC 700974, have functional redundancy for abmA and abmB, respectively. Interestingly, both orf05026 and orf03299 are situated within gene clusters encoding putative siderophores. In summary, this study provided new insight into the siderophore moiety of albomycin biosynthesis, and shed light on the contingency of multiple siderophores in albomycin-producing Streptomyces sp. ATCC 700974.
Collapse
Affiliation(s)
- Zhilei Li
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Lang He
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Xia Wang
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Qingwen Huo
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Dekun Kong
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Haiyang Xia
- Institute of Biopharmaceuticals, Taizhou University, Taizhou, 318000, China
| | - Guoqing Niu
- Biotechnology Research Center, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
30
|
Establishment of a visual gene knockout system based on CRISPR/Cas9 for the rare actinomycete Nonomuraea gerenzanensis. Biotechnol Lett 2023; 45:401-410. [PMID: 36650342 DOI: 10.1007/s10529-023-03347-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/18/2022] [Accepted: 01/05/2023] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To develop a modified CRISPR/Cas9 system with the β-glucuronidase (GusA) reporter and a dual sgRNA cassette for Nonomuraea gerenzanensis (N. gerenzanensis). RESULTS With the aid of a visual GusA reporter, the complicated and tedious process of cloning and gene identification could be abandoned entirely in the genetic editing of N. gerenzanensis. Moreover, introducing a dual sgRNA cassette into the CRISPR/Cas9 system significantly improved gene deletion efficiency compared to the single sgRNA element. Furthermore, the length of the homologous flanking sequences set to the lowest value of 500 bp in this system could still reach the relatively higher conjugation transfer frequency. CONCLUSIONS The enhanced CRISPR/Cas9 system could efficiently perform genetic manipulation on the rare actinomycete N. gerenzanensis.
Collapse
|
31
|
Hao M, Tang J, Ge S, Li T, Xia N. Bacterial-Artificial-Chromosome-Based Genome Editing Methods and the Applications in Herpesvirus Research. Microorganisms 2023; 11:589. [PMID: 36985163 PMCID: PMC10056367 DOI: 10.3390/microorganisms11030589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/21/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Herpesviruses are major pathogens that infect humans and animals. Manipulating the large genome is critical for exploring the function of specific genes and studying the pathogenesis of herpesviruses and developing novel anti-viral vaccines and therapeutics. Bacterial artificial chromosome (BAC) technology significantly advanced the capacity of herpesviruses researchers to manipulate the virus genomes. In the past years, advancements in BAC-based genome manipulating and screening strategies of recombinant BACs have been achieved, which has promoted the study of the herpes virus. This review summarizes the advances in BAC-based gene editing technology and selection strategies. The merits and drawbacks of BAC-based herpesvirus genome editing methods and the application of BAC-based genome manipulation in viral research are also discussed. This review provides references relevant for researchers in selecting gene editing methods in herpes virus research. Despite the achievements in the genome manipulation of the herpes viruses, the efficiency of BAC-based genome manipulation is still not satisfactory. This review also highlights the need for developing more efficient genome-manipulating methods for herpes viruses.
Collapse
Affiliation(s)
- Mengling Hao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Jiabao Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Xiang An Biomedicine Laboratory, Xiamen 361102, China
- NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, School of Public Health, Xiamen University, Xiamen 361102, China
- The Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen 361102, China
| |
Collapse
|
32
|
Danaeifar M, Mazlomi MA. Combinatorial biosynthesis: playing chess with the metabolism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:171-190. [PMID: 35435779 DOI: 10.1080/10286020.2022.2065265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolites are a group of natural products that produced by bacteria, fungi and plants. Many applications of these compounds from medicine to industry have been discovered. However, some changes in their structure and biosynthesis mechanism are necessary for their properties to be more suitable and also for their production to be profitable. The main and most useful method to achieve this goal is combinatorial biosynthesis. This technique uses the multi-unit essence of the secondary metabolites biosynthetic enzymes to make changes in their order, structure and also the organism that produces them.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
33
|
Chen C, Zheng P. Effects of down-regulation of ackA expression by CRISPR-dCpf1 on succinic acid production in Actinobacillus succinogenes. AMB Express 2023; 13:12. [PMID: 36700989 PMCID: PMC9880102 DOI: 10.1186/s13568-023-01518-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 01/19/2023] [Indexed: 01/27/2023] Open
Abstract
Succinic acid (SA), a key intermediate in the cellular tricarboxylic acid cycle (TCA), is a 4-carbon dicarboxylic acid of great industrial value. Actinobacillus succinogenes can ferment various carbon sources and accumulate relatively high concentrations of SA, but few reliable genetic engineering tools exist for A. succinogenes and this has hindered strain improvement to increase SA production for industrial application. Two different repressors, endonuclease-deactivated Cas9 (dCas9) from Streptococcus pyogenes and Cpf1 (dCpf1) from Francisella tularensis, were applied to construct a CRISPRi system in A. succinogenes. Codon-optimized Cas9 and native Cpf1 were successfully expressed in A. succinogenes, and the corresponding sgRNA and crRNA expression elements, promoted by the fumarate reductase promoter, frd, were introduced into the CRISPRi plasmid. The highest repression of the ackA gene (encoding acetate kinase) and thereby acetic acid production (~ eightfold) was achieved by the dCpf1-based CRISPRi system, in which the mutation site, E1006A acted at the start of the coding region of ackA, the gene which regulates acetic acid biosynthesis. Compared with the ackA gene knockout mutant, cell growth was moderately improved and SA production increased by 6.3%. Further, the SA titer and productivity in a 3 L fermenter reached 57.06 g/L and 1.87 g/L/h, and there was less acetic acid production. A dCpf1-based CRISPRi-mediated gene repression system was successfully established for the first time, providing a simple and effective tool for studying functional genomics in A. succinogenes and optimizing SA production.
Collapse
Affiliation(s)
- Chunmei Chen
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Pu Zheng
- grid.258151.a0000 0001 0708 1323The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| |
Collapse
|
34
|
Hu M, Chen S, Ni Y, Wei W, Mao W, Ge M, Qian X. CRISPR/Cas9-mediated genome editing in vancomycin-producing strain Amycolatopsis keratiniphila. Front Bioeng Biotechnol 2023; 11:1141176. [PMID: 36937767 PMCID: PMC10020181 DOI: 10.3389/fbioe.2023.1141176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/20/2023] [Indexed: 03/06/2023] Open
Abstract
Amycolatopsis is an important source of diverse valuable bioactive natural products. The CRISPR/Cas-mediated gene editing tool has been established in some Amycolatopsis species and has accomplished the deletion of single gene or two genes. The goal of this study was to develop a high-efficient CRISPR/Cas9-mediated genome editing system in vancomycin-producing strain A. keratiniphila HCCB10007 and enhance the production of vancomycin by deleting the large fragments of ECO-0501 BGC. By adopting the promoters of gapdhp and ermE*p which drove the expressions of scocas9 and sgRNA, respectively, the all-in-one editing plasmid by homology-directed repair (HDR) precisely deleted the single gene gtfD and inserted the gene eGFP with the efficiency of 100%. Furthermore, The CRISPR/Cas9-mediated editing system successfully deleted the large fragments of cds13-17 (7.7 kb), cds23 (12.7 kb) and cds22-23 (21.2 kb) in ECO-0501 biosynthetic gene cluster (BGC) with high efficiencies of 81%-97% by selecting the sgRNAs with a suitable PAM sequence. Finally, a larger fragment of cds4-27 (87.5 kb) in ECO-0501 BGC was deleted by a dual-sgRNA strategy. The deletion of the ECO-0501 BGCs revealed a noticeable improvement of vancomycin production, and the mutants, which were deleted the ECO-0501 BGCs of cds13-17, cds22-23 and cds4-27, all achieved a 30%-40% increase in vancomycin yield. Therefore, the successful construction of the CRISPR/Cas9-mediated genome editing system and its application in large fragment deletion in A. keratiniphila HCCB10007 might provide a powerful tool for other Amycolatopsis species.
Collapse
Affiliation(s)
- Mengyi Hu
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Chen
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Yao Ni
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Wei
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Mei Ge
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Xiuping Qian
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
35
|
Li S, Chi LP, Li Z, Liu M, Liu R, Sang M, Zheng X, Du L, Zhang W, Li S. Discovery of venediols by activation of a silent type I polyketide biosynthetic gene cluster in Streptomyces venezuelae ATCC 15439. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
36
|
Rosa SS, Nunes D, Antunes L, Prazeres DMF, Marques MPC, Azevedo AM. Maximizing mRNA vaccine production with Bayesian optimization. Biotechnol Bioeng 2022; 119:3127-3139. [PMID: 36017534 PMCID: PMC9539360 DOI: 10.1002/bit.28216] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/29/2022]
Abstract
Messenger RNA (mRNA) vaccines are a new alternative to conventional vaccines with a prominent role in infectious disease control. These vaccines are produced in in vitro transcription (IVT) reactions, catalyzed by RNA polymerase in cascade reactions. To ensure an efficient and cost-effective manufacturing process, essential for a large-scale production and effective vaccine supply chain, the IVT reaction needs to be optimized. IVT is a complex reaction that contains a large number of variables that can affect its outcome. Traditional optimization methods rely on classic Design of Experiments methods, which are time-consuming and can present human bias or based on simplified assumptions. In this contribution, we propose the use of Machine Learning approaches to perform a data-driven optimization of an mRNA IVT reaction. A Bayesian optimization method and model interpretability techniques were used to automate experiment design, providing a feedback loop. IVT reaction conditions were found under 60 optimization runs that produced 12 g · L-1 in solely 2 h. The results obtained outperform published industry standards and data reported in literature in terms of both achievable reaction yield and reduction of production time. Furthermore, this shows the potential of Bayesian optimization as a cost-effective optimization tool within (bio)chemical applications.
Collapse
Affiliation(s)
- Sara Sousa Rosa
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
| | - Davide Nunes
- LASIGEFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Luis Antunes
- LASIGEFaculdade de Ciências da Universidade de LisboaLisboaPortugal
| | - Duarte M. F. Prazeres
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
| | | | - Ana M. Azevedo
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
| |
Collapse
|
37
|
LeBlanc N, Charles TC. Bacterial genome reductions: Tools, applications, and challenges. Front Genome Ed 2022; 4:957289. [PMID: 36120530 PMCID: PMC9473318 DOI: 10.3389/fgeed.2022.957289] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial cells are widely used to produce value-added products due to their versatility, ease of manipulation, and the abundance of genome engineering tools. However, the efficiency of producing these desired biomolecules is often hindered by the cells’ own metabolism, genetic instability, and the toxicity of the product. To overcome these challenges, genome reductions have been performed, making strains with the potential of serving as chassis for downstream applications. Here we review the current technologies that enable the design and construction of such reduced-genome bacteria as well as the challenges that limit their assembly and applicability. While genomic reductions have shown improvement of many cellular characteristics, a major challenge still exists in constructing these cells efficiently and rapidly. Computational tools have been created in attempts at minimizing the time needed to design these organisms, but gaps still exist in modelling these reductions in silico. Genomic reductions are a promising avenue for improving the production of value-added products, constructing chassis cells, and for uncovering cellular function but are currently limited by their time-consuming construction methods. With improvements to and the creation of novel genome editing tools and in silico models, these approaches could be combined to expedite this process and create more streamlined and efficient cell factories.
Collapse
Affiliation(s)
- Nicole LeBlanc
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- *Correspondence: Nicole LeBlanc,
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- Metagenom Bio Life Science Inc., Waterloo, ON, Canada
| |
Collapse
|
38
|
Guo S, Sun X, Li R, Zhang T, Hu F, Liu F, Hua Q. Two strategies to improve the supply of PKS extender units for ansamitocin P-3 biosynthesis by CRISPR-Cas9. BIORESOUR BIOPROCESS 2022; 9:90. [PMID: 38647752 PMCID: PMC10991131 DOI: 10.1186/s40643-022-00583-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/15/2022] [Indexed: 11/10/2022] Open
Abstract
Ansamitocin P-3 (AP-3) produced by Actinosynnema pretiosum is a potent antitumor agent. However, lack of efficient genome editing tools greatly hinders the AP-3 overproduction in A. pretiosum. To solve this problem, a tailor-made pCRISPR-Cas9apre system was developed from pCRISPR-Cas9 for increasing the accessibility of A. pretiosum to genetic engineering, by optimizing cas9 for the host codon preference and replacing pSG5 with pIJ101 replicon. Using pCRISPR-Cas9apre, five large-size gene clusters for putative competition pathway were individually deleted with homology-directed repair (HDR) and their effects on AP-3 yield were investigated. Especially, inactivation of T1PKS-15 increased AP-3 production by 27%, which was most likely due to the improved intracellular triacylglycerol (TAG) pool for essential precursor supply of AP-3 biosynthesis. To enhance a "glycolate" extender unit, two combined bidirectional promoters (BDPs) ermEp-kasOp and j23119p-kasOp were knocked into asm12-asm13 spacer in the center region of gene cluster, respectively, by pCRISPR-Cas9apre. It is shown that in the two engineered strains BDP-ek and BDP-jk, the gene transcription levels of asm13-17 were significantly upregulated to improve the methoxymalonyl-acyl carrier protein (MM-ACP) biosynthetic pathway and part of the post-PKS pathway. The AP-3 yields of BDP-ek and BDP-jk were finally increased by 30% and 50% compared to the parent strain L40. Both CRISPR-Cas9-mediated engineering strategies employed in this study contributed to the availability of AP-3 PKS extender units and paved the way for further metabolic engineering of ansamitocin overproduction.
Collapse
Affiliation(s)
- Siyu Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xueyuan Sun
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ruihua Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Tianyao Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Fengxian Hu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Feng Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Qiang Hua
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
39
|
Simple and reliable in situ CRISPR-Cas9 nuclease visualization tool is ensuring efficient editing in Streptomyces species. METHODS IN MICROBIOLOGY 2022; 200:106545. [DOI: 10.1016/j.mimet.2022.106545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 11/23/2022]
|
40
|
Mitra S, Dhar R, Sen R. Designer bacterial cell factories for improved production of commercially valuable non-ribosomal peptides. Biotechnol Adv 2022; 60:108023. [PMID: 35872292 DOI: 10.1016/j.biotechadv.2022.108023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/30/2022] [Accepted: 07/18/2022] [Indexed: 11/27/2022]
Abstract
Non-ribosomal peptides have gained significant attention as secondary metabolites of high commercial importance. This group houses a diverse range of bioactive compounds, ranging from biosurfactants to antimicrobial and cytotoxic agents. However, low yield of synthesis by bacteria and excessive losses during purification hinders the industrial-scale production of non-ribosomal peptides, and subsequently limits their widespread applicability. While isolation of efficient producer strains and optimization of bioprocesses have been extensively used to enhance yield, further improvement can be made by optimization of the microbial strain using the tools and techniques of metabolic engineering, synthetic biology, systems biology, and adaptive laboratory evolution. These techniques, which directly target the genome of producer strains, aim to redirect carbon and nitrogen fluxes of the metabolic network towards the desired product, bypass the feedback inhibition and repression mechanisms that limit the maximum productivity of the strain, and even extend the substrate range of the cell for synthesis of the target product. The present review takes a comprehensive look into the biosynthesis of bacterial NRPs, how the same is regulated by the cell, and dives deep into the strategies that have been undertaken for enhancing the yield of NRPs, while also providing a perspective on other potential strategies that can allow for further yield improvement. Furthermore, this review provides the reader with a holistic perspective on the design of cellular factories of NRP production, starting from general techniques performed in the laboratory to the computational techniques that help a biochemical engineer model and subsequently strategize the architectural plan.
Collapse
Affiliation(s)
- Sayak Mitra
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India
| | - Riddhiman Dhar
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, West Bengal, India.
| |
Collapse
|
41
|
Wang Y, Huang C, Zhao W. Recent advances of the biological and biomedical applications of CRISPR/Cas systems. Mol Biol Rep 2022; 49:7087-7100. [PMID: 35705772 PMCID: PMC9199458 DOI: 10.1007/s11033-022-07519-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/26/2022] [Indexed: 11/30/2022]
Abstract
The clustered, regularly interspaced, short palindromic repeats (CRISPR)-associated endonuclease (Cas) system, referred to as CRISPR/Cas system, has attracted significant interest in scientific community due to its great potential in translating into versatile therapeutic tools in biomedical field. For instance, a myriad of studies has demonstrated that the CRISPR/Cas system is capable of detecting various types of viruses, killing antibiotic-resistant bacteria, treating inherited genetic diseases, and providing new strategies for cancer therapy. Furthermore, CRISPR/Cas systems are also exploited as research tools such as genome engineering tool that allows researchers to interrogate the biological roles of unexplored genes or uncover novel functions of known genes. Additionally, the CRISPR/Cas system has been employed to edit the genome of a wide range of eukaryotic, prokaryotic organisms and experimental models, including but not limited to mammalian cells, mice, zebrafish, plants, yeast, and Escherichia coli. The present review mainly focuses on summarizing recent discoveries regarding the type II CRISPR/Cas9 and type VI CRISPR/Cas13a systems to give researchers a glimpse of their potential applications in the biological and biomedical field.
Collapse
Affiliation(s)
- Yaya Wang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China.
- State Key Laboratory of Cancer Biology, Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, China.
| | - Chun Huang
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| | - Weiqin Zhao
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, 58 Yanta Zhonglu, 710054, Xi'an, Shaanxi, China
| |
Collapse
|
42
|
Construction of a CRISPR/nCas9-Assisted Genome Editing System for Exopolysaccharide Biosynthesis in Streptococcus thermophilus. Food Res Int 2022; 158:111550. [DOI: 10.1016/j.foodres.2022.111550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/25/2022] [Accepted: 06/21/2022] [Indexed: 11/21/2022]
|
43
|
Rang J, Xia Z, Shuai L, Cao L, Liu Y, Li X, Xie J, Li Y, Hu S, Xie Q, Xia L. A TetR family transcriptional regulator, SP_2854 can affect the butenyl-spinosyn biosynthesis by regulating glucose metabolism in Saccharopolyspora pogona. Microb Cell Fact 2022; 21:83. [PMID: 35568948 PMCID: PMC9107242 DOI: 10.1186/s12934-022-01808-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/27/2022] [Indexed: 11/10/2022] Open
Abstract
Background Butenyl-spinosyn produced by Saccharopolyspora pogona exhibits strong insecticidal activity and a broad pesticidal spectrum. Currently, important functional genes involve in butenyl-spinosyn biosynthesis remain unknown, which leads to difficulty in efficiently understanding its regulatory mechanism, and improving its production by metabolic engineering. Results Here, we identified a TetR family transcriptional regulator, SP_2854, that can positively regulate butenyl-spinosyn biosynthesis and affect strain growth, glucose consumption, and mycelial morphology in S. pogona. Using targeted metabolomic analyses, we found that SP_2854 overexpression enhanced glucose metabolism, while SP_2854 deletion had the opposite effect. To decipher the overproduction mechanism in detail, comparative proteomic analysis was carried out in the SP-2854 overexpressing mutant and the original strain, and we found that SP_2854 overexpression promoted the expression of proteins involved in glucose metabolism. Conclusion Our findings suggest that SP_2854 can affect strain growth and development and butenyl-spinosyn biosynthesis in S. pogona by controlling glucose metabolism. The strategy reported here will be valuable in paving the way for genetic engineering of regulatory elements in actinomycetes to improve important natural products production. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01808-2.
Collapse
Affiliation(s)
- Jie Rang
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.,Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China
| | - Ziyuan Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ling Shuai
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Li Cao
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yang Liu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaomin Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jiao Xie
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yunlong Li
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Shengbiao Hu
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Qingji Xie
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research (MOE of China), National & Local Joint Engineering Laboratory for New Petro-Chemical Materials and Fine Utilization of Resources, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, China.
| | - Liqiu Xia
- Hunan Provincial Key Laboratory for Microbial Molecular Biology, State Key Laboratory of Development Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
44
|
Cai P, Han M, Zhang R, Ding S, Zhang D, Liu D, Liu S, Hu QN. SynBioStrainFinder: A microbial strain database of manually curated CRISPR/Cas genetic manipulation system information for biomanufacturing. Microb Cell Fact 2022; 21:87. [PMID: 35568950 PMCID: PMC9107733 DOI: 10.1186/s12934-022-01813-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Microbial strain information databases provide valuable data for microbial basic research and applications. However, they rarely contain information on the genetic operating system of microbial strains. RESULTS We established a comprehensive microbial strain database, SynBioStrainFinder, by integrating CRISPR/Cas gene-editing system information with cultivation methods, genome sequence data, and compound-related information. It is presented through three modules, Strain2Gms/PredStrain2Gms, Strain2BasicInfo, and Strain2Compd, which combine to form a rapid strain information query system conveniently curated, integrated, and accessible on a single platform. To date, 1426 CRISPR/Cas gene-editing records of 157 microbial strains have been manually extracted from the literature in the Strain2Gms module. For strains without established CRISPR/Cas systems, the PredStrain2Gms module recommends the system of the most closely related strain as a reference to facilitate the construction of a new CRISPR/Cas gene-editing system. The database contains 139,499 records of strain cultivation and genome sequences, and 773,298 records of strain-related compounds. To facilitate simple and intuitive data application, all microbial strains are also labeled with stars based on the order and availability of strain information. SynBioStrainFinder provides a user-friendly interface for querying, browsing, and visualizing detailed information on microbial strains, and it is publicly available at http://design.rxnfinder.org/biosynstrain/ . CONCLUSION SynBioStrainFinder is the first microbial strain database with manually curated information on the strain CRISPR/Cas system as well as other microbial strain information. It also provides reference information for the construction of new CRISPR/Cas systems. SynBioStrainFinder will serve as a useful resource to extend microbial strain research and application for biomanufacturing.
Collapse
Affiliation(s)
- Pengli Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Mengying Han
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Rui Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | | | - Dachuan Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Dongliang Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Sheng Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qian-Nan Hu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
45
|
Rahman F, Mishra A, Gupta A, Sharma R. Spatiotemporal Regulation of CRISPR/Cas9 Enables Efficient, Precise, and Heritable Edits in Plant Genomes. Front Genome Ed 2022; 4:870108. [PMID: 35558825 PMCID: PMC9087570 DOI: 10.3389/fgeed.2022.870108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
CRISPR/Cas-mediated editing has revolutionized crop engineering. Due to the broad scope and potential of this technology, many studies have been carried out in the past decade towards optimizing genome editing constructs. Clearly, the choice of the promoter used to drive gRNA and Cas9 expression is critical to achieving high editing efficiency, precision, and heritability. While some important considerations for choosing a promoter include the number and nature of targets, host organism, mode of transformation and goal of the experiment, spatiotemporal regulation of Cas9 expression using tissue-specific or inducible promoters enables higher heritability and efficiency of targeted mutagenesis with reduced off-target effects. In this review, we discuss specific studies that highlight the prospects and trade-offs associated with the choice of promoters on genome editing and emphasize the need for inductive exploration and discovery to further advance this area of research in crop plants.
Collapse
Affiliation(s)
- Farhanur Rahman
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Apurva Mishra
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA, United States
| | - Archit Gupta
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
| | - Rita Sharma
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS), Pilani, India
- *Correspondence: Rita Sharma, ,
| |
Collapse
|
46
|
Cho MK, Lee BT, Kim HU, Oh MK. Systems metabolic engineering of Streptomyces venezuelae for the enhanced production of pikromycin. Biotechnol Bioeng 2022; 119:2250-2260. [PMID: 35445397 DOI: 10.1002/bit.28114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/06/2022] [Accepted: 04/15/2022] [Indexed: 11/09/2022]
Abstract
Pikromycin is an important precursor of drugs, for example, erythromycin. Hence, systems metabolic engineering for the enhanced pikromycin production can contribute to the development of pikromycin-related drugs. In this study, metabolic genes in Streptomyces venezuelae were systematically engineered for the enhanced pikromycin production. For this, a genome-scale metabolic model of S. venezuelae was reconstructed and simulated, which led to the selection of 11 metabolic gene targets. These metabolic genes, including four overexpression targets and seven knockdown targets, were individually engineered first. Next, two overexpression targets and two knockdown targets were selected based on the 11 strains' production performances in order to engineer two to four of these genes together for the potential synergistic effects on the pikromycin production. As a result, the NM1 strain with AQF52_RS24510 (methenyltetrahydrofolate cyclohydrolase/methylenetetrahydrofolate dehydrogenase) overexpression and AQF52_RS30320 (sulfite reductase) knockdown showed the best production performance among all the 22 strains constructed in this study. Fed-batch fermentation of the NM1 strain produced 295.25 mg/L of pikromycin, by far the best production titer using the native producer S. venezuelae, to the best of our knowledge. The systems metabolic engineering strategy demonstrated herein can also be applied to the overproduction of other secondary metabolites using S. venezuelae. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Min Kyung Cho
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Byung Tae Lee
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Hyun Uk Kim
- Department of Chemical and Biomolecular Engineering (BK21 four), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| |
Collapse
|
47
|
Zhu Y, Wang X, Zhang J, Ni X, Zhang X, Tao M, Pang X. The regulatory gene wblA is a target of the orphan response regulator OrrA in Streptomyces coelicolor. Environ Microbiol 2022; 24:3081-3096. [PMID: 35384219 DOI: 10.1111/1462-2920.15992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022]
Abstract
Our previous study using transposon mutagenesis indicated that disruption of the putative response regulator gene orrA impacted antibiotic production in Streptomyces coelicolor. In this study, the role of OrrA was further characterized by comparing the phenotypes and transcriptomic profiles of the wild-type S. coelicolor strain M145 and ΔorrA, a strain with an inactivated orrA gene. Chromatin immunoprecipitation using a strain expressing OrrA fused with FLAG showed that OrrA binds the promoter of wblA, whose expression was downregulated in ΔorrA. The interaction of OrrA with the wblA promoter was further validated by a pull-down assay. Similar to ΔorrA, the deletion mutant of wblA (ΔwblA) was defective in development, and developmental genes were expressed at similar levels in ΔorrA and ΔwblA. Although both OrrA and WblA downregulated actinorhodin and undecylprodigiosin, their roles in regulation of the calcium-dependent antibiotic and yellow-pigmented type I polyketide differed. sco1375, a gene of unknown function, was identified as another OrrA target, and overexpression of either sco1375 or wblA in ΔorrA partially restored the wild-type phenotype, indicating that these genes mediate some of the effects of OrrA. This study revealed targets of OrrA and provided more insights into the role of the orphan response regulator OrrA in Streptomyces. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yanping Zhu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China.,Colleage of Life Sciences, Qingdao University, Qingdao, 266071, China
| | - Xinyuan Wang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Jing Zhang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xue Ni
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Xia Zhang
- Qingdao Vland Biotech Group Inc, Qingdao, 266000, China
| | - Meifeng Tao
- The State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiuhua Pang
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| |
Collapse
|
48
|
He W, Wang W, Ma J, Zheng G, Zimin AA, Jiang W, Tian J, Lu Y. Crossregulation of rapamycin and elaiophylin biosynthesis by RapH in Streptomyces rapamycinicus. Appl Microbiol Biotechnol 2022; 106:2147-2159. [PMID: 35218390 DOI: 10.1007/s00253-022-11847-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/16/2022] [Accepted: 02/20/2022] [Indexed: 11/26/2022]
Abstract
Rapamycin is an important macrocyclic antibiotic produced by Streptomyces rapamycinicus. In the rapamycin biosynthetic gene cluster (BGC), there are up to five regulatory genes, which have been shown to play important roles in the regulation of rapamycin biosynthesis. Here, we demonstrated that the rapamycin BGC-situated LAL family regulator RapH co-ordinately regulated the biosynthesis of both rapamycin and elaiophylin. We showed that rapH overexpression not only resulted in enhanced rapamycin production but also led to increased synthesis of another type I polyketide antibiotic, elaiophylin. Consistent with this, rapH deletion resulted in decreased production of both antibiotics. Through real-time RT-PCR combined with β-glucuronidase reporter assays, four target genes controlled by RapH, including rapL (encoding a lysine cyclodeaminase)/rapH in the rapamycin BGC and ela3 (encoding a LuxR family regulator)/ela9 (encoding a hypothetical protein) in the elaiophylin BGC, were identified. A relatively conserved signature sequence recognized by RapH, which comprises two 4-nt inverted repeats separated by 8-nt, 5'-GTT/AC-N8-GTAC-3', was defined. Taken together, our findings demonstrated that RapH was involved in co-ordinated regulation of two disparate BGCs specifying two unrelated antibiotics, rapamycin and elaiophylin. These results further expand our knowledge of the regulation of antibiotic biosynthesis in S. rapamycinicus. KEY POINTS: • The cluster-situated regulator RapH controlled the synthesis of two antibiotics. • Four promoter regions recognized by RapH were identified. • A 16-nt signature DNA sequence essential for RapH regulation was defined.
Collapse
Affiliation(s)
- Wenyan He
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenfang Wang
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jiaxiang Ma
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Guosong Zheng
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Andrei A Zimin
- G.K. Scriabin Institute of Biochemistry and Physiology of Microorganisms RAS, Pushchino, 142290, Russia
| | - Weihong Jiang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jinzhong Tian
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Yinhua Lu
- College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
- Development Center of Plant Germplasm Resources, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
49
|
Engineering the stambomycin modular polyketide synthase yields 37-membered mini-stambomycins. Nat Commun 2022; 13:515. [PMID: 35082289 PMCID: PMC8792006 DOI: 10.1038/s41467-022-27955-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
The modular organization of the type I polyketide synthases (PKSs) would seem propitious for rational engineering of desirable analogous. However, despite decades of efforts, such experiments remain largely inefficient. Here, we combine multiple, state-of-the-art approaches to reprogram the stambomycin PKS by deleting seven internal modules. One system produces the target 37-membered mini-stambomycin metabolites − a reduction in chain length of 14 carbons relative to the 51-membered parental compounds − but also substantial quantities of shunt metabolites. Our data also support an unprecedented off-loading mechanism of such stalled intermediates involving the C-terminal thioesterase domain of the PKS. The mini-stambomycin yields are reduced relative to wild type, likely reflecting the poor tolerance of the modules downstream of the modified interfaces to the non-native substrates. Overall, we identify factors contributing to the productivity of engineered whole assembly lines, but our findings also highlight the need for further research to increase production titers. Genetic engineering of the type I polyketide synthases (PKSs) to produce desirable analogous remains largely inefficient. Here, the authors leverage multiple approaches to delete seven internal modules from the stambomycin PKS and generate 37-membered mini-stambomycin macrolactones.
Collapse
|
50
|
Hwang S, Lee Y, Kim JH, Kim G, Kim H, Kim W, Cho S, Palsson BO, Cho BK. Streptomyces as Microbial Chassis for Heterologous Protein Expression. Front Bioeng Biotechnol 2022; 9:804295. [PMID: 34993191 PMCID: PMC8724576 DOI: 10.3389/fbioe.2021.804295] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/29/2022] Open
Abstract
Heterologous production of recombinant proteins is gaining increasing interest in biotechnology with respect to productivity, scalability, and wide applicability. The members of genus Streptomyces have been proposed as remarkable hosts for heterologous production due to their versatile nature of expressing various secondary metabolite biosynthetic gene clusters and secretory enzymes. However, there are several issues that limit their use, including low yield, difficulty in genetic manipulation, and their complex cellular features. In this review, we summarize rational engineering approaches to optimizing the heterologous production of secondary metabolites and recombinant proteins in Streptomyces species in terms of genetic tool development and chassis construction. Further perspectives on the development of optimal Streptomyces chassis by the design-build-test-learn cycle in systems are suggested, which may increase the availability of secondary metabolites and recombinant proteins.
Collapse
Affiliation(s)
- Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Gahyeon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Hyeseong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Woori Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Innovative Biomaterials Research Center, KAIST Institutes, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|