1
|
Qiu W, Zhang S, Yu W, Liu J, Wu H. Non-coding RNAs in hepatocellular carcinoma metastasis: Remarkable indicators and potential oncogenic mechanism. Comput Biol Med 2024; 180:108867. [PMID: 39089114 DOI: 10.1016/j.compbiomed.2024.108867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/12/2024] [Accepted: 07/07/2024] [Indexed: 08/03/2024]
Abstract
Non-coding RNAs (ncRNAs), as key regulators involving in intercellular biological processes, are more prominent in many malignancies, especially for hepatocellular carcinoma (HCC). Herein, we conduct a comprehensive review to summarize diverse ncRNAs roles in HCC metastatic mechanism. We focus on four signaling pathways that predominate in HCC metastatic process, including Wnt/β-catenin, HIF-1α, IL-6, and TGF-β pathways. MicroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs) employed different mechanisms to participate in the regulation of the key genes in these pathways, typical as interaction with DNA to control transcription, with RNA to control translation, and with protein to control stability. Therefore, ncRNAs may become potential biomarkers and therapeutic targets for HCC metastasis.
Collapse
Affiliation(s)
- Wenqi Qiu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Song Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wei Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jian Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Huiling Wu
- Department of Plastic and Aesthetic Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Saadh MJ, Hussain QM, Alazzawi TS, Fahdil AA, Athab ZH, Yarmukhamedov B, Al-Nuaimi AMA, Alsaikhan F, Farhood B. MicroRNA as Key Players in Hepatocellular Carcinoma: Insights into Their Role in Metastasis. Biochem Genet 2024:10.1007/s10528-024-10897-0. [PMID: 39103713 DOI: 10.1007/s10528-024-10897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024]
Abstract
Liver cancer or hepatocellular carcinoma (HCC) remains the most common cancer in global epidemiology. Both the frequency and fatality of this malignancy have shown an upward trend over recent decades. Liver cancer is a significant concern due to its propensity for both intrahepatic and extrahepatic metastasis. Liver cancer metastasis is a multifaceted process characterized by cell detachment from the bulk tumor, modulation of cellular motility and invasiveness, enhanced proliferation, avoidance of the immune system, and spread either via lymphatic or blood vessels. MicroRNAs (miRNAs) are small non-coding ribonucleic acids (RNAs) playing a crucial function in the intricate mechanisms of tumor metastasis. A number of miRNAs can either increase or reduce metastasis via several mechanisms, such as control of motility, proliferation, attack by the immune system, cancer stem cell properties, altering the microenvironment, and the epithelial-mesenchymal transition (EMT). Besides, two other types of non-coding RNAs, such as long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) can competitively bind to endogenous miRNAs. This competition results in the impaired ability of the miRNAs to inhibit the expression of the specific messenger RNAs (mRNAs) that are targeted. Increasing evidence has shown that the regulatory axis comprising circRNA/lncRNA-miRNA-mRNA is correlated with the regulation of HCC metastasis. This review seeks to present a thorough summary of recent research on miRNAs in HCC, and their roles in the cellular processes of EMT, invasion and migration, as well as the metastasis of malignant cells. Finally, we discuss the function of the lncRNA/circRNA-miRNA-mRNA network as a crucial modulator of carcinogenesis and the regulation of signaling pathways or genes that are relevant to the metastasis of HCC. These findings have the potential to offer valuable insight into the discovery of novel therapeutic approaches for management of liver cancer metastasis.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | | | - Tuqa S Alazzawi
- College of Dentist, National University of Science and Technology, Nasiriyah, Dhi Qar, Iraq
| | - Ali A Fahdil
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | - Zainab H Athab
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Bekhzod Yarmukhamedov
- Department of Public Health and Healthcare management, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan
| | | | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
- School of Pharmacy, Ibn Sina National College for Medical Studies, Jeddah, Saudi Arabia.
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
3
|
Fan FM, Fleishman JS, Chen J, Chen ZS, Dong HH. New insights into the mechanism of resistance to lenvatinib and strategies for lenvatinib sensitization in hepatocellular carcinoma. Drug Discov Today 2024; 29:104069. [PMID: 38936692 DOI: 10.1016/j.drudis.2024.104069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/04/2024] [Accepted: 06/21/2024] [Indexed: 06/29/2024]
Abstract
Lenvatinib is a multikinase inhibitor that suppresses vascular endothelial growth factor receptor (VEGFR), fibroblast growth factor receptor (FGFR), platelet-derived growth factor receptor α (PDGFRα), as well as the proto-oncogenes RET and KIT. Lenvatinib has been approved by the US Food and Drug Administration (FDA) for the first-line treatment of hepatocellular carcinoma (HCC) due to its superior efficacy when compared to sorafenib. Unfortunately, the development of drug resistance to lenvatinib is becoming increasingly common. Thus, there is an urgent need to identify the factors that lead to drug resistance and ways to mitigate it. We summarize the molecular mechanisms that lead to lenvatinib resistance (LR) in HCC, which involve programmed cell death (PCD), translocation processes, and changes in the tumor microenvironment (TME), and provide strategies to reverse resistance.
Collapse
Affiliation(s)
- Fei-Mu Fan
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China
| | - Joshua S Fleishman
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA
| | - Jin Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St John's University, Queens, NY 11439, USA.
| | - Han-Hua Dong
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Wuhan 430000, China.
| |
Collapse
|
4
|
Zhang X, Wang W, Mo S, Sun X. DEAD-Box Helicase 17 circRNA (circDDX17) Reduces Sorafenib Resistance and Tumorigenesis in Hepatocellular Carcinoma. Dig Dis Sci 2024; 69:2096-2108. [PMID: 38653946 DOI: 10.1007/s10620-024-08401-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is the most common type of liver malignancy. Despite significant progress in HCC treatment, resistance to chemotherapy and tumor metastasis are the main reasons for the unsatisfactory prognosis of HCC. Circular RNAs (circRNAs) have been extensively documented to play a role in the development of various types of cancer. AIMS Here, we investigated the role of DEAD-box helicase 17 circRNA (circDDX17) in HCC and its underlying molecular mechanisms. METHODS Our research employed various techniques including reverse transcription-quantitative polymerase chain reaction (RT-qPCR), cell counting kit-8 (CCK-8), flow cytometry, dual luciferase reporter assay, RNA immunoprecipitation (RIP), and western blot analysis. Additionally, we conducted a tumor xenograft assay to investigate the in vivo function of circDDX17. RESULTS Firstly, the expression of circDDX17 was downregulated in HCC tissues and cells. Through functional experiments, it was observed that the overexpression of circDDX17 enhanced the sensitivity of sorafenib, promoted apoptosis, and inhibited the process of epithelial-mesenchymal transition (EMT) in vitro. Additionally, in vivo studies revealed that circDDX17 reduced tumor growth and increased sorafenib sensitivity. Mechanically, circDDX17 competitively combined miR-21-5p to suppress PTEN expression and activate the PI3K/AKT pathway. Furthermore, our rescue assays demonstrated that circDDX17 act as a tumor suppressor by blocking sorafenib resistance and tumorigenesis, while the inhibitory effect caused by circDDX17 upregulation was neutralized when miR-21-5p was overexpressed, PTEN was silenced, or the PI3K/AKT pathway was activated. CONCLUSION Our findings firstly confirmed that circDDX17 suppressed sorafenib resistance and HCC progression by regulating miR-21-5p/PTEN/PI3K/AKT pathway, which may provide novel biomarkers for the diagnosis, treatment and prognosis of HCC.
Collapse
MESH Headings
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/metabolism
- Liver Neoplasms/genetics
- Liver Neoplasms/drug therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/metabolism
- Humans
- Sorafenib/pharmacology
- Sorafenib/therapeutic use
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Drug Resistance, Neoplasm/genetics
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Animals
- Mice
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Carcinogenesis/genetics
- Cell Line, Tumor
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Epithelial-Mesenchymal Transition/genetics
- Gene Expression Regulation, Neoplastic
- Mice, Nude
- Apoptosis/drug effects
- Male
- PTEN Phosphohydrolase/genetics
- PTEN Phosphohydrolase/metabolism
- Signal Transduction
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-akt/genetics
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Xiaochuan Zhang
- Department of Emergency Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenyu Wang
- Medical Insurance Office, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shanshan Mo
- Department of Pharmacy, Heilongjiang Sailors General Hospital, Harbin, China
| | - Xueying Sun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23 Post Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
5
|
Zhou J, Wang T, Zhang H, Liu J, Wei P, Xu R, Yan Q, Chen G, Li W, Gao SJ, Lu C. KSHV vIL-6 promotes SIRT3-induced deacetylation of SERBP1 to inhibit ferroptosis and enhance cellular transformation by inducing lipoyltransferase 2 mRNA degradation. PLoS Pathog 2024; 20:e1012082. [PMID: 38470932 PMCID: PMC10959363 DOI: 10.1371/journal.ppat.1012082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Ferroptosis, a defensive strategy commonly employed by the host cells to restrict pathogenic infections, has been implicated in the development and therapeutic responses of various types of cancer. However, the role of ferroptosis in oncogenic Kaposi's sarcoma-associated herpesvirus (KSHV)-induced cancers remains elusive. While a growing number of non-histone proteins have been identified as acetylation targets, the functions of these modifications have yet to be revealed. Here, we show KSHV reprogramming of host acetylation proteomics following cellular transformation of rat primary mesenchymal precursor. Among them, SERPINE1 mRNA binding protein 1 (SERBP1) deacetylation is increased and required for KSHV-induced cellular transformation. Mechanistically, KSHV-encoded viral interleukin-6 (vIL-6) promotes SIRT3 deacetylation of SERBP1, preventing its binding to and protection of lipoyltransferase 2 (Lipt2) mRNA from mRNA degradation resulting in ferroptosis. Consequently, a SIRT3-specific inhibitor, 3-TYP, suppresses KSHV-induced cellular transformation by inducing ferroptosis. Our findings unveil novel roles of vIL-6 and SERBP1 deacetylation in regulating ferroptosis and KSHV-induced cellular transformation, and establish the vIL-6-SIRT3-SERBP1-ferroptosis pathways as a potential new therapeutic target for KSHV-associated cancers.
Collapse
Affiliation(s)
- Jing Zhou
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Tianjiao Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Haoran Zhang
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jianhong Liu
- Department of Pathology, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Pengjun Wei
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ruoqi Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Qin Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Guochun Chen
- Department of Infectious Diseases, Changzhou Third People’s Hospital, Changzhou, People’s Republic of China
| | - Wan Li
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| | - Shou-Jiang Gao
- Tumor Virology Program, UPMC Hillman Cancer Center, and Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Chun Lu
- Department of Microbiology, Nanjing Medical University, Nanjing, People’s Republic of China
- Changzhou Medical Center, Nanjing Medical University, Nanjing, People’s Republic of China
- Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
6
|
Liu Y, Yu X, Wang Y, Wu J, Feng B, Li M. The role of differentially expressed genes and immune cell infiltration in the progression of nonalcoholic steatohepatitis (NASH) to hepatocellular carcinoma (HCC): a new exploration based on bioinformatics analysis. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024; 43:1415-1430. [PMID: 38319987 DOI: 10.1080/15257770.2024.2310044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 02/08/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of chronic liver disease characterized. The condition ranges from isolated excessive hepatocyte triglyceride accumulation and steatosis (nonalcoholic fatty liver (NAFL), to hepatic triglyceride accumulation plus inflammation and hepatocyte injury (nonalcoholic steatohepatitis (NASH)) and finally to hepatic fibrosis and cirrhosis and/or hepatocellular carcinoma (HCC). However, the mechanism driving this process is not yet clear. Obtain sample microarray from the GEO database. Extract 6 healthy liver samples, 74 nonalcoholic hepatitis samples, 8 liver cirrhosis samples, and 53 liver cancer samples from the GSE164760 dataset. We used the GEO2R tool for differentially expressed genes (DEGs) analysis of disease progression (nonalcoholic hepatitis healthy group, cirrhosis nonalcoholic hepatitis group, and liver cancer cirrhosis group) and necroptosis gene set. Gene set variation analysis (GSVA) is used to evaluate the association between biological pathways and gene features. The STRING database and Cytoscape software were used to establish and visualize protein-protein interaction (PPI) networks and identify the key functional modules of DEGs, drawn factor-target genes regulatory network. Gene Ontology (GO) and KEGG pathway enrichment analyses of DEGs were also performed. Additionally, immune infiltration patterns were analyzed using the cibersort, and the correlation between immune cell-type abundance and DEGs expression was investigated. We further screened and obtained a total of 152 intersecting DEGs from three groups. 23 key genes were obtained through the MCODE plugin. Transcription factors regulating common differentially expressed genes were obtained in the hTFtarget database, and a TF target network diagram was drawn. There are 118 nodes, 251 edges, and 4 clusters in the PPI network. The key genes of the four modules include METAP2, RPL14, SERBP1, EEF2; HR4A1; CANX; ARID1A, UBE2K. METAP2, RPL14, SERBP1 and EEF2 was identified as the key hub genes. CREB1 was identified as the hub TF interacting with those gens by taking the intersection of potential TFs. The types of key gene changes were genetic mutations. It can be seen that the incidence of key gene mutations is 1.7% in EEF2, 0.8% in METAP2, and 0.3% in RPL14, respectively. Finally, We found that the most significant expression differences of the immune infiltrating cells among the three groups, were Tregs and M2, M0 type macrophages. We identified four hub genes METAP2, RPL14, SERBP1 and EEF2 being the most closely with the process from NASH to cirrhosis to HCC. It is beneficial to examine and understand the interaction between hub DEGs and potential regulatory molecules in the process. This knowledge may provide a novel theoretical foundation for the development of diagnostic biomarkers and gene-related therapy targets in the process.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pathology, Dandong Central Hospital, Dandong, Liaoning, China
| | - Xiaohan Yu
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Yuegu Wang
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Jinge Wu
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Bo Feng
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| | - Meng Li
- Department of General Surgery, Dandong Central Hospital, Dandong, Liaoning, China
| |
Collapse
|
7
|
Zhao Y, Chen J, Xu S, Chen Y. CircMETTL15 induces TMTC3 production by absorbing miR-944 to promote hepatocellular carcinoma cell malignancy. J Biochem Mol Toxicol 2024; 38:e23567. [PMID: 37867458 DOI: 10.1002/jbt.23567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/26/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Previous data have suggested the involvement of circular RNA (circRNA) in hepatocellular carcinoma (HCC) progression. Up to now, the effect of circMETTL15 on HCC development remains unknown. This study aims to analyze the function of circMETTL15 in HCC development and the underlying mechanism. RNA expression of circMETTL15, miR-944, and transmembrane O-mannosyltransferase targeting cadherins 3 (TMTC3) were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Protein expression was evaluated by Western blot analysis assay or immunohistochemistry assay. Cell proliferation was investigated by cell counting kit-8 assay, 5-Ethynyl-29-deoxyuridine (EdU) assay, and cell colony formation assay. Cell migration and invasion were assessed by wound-healing assay and transwell assay, respectively. Angiogenic capacity was analyzed by tube formation assay. Dual-luciferase reporter assay and RNA immunoprecipitation assay were conducted to identify the interplay between miR-944 and circMETTL15 or TMTC3. Xenograft mouse model assay was conducted to reveal the effect of circMETTL15 on tumor formation in vivo. CircMETTL15 and TMTC3 expression were significantly upregulated, while miR-944 expression was downregulated in HCC tissues and cells. CircMETTL15 knockdown led to decreased cell proliferation, migration, invasion, and tube formation. Besides, the inhibitors of miR-944, a target miRNA of circMETTL15, partially restored circMETTL15 silencing-mediated effects on the proliferation, migration, invasion, and tube formation of HCC cells. MiR-944 overexpression also inhibited HCC cell malignancy by targeting TMTC3. Furthermore, circMETTL15 absence inhibited tumor formation by regulating miR-944 and TMTC3 in vivo. In conclusion, circMETTL15 induced HCC development through the miR-944/TMTC3 pathway, raising the potential of circMETTL15 as a target for HCC therapy.
Collapse
Affiliation(s)
- Yajun Zhao
- Department of Hepatology, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| | - Jianbo Chen
- Department of Medical Oncology, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Xiamen, China
| | - Shuzhen Xu
- Department of Gastrointestinal Surgery, Zhongshan Hospital Xiamen University, Xiamen, China
| | - Yanwen Chen
- Department of Hepatobiliary and Pancreatic Surgery, Xiamen Humanity Hospital Fujian Medical University, Xiamen, China
| |
Collapse
|
8
|
Feng Q, Huang Z, Song L, Wang L, Lu H, Wu L. Combining bulk and single-cell RNA-sequencing data to develop an NK cell-related prognostic signature for hepatocellular carcinoma based on an integrated machine learning framework. Eur J Med Res 2023; 28:306. [PMID: 37649103 PMCID: PMC10466881 DOI: 10.1186/s40001-023-01300-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND The application of molecular targeting therapy and immunotherapy has notably prolonged the survival of patients with hepatocellular carcinoma (HCC). However, multidrug resistance and high molecular heterogeneity of HCC still prevent the further improvement of clinical benefits. Dysfunction of tumor-infiltrating natural killer (NK) cells was strongly related to HCC progression and survival benefits of HCC patients. Hence, an NK cell-related prognostic signature was built up to predict HCC patients' prognosis and immunotherapeutic response. METHODS NK cell markers were selected from scRNA-Seq data obtained from GSE162616 data set. A consensus machine learning framework including a total of 77 algorithms was developed to establish the gene signature in TCGA-LIHC data set, GSE14520 data set, GSE76427 data set and ICGC-LIRI-JP data set. Moreover, the predictive efficacy on ICI response was externally validated by GSE91061 data set and PRJEB23709 data set. RESULTS With the highest C-index among 77 algorithms, a 11-gene signature was established by the combination of LASSO and CoxBoost algorithm, which classified patients into high- and low-risk group. The prognostic signature displayed a good predictive performance for overall survival rate, moderate to high predictive accuracy and was an independent risk factor for HCC patients' prognosis in TCGA, GEO and ICGC cohorts. Compared with high-risk group, low-risk patients showed higher IPS-PD1 blocker, IPS-CTLA4 blocker, common immune checkpoints expression but lower TIDE score, which indicated low-risk patients might be prone to benefiting from ICI treatment. Moreover, a real-world cohort, PRJEB23709, also revealed better immunotherapeutic response in low-risk group. CONCLUSIONS Overall, the present study developed a gene signature based on NK cell-related genes, which offered a novel platform for prognosis and immunotherapeutic response evaluation of HCC patients.
Collapse
Affiliation(s)
- Qian Feng
- Department of Emergency, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Zhihao Huang
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China
| | - Lei Song
- Department of General Practice, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Le Wang
- Department of Blood Transfusion, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, China
| | - Hongcheng Lu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| | - Linquan Wu
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, 1st min de Road, Nanchang, 330000, China.
| |
Collapse
|
9
|
Song L, Xu R, Cai W, Liang J, Cao N, Gao J, Tang X. IL-6 upregulates the expression of IL-6R through the JAK2/STAT3 signalling pathway to promote progression of hepatocellular carcinoma. Scand J Immunol 2023; 98:e13271. [PMID: 38441314 DOI: 10.1111/sji.13271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/22/2023] [Accepted: 04/09/2023] [Indexed: 03/07/2024]
Abstract
The progression of hepatocellular carcinoma (HCC) involves multifactor, multistep interactions. High expression of interleukin-6 receptor (IL-6R) plays an important role in the occurrence and development of tumours, but the regulatory mechanism of IL-6R expression and its function in HCC have not been fully defined. Western blot was used to evaluate the phosphorylation of key kinases in the JAK2/STAT3 pathway and the protein expression levels of related proliferation molecules, migration molecules and apoptotic molecules. The antiapoptosis, migration and proliferation of cells of each group were analysed with JC-1 to judge the cell apoptosis rate, the EdU method to determine the proliferation vitality of the cells, clone formation experiments and Transwell experiments. High expression of IL-6R in cell lines, lower protein levels of the apoptotic molecules c-Caspase7 and c-Caspase3 and higher protein levels of the proliferative molecules p-P70S6K and migration molecules MMP9 and MMP2 were consistent with stronger antiapoptosis, proliferation and migration. Interestingly, IL-6 upregulated the expression of IL-6R by activating the JAK2/STAT3 signalling pathway. Also, the expression of IL-6R protein was downregulated after lentivirus knockdown of STAT3. In nude mice bearing subcutaneous tumours, upregulation of IL-6R expression after activation of the JAK2/STAT3 signalling pathway by IL-6 significantly increased tumour growth. Moreover, the expression of IL-6R protein was downregulated, and the terminal tumour volume was significantly downregulated in the lentiviral STAT3 knockdown group. IL-6 regulated the transcription of IL-6R through the activation of the JAK2/STAT3 signalling pathway.
Collapse
Affiliation(s)
- Li Song
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| | - Ruyue Xu
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| | - Wenpeng Cai
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| | - Jiaojiao Liang
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| | - Niandie Cao
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
| | - Jiafeng Gao
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
| | - Xiaolong Tang
- First Affiliated Hospital, Anhui University of Science and Technology, Huainan, China
- Institute of Environment-friendly Materials and Occupational Health of Anhui University of Science and Technology (Wuhu), Wuhu, China
| |
Collapse
|
10
|
Hashemi M, Gholami S, Raesi R, Sarhangi S, Mahmoodieh B, Koohpar ZK, Goharrizi MASB, Behroozaghdam M, Entezari M, Salimimoghadam S, Zha W, Rashidi M, Abdi S, Taheriazam A, Nabavi N. Biological and therapeutic viewpoints towards role of miR-218 in human cancers: Revisiting molecular interactions and future clinical translations. Cell Signal 2023:110786. [PMID: 37380085 DOI: 10.1016/j.cellsig.2023.110786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 06/30/2023]
Abstract
Understanding the exact pathogenesis of cancer is difficult due to heterogenous nature of tumor cells and multiple factors that cause its initiation and development. Treatment of cancer is mainly based on surgical resection, chemotherapy, radiotherapy and their combination, while gene therapy has been emerged as a new kind of therapy for cancer. Post-transcriptional regulation of genes has been of interest in recent years and among various types of epigenetic factors that can modulate gene expression, short non-coding RNAs known as microRNAs (miRNAs) have obtained much attention. The stability of mRNA decreases by miRNAs to repress gene expression. miRNAs can regulate tumor malignancy and biological behavior of cancer cells and understanding their function in tumorigenesis can pave the way towards developing new therapeutics in future. One of the new emerging miRNAs in cancer therapy is miR-218 that increasing evidence highlights its anti-cancer activity, while a few studies demonstrate its oncogenic function. The miR-218 transfection is promising in reducing progression of tumor cells. miR-218 shows interactions with molecular mechanisms including apoptosis, autophagy, glycolysis and EMT, and the interaction is different. miR-218 induces apoptosis, while it suppresses glycolysis, cytoprotective autophagy and EMT. Low expression of miR-218 can result in development of chemoresistance and radio-resistance in tumor cells and direct targeting of miR-218 as a key player is promising in cancer therapy. LncRNAs and circRNAs are nonprotein coding transcripts that can regulate miR-218 expression in human cancers. Moreover, low expression level of miR-218 can be observed in human cancers such as brain, gastrointestinal and urological cancers that mediate poor prognosis and low survival rate.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Sadaf Gholami
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Sarhangi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Behnaz Mahmoodieh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Department of Cell and Molecular Biology, Faculty of Biological Sciences,Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | | | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Wenliang Zha
- Second Affiliated Hospital, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Soheila Abdi
- Department of Physics, Safadasht Branch, Islamic Azad university, Tehran, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| |
Collapse
|
11
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
12
|
Shi Y, Zhou L, Zeng W, Wei B, Deng J. Sparse Independence Component Analysis for Competitive Endogenous RNA Co-Module Identification in Liver Hepatocellular Carcinoma. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:384-393. [PMID: 37465460 PMCID: PMC10351610 DOI: 10.1109/jtehm.2023.3283519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/31/2023] [Accepted: 06/04/2023] [Indexed: 07/20/2023]
Abstract
OBJECTIVE Long non-coding RNAs (lncRNAs) have been shown to be associated with the pathogenesis of different kinds of diseases and play important roles in various biological processes. Although numerous lncRNAs have been found, the functions of most lncRNAs and physiological/pathological significance are still in its infancy. Meanwhile, their expression patterns and regulation mechanisms are also far from being fully understood. METHODS In order to reveal functional lncRNAs and identify the key lncRNAs, we develop a new sparse independence component analysis (ICA) method to identify lncRNA-mRNA-miRNA expression co-modules based on the competitive endogenous RNA (ceRNA) theory using the sample-matched lncRNA, mRNA and miRNA expression profiles. The expression data of the three RNA combined together is approximated sparsely to obtain the corresponding sparsity coefficient, and then it is decomposed by using ICA constraint optimization to obtain the common basis and modules. Subsequently, affine propagation clustering is used to perform cluster analysis on the common basis under multiple running conditions to obtain the co-modules for the selection of different RNA elements. RESULTS We applied sparse ICA to Liver Hepatocellular Carcinoma (LIHC) dataset and the experiment results demonstrate that the proposed sparse ICA method can effectively discover biologically functional expression common modules. CONCLUSION It may provide insights into the function of lncRNAs and molecular mechanism of LIHC. Clinical and Translational Impact Statement-The results on LIHC dataset demonstrate that the proposed sparse ICA method can effectively discover biologically functional expression common modules, which may provide insights into the function of IncRNAs and molecular mechanism of LIHC.
Collapse
Affiliation(s)
- Yuhu Shi
- Information Engineering CollegeShanghai Maritime UniversityShanghai201306China
| | - Lili Zhou
- Yangpu District Central HospitalShanghai200433China
| | - Weiming Zeng
- Information Engineering CollegeShanghai Maritime UniversityShanghai201306China
| | - Boyang Wei
- Information Engineering CollegeShanghai Maritime UniversityShanghai201306China
| | - Jin Deng
- College of Mathematics and InformaticsSouth China Agricultural UniversityGuangzhou510642China
| |
Collapse
|
13
|
Doghish AS, Elballal MS, Elazazy O, Elesawy AE, Elrebehy MA, Shahin RK, Midan HM, Sallam AAM. The role of miRNAs in liver diseases: Potential therapeutic and clinical applications. Pathol Res Pract 2023; 243:154375. [PMID: 36801506 DOI: 10.1016/j.prp.2023.154375] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
MicroRNAs (miRNAs) are a class of short, non-coding RNAs that function post-transcriptionally to regulate gene expression by binding to particular mRNA targets and causing destruction of the mRNA or translational inhibition of the mRNA. The miRNAs control the range of liver activities, from the healthy to the unhealthy. Considering that miRNA dysregulation is linked to liver damage, fibrosis, and tumorigenesis, miRNAs are a promising therapeutic strategy for the evaluation and treatment of liver illnesses. Recent findings on the regulation and function of miRNAs in liver diseases are discussed, with an emphasis on miRNAs that are highly expressed or enriched in hepatocytes. Alcohol-related liver illness, acute liver toxicity, viral hepatitis, hepatocellular carcinoma, liver fibrosis, liver cirrhosis, and exosomes in chronic liver disease all emphasize the roles and target genes of these miRNAs. We briefly discuss the function of miRNAs in the etiology of liver diseases, namely in the transfer of information between hepatocytes and other cell types via extracellular vesicles. Here we offer some background on the use of miRNAs as biomarkers for the early prognosis, diagnosis, and assessment of liver diseases. The identification of biomarkers and therapeutic targets for liver disorders will be made possible by future research into miRNAs in the liver, which will also help us better understand the pathogeneses of liver diseases.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City 11231, Cairo, Egypt.
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt.
| | - Reem K Shahin
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Heba M Midan
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Al-Aliaa M Sallam
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| |
Collapse
|
14
|
Gong S, Wu H, Wu C, Duan Y, Zhang B, Wu P, Tang J, Fu J. A human pan-cancer system analysis of regulator of chromatin condensation 2. Heliyon 2023; 9:e13599. [PMID: 36865448 PMCID: PMC9970930 DOI: 10.1016/j.heliyon.2023.e13599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/30/2023] [Accepted: 02/05/2023] [Indexed: 02/12/2023] Open
Abstract
Regulation of chromosome condensation 2 (RCC2) is associated with the cell cycle and is a crucial regulator of the chromatin condensation 1 (RCC1) family. The members of this family were normally regulators in the process of DNA replication and nucleocytoplasmic transport. RCC2 overexpression may lead to tumor formation and poor prognosis in some tumors including breast cancer and lung adenocarcinoma. However, the possible role of RCC2 in tumor formation and its prognostic function remains unclear. In this study, expression analysis from databases including The Cancer Genome Atlas (TCGA) and Clinical Proteomic Tumor Analysis Consortium (CPTAC) were combined to perform the first integrative and comprehensive analysis of RCC2 in human pan-cancer. RCC2 was highly expressed in most tumors which may lead to a poor prognosis. RCC2 expression was associated with immune/stromal infiltration, immune checkpoints, tumor mutational burden, and microsatellite instability. Thus, RCC2 could be a novel biomarker for prognosis and a promising cancer therapy target.
Collapse
Affiliation(s)
- Siming Gong
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Hao Wu
- Department of Gastroenterology, Third Xiangya Hospital, Central South University, Changsha, China
| | - Changwu Wu
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Yingjuan Duan
- Faculty of Chemistry and Mineralogy, University of Leipzig, Leipzig, Germany
| | - Bixi Zhang
- Department of Pathology, Hunan Provincial People's Hospital, Hunan Normal University, Changsha, China
| | - Panfeng Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Juyu Tang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jinfei Fu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China,Corresponding author. Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
15
|
Liu H, Xiang L, Mei Y. miR-877-5p Inhibits Epithelial Mesenchymal Transformation of Breast Cancer Cells by Targeting FGB. DISEASE MARKERS 2022; 2022:4882375. [PMID: 36438895 PMCID: PMC9691316 DOI: 10.1155/2022/4882375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/12/2022] [Accepted: 08/16/2022] [Indexed: 12/25/2023]
Abstract
PURPOSE This present study is aimed at exploring the FGB expression in breast cancer (BC) and the role of FGB in BC. METHODS A total of 150 pairs of BC tissues and adjacent tissues from BC surgery patients were collected. RT-qPCR was utilized to evaluate the mRNA expression of FGB and miR-877-5p. Immunohistochemistry was applied to evaluate the protein expression of FGB. Chi-square test was performed to evaluate the relationship between FGB expression level and clinical characteristics. Cell proliferation was examined using CCK-8 assay. Cell invasion was evaluated by transwell assay. Flow cytometry assay was applied to measure cell apoptosis. The protein expression was evaluated by western blot. BALB/C nude mice were used to establish the xenograft tumor model. RESULTS FGB was more highly expressed in BC tumor, and the expression of FGB was relevant to TNM stage and lymph node metastasis and showed a positive correlation. FGB was proved to be directly regulated via miR-877-5p and enhanced proliferation and invasion of BC cells. FGB downregulation markedly inhibited the tumor growth, including tumor weight and volume. In addition, the Ki-67 expression was observably declined in the sh-FGB group. The protein expression of E-cadherin was markedly raised in the sh-FGB group while the protein expression of N-cadherin and vimentin was markedly declined in the sh-FGB group. CONCLUSION In conclusion, miR-877-5p inhibits epithelial mesenchymal transformation, cell proliferation, and invasion of BC cells via downregulating FGB.
Collapse
Affiliation(s)
- Haixia Liu
- Department of Pathology, Jinan Maternity and Child Care Hospital, 250001 Jinan, Shandong, China
| | - Lili Xiang
- Department of Children's Health Care, Jinan Maternity and Child Care Hospital, 250001 Jinan, Shandong, China
| | - Yu Mei
- Department of Breast Surgery, Jinan Maternity and Child Care Hospital, 250001 Jinan, Shandong, China
| |
Collapse
|
16
|
Zhou J, Chen W, He Q, Chen D, Li C, Jiang C, Ding Z, Qian Q. SERBP1 affects the apoptotic level by regulating the expression and alternative splicing of cellular and metabolic process genes in HeLa cells. PeerJ 2022; 10:e14084. [PMID: 36213507 PMCID: PMC9536300 DOI: 10.7717/peerj.14084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/29/2022] [Indexed: 01/20/2023] Open
Abstract
Background RNA-binding proteins (RBPs) have important roles in orchestrating posttranscriptional regulation and modulating many tumorigenesis events. SERBP1 has been recognized as an important regulator in multiple cancers, while it remains unclear whether SERBP1-regulated gene expression at the transcriptome-wide level is significantly correlated with tumorigenesis. Methods We overexpressed SERBP1 in HeLa cells and explored whether SERBP1 overexpression (SERBP1-OE) affects the proliferation and apoptosis of HeLa cells. We analyzed the transcriptome-wide gene expression changes and alternative splicing changes mediated by SERBP1-OE using the transcriptome sequencing method (RNA-seq). RT-qPCR was conducted to assay SERBP1-regulated alternative splicing. Results SERBP1-OE induced the apoptosis of HeLa cells. The downregulated genes were strongly enriched in the cell proliferation and apoptosis pathways according to the GO analysis, including FOS, FOSB, PAK6 and RAB26. The genes undergoing at least one SERBP1-regulated alternative splicing event were enriched in transcriptional regulation, suggesting a mechanism of the regulation of gene expression, and in pyruvate and fatty acid metabolic processes critical for tumorigenesis events. The SERBP1-regulated alternative splicing of ME3, LPIN3, CROT, PDP1, SLC27A1 and ALKBH7 was validated by RT-qPCR analysis. Conclusions We for the first time demonstrated the cellular function and molecular targets of SERBP1 in HeLa cells at transcriptional and post-transcriptional levels. The SERBP1-regulated gene expression and alternative splicing networks revealed by this study provide important information for exploring the functional roles and regulatory mechanisms of SERBP1 in cancer development and progression.
Collapse
Affiliation(s)
- Junjie Zhou
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Wenhao Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Qianwen He
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Dong Chen
- Center for Genome Analysis, Wuhan Ruixing Biotechnology Co., Ltd., Wu Han, Hubei, China
| | - Chunguang Li
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Zhao Ding
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| | - Qun Qian
- Department of Colorectal and Anal Surgery, Zhongnan Hospital, Wuhan University, Wu Han, Hubei, China
| |
Collapse
|
17
|
Wei Y, Yin L, Xie X, Wu Z, Zhang J, Gao Y, Tang J. MicroRNA-501-3p targeting TM4SF1 facilitates tumor-related behaviors of gastric cancer cells via EMT signaling pathway. Mutat Res 2022; 825:111802. [PMID: 36274500 DOI: 10.1016/j.mrfmmm.2022.111802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Increasing evidence shows that Transmembrane 4 L6 family member 1(TM4SF1) exerts a critical role in mediating the progression of various tumors. Nevertheless, the exact mechanism of TM4SF1 in gastric cancer (GC) remains unclear. METHODS Bioinformatics analysis was utilized to analyze TM4SF1 expression in GC tissues. Also, MiRWalk and starBase databases were used to predict the upstream microRNAs which could regulate TM4SF1 expression. Gene set enrichment analysis (GSEA) for TM4SF1 was conducted to screen the potentially involved pathways. Dysregulation of microRNA-501-3p/TM4SF1 was implemented to investigate the regulatory roles of these genes in GC. qRT-PCR and western blot were employed to measure the expression changes of microRNA-501-3p, TM4SF1, and epithelial-mesenchymal transition (EMT) signaling pathway-associated proteins. CCK-8, colony formation, and transwell assays were introduced to examine the biological functions of GC cell lines. RESULTS TM4SF1 presented a significantly low level in mRNA and protein in GC cells. MicroRNA-501-3p could target TM4SF1 and reduce its expression. Cell function experiments revealed that microRNA-501-3p facilitated cell proliferation, migration, and invasion, while inhibiting cell apoptosis in GC by targeting TM4SF1. EMT-associated proteins were altered by changing microRNA-501-3p/TM4SF1 axis. CONCLUSION MicroRNA-501-3p regulated EMT signaling pathway by down-regulating TM4SF1 expression and therefore facilitated the malignant progression of GC, which may provide a new potential therapeutic target for the treatment of GC patients.
Collapse
Affiliation(s)
- Yunhai Wei
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China.
| | - Lei Yin
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China
| | - Xiao Xie
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China
| | - Zhongxin Wu
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China
| | - Jinyu Zhang
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China
| | - Yuhai Gao
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China
| | - Jianing Tang
- Department of Gastrointestinal Surgery, Huzhou Central Hospital, Affiliated Central Hospital Huzhou University, Huzhou 313002, Zhejiang Province, China
| |
Collapse
|
18
|
Hypoxia-induced LncRNA DACT3-AS1 upregulates PKM2 to promote metastasis in hepatocellular carcinoma through the HDAC2/FOXA3 pathway. EXPERIMENTAL & MOLECULAR MEDICINE 2022; 54:848-860. [PMID: 35764883 PMCID: PMC9256752 DOI: 10.1038/s12276-022-00767-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
Growing evidence has revealed that hypoxia is involved in multiple stages of cancer development. However, there are limited reports on the effects of long noncoding RNAs (lncRNAs) on hepatocellular carcinoma (HCC) progression under hypoxia. The main purposes of this study were to analyze the effect of the novel lncRNA DACT3-AS1 on metastasis in HCC and to elucidate the related molecular mechanism. Bioinformatics tools were employed. RT–qPCR or western blot assays were conducted to detect RNA or protein expression. Clinical samples and in vivo assays were utilized to reveal the role of DACT3-AS1 in HCC. Other mechanism and functional analyses were specifically designed and performed as well. Based on the collected data, this study revealed that HIF-1α transcriptionally activates DACT3-AS1 expression under hypoxia. DACT3-AS1 was verified to promote metastasis in HCC. Mechanistically, DACT3-AS1 promotes the interaction between HDAC2 and FOXA3 to stimulate FOXA3 deacetylation, which consequently downregulates the FOXA3 protein. Furthermore, FOXA3 serves as a transcription factor that can bind to the PKM2 promoter region, thus hindering PKM2 expression. To summarize, this study uncovered that HIF-1α-induced DACT3-AS1 promotes metastasis in HCC and can upregulate PKM2 via the HDAC2/FOXA3 pathway in HCC cells. Understanding the role of an RNA molecule involved in metastasis (spread) of liver cancer may suggest potential therapeutic targets. Hepatocarcinoma is a common primary liver cancer, and mortality remains high due to late diagnosis and the risk of metastasis. Scientists believe hypoxic (low oxygen) conditions in solid tumors may trigger metastasis by a mechanism involving long non-coding RNAs. Bin Li and co-workers at the Affiliated Hospital of Guilin Medical College, China, used patient tissue samples to examine the role of the long non-coding RNA molecule DACT3-AS1 in promoting hepatocarcinoma metastasis. Hypoxia triggers the overexpression of HIF-1α. This protein activated DACT3-AS1, which was then highly expressed in metastatic tissues. DACT3-AS1 interacted with a nearby gene and associated enzyme to promote cell migration and invasion, hinting at possible treatment options.
Collapse
|
19
|
Yao M, Yang JL, Wang DF, Wang L, Chen Y, Yao DF. Encouraging specific biomarkers-based therapeutic strategies for hepatocellular carcinoma. World J Clin Cases 2022; 10:3321-3333. [PMID: 35611205 PMCID: PMC9048543 DOI: 10.12998/wjcc.v10.i11.3321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023] Open
Abstract
The prevention, early discovery and effective treatment of patients with hepatocellular carcinoma (HCC) remain a global medical challenge. At present, HCC is still mainly treated by surgery, supplemented by vascular embolization, radio frequency, radiotherapy, chemotherapy and biotherapy. The application of multikinase inhibitor sorafenib, chimeric antigen receptor T cells, or PD-1/PD-L1 inhibitors can prolong the median survival of HCC patients. However, the treatment efficacy is still unsatisfactory due to HCC metastasis and postoperative recurrence. During the process of hepatocyte malignant transformation, HCC tissues can express and secrete many types of specific biomarkers, or oncogenic antigen molecules into blood, for example, alpha-fetoprotein, glypican-3, Wnt3a (one of the key signaling molecules in the Wnt/β-catenin pathway), insulin-like growth factor (IGF)-II or IGF-I receptor, vascular endothelial growth factor, secretory clusterin and so on. In addition, combining immunotherapy with non-coding RNAs might improve anti-cancer efficacy. These biomarkers not only contribute to HCC diagnosis or prognosis, but may also become molecular targets for HCC therapy under developing or clinical trials. This article reviews the progress in emerging biomarkers in basic research or clinical trials for HCC immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- Research Center of Clinical Medicine & Department of Immunology, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Jun-Ling Yang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - De-Feng Wang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Li Wang
- Department of Medical Informatics, Medical School of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Ying Chen
- Department of Oncology, Affiliated Second Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| | - Deng-Fu Yao
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong 226001, Jiangsu Province, China
| |
Collapse
|
20
|
Meng T, Wang Q, Yang Y, Ren Y, Shi Y. Construction of a Necroptosis-Related miRNA Signature for Predicting the Prognosis of Patients With Hepatocellular Carcinoma. Front Genet 2022; 13:825261. [PMID: 35495130 PMCID: PMC9039163 DOI: 10.3389/fgene.2022.825261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/14/2022] [Indexed: 01/15/2023] Open
Abstract
Background: Many miRNAs have been demonstrated to be associated with the prognosis of hepatocellular carcinoma (HCC). However, how to combine necroptosis-related miRNAs to achieve the best predictive effect in estimating HCC patient survival has not been explored. Methods: The mRNA and miRNA expression profile were downloaded from a public database (TCGA-LIHC cohort). Necroptosis-related genes were obtained from previous references, and necroptosis-related miRNAs were identified using Pearson analysis. Subsequently, differential expression miRNAs (DEms) were identified in HCC and paracancer normal samples based on necroptosis-related miRNA expression. The whole set with HCC was randomized into a training set and testing set (1:1). LASSO-Cox regression analysis was used to construct an miRNA signature. Multiple statistical methods were used to validate the clinical benefit of signature in HCC patients, including receiver operator characteristic (ROC) curves, Kaplan–Meier survival analyses, and decision curve analysis (DCA). The downstream target genes of miRNAs were obtained from different online tools, and the potential pathways involved in miRNAs were explored. Finally, we conducted RT-qPCR in SK-HEP-1, THLE-3, and HUH-7 cell lines for miRNAs involved in the signature. Results: The results showed that a total of eight specific necroptosis-related miRNAs were screened between HCC and adjacent tissues in the training set. Subsequently, based on the aforementioned miRNAs, 5-miRNA signature (miR-139-5p, hsa-miR-326, miR-10b-5p, miR-500a-3p, and miR-592) was generated by LASSO-Cox regression analysis. Multivariate Cox regression analysis showed that the risk scores were independent prognostic indicators in each set. The area under curves (AUCs) of 1 year, 3 years, 5 years, and 7 years were high in each set (AUC >0.7). DCA analysis also revealed that the risk score had a potential benefit than other clinical characteristics. Meanwhile, survival analysis showed that the high-risk group showed low survival probabilities. Moreover, the results of enrichment analysis showed that specific miRNAs were mainly enriched in the cAMP signaling pathway and TNF signaling pathway. Finally, the results of RT-qPCR were consistent with the prediction results in public databases. Conclusion: Our study establishes a robust tool based on 5-necroptosis-related miRNAs for the prognostic management of HCC patients.
Collapse
Affiliation(s)
| | | | - Yufeng Yang
- *Correspondence: Yufeng Yang, ; Yanling Ren, ; Yan Shi,
| | - Yanling Ren
- *Correspondence: Yufeng Yang, ; Yanling Ren, ; Yan Shi,
| | - Yan Shi
- *Correspondence: Yufeng Yang, ; Yanling Ren, ; Yan Shi,
| |
Collapse
|
21
|
Li L, Bi Y, Diao S, Li X, Yuan T, Xu T, Huang C, Li J. Exosomal LncRNAs and hepatocellular Carcinoma: From basic research to clinical practice. Biochem Pharmacol 2022; 200:115032. [PMID: 35395241 DOI: 10.1016/j.bcp.2022.115032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/18/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer with poor prognosis. The incidences of HCC and HCC-related deaths have increased over the last several decades. However, the treatment options for advanced HCC are very limited. Long noncoding RNAs (lncRNAs) wrapped in exosomes can change the expression of their target genes in recipient cells, thereby regulating the behavior of recipient cells. Increasing evidence has demonstrated that there is a correlation between the activation of exosomal lncRNAs and the development of HCC. In this review article, we highlighted the functions of exosomal lncRNAs in the development of HCC, showing that exosomal lncRNAs play a vital role in the growth and progression of HCC and are targets for HCC.
Collapse
Affiliation(s)
- Liangyun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Yihui Bi
- The Second Affiliated Hospital of Anhui Medical University, China
| | - Shaoxi Diao
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Xiaofeng Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tong Yuan
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Cheng Huang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China; Institute for Liver Diseases of Anhui Medical University, China.
| |
Collapse
|
22
|
Nie Y, Zhu X, Bu N, Jiang Y, Su Y, Pan K, Li S. Circ_0064288 acts as an oncogene of hepatocellular carcinoma cells by inhibiting miR-335-5p expression and promoting ROCK1 expression. BMC Cancer 2022; 22:265. [PMID: 35287604 PMCID: PMC8919637 DOI: 10.1186/s12885-022-09323-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 01/28/2022] [Indexed: 11/10/2022] Open
Abstract
Background Reportedly, circular RNA (circRNA) is a key modulator in the development of human malignancies. This work is aimed to probe the expression pattern, biological effects and mechanism of circ_0064288 on hepatocellular carcinoma (HCC) progression. Methods The differentially expressed circRNA was screened by analyzing the expression profiles of circRNAs in HCC tissues and normal tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to examine the expression of circ_0064288, miR-335-5p and Rho associated coiled-coil containing protein kinase 1 (ROCK1) mRNA in HCC specimens. After circ_0064288 was overexpressed or knocked down in HCC cells, cell growth was detected by the CCK-8 experiment, and cell migration was evaluated using Transwell experiment and scratch healing experiment. The targeting relationship between miR-335-5p and circ_0064288 and ROCK1 mRNA was predicted and verified using bioinformatic analysis and dual-luciferase reporter gene experiments, respectively. Western blot was executed to examine ROCK1 protein expression in HCC cells. Results Circ_0064288 and ROCK1 expression was up-modulated in HCC, while miR-335-5p was down-modulated. High circ_0064288 expression was associated with shorter survival time of HCC patients. It was also revealed that circ_0064288 overexpression remarkably enhanced HCC cell growth and migration, while knockdown of circ_0064288 induced opposite effects. Additionally, circ_0064288 could competitively bind with miR-335-5p thereby up-modulate ROCK1 expression. MiR-335-5p overexpression partly counteracted the effect of circ_0064288 overexpression on HCC cells. Conclusion Circ_0064288 facilitates HCC cell growth and migration by modulating the miR-335-5p/ROCK1 axis. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09323-8.
Collapse
Affiliation(s)
- Yingying Nie
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang, China
| | - Xuedan Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Harbin Medical University, Harbin, 150000, Heilongjiang, China
| | - Nan Bu
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Yang Jiang
- Department of Gastroenterology, Jiamusi Central Hospital, Jiamusi, 154002, Heilongjiang, China
| | - Yue Su
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Keming Pan
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China
| | - Shanshan Li
- Department of Gastroenterology, Jiamusi Hospital of Traditional Chinese Medicine, No.326 Jiefang Road, Jiamusi, 154002, Heilongjiang, China.
| |
Collapse
|
23
|
Chen W, Zhang Y, Fang Z, Qi W, Xu Y. TRIM66 hastens the malignant progression of non-small cell lung cancer via modulating MMP9-mediated TGF-β/SMAD pathway. Cytokine 2022; 153:155831. [PMID: 35301175 DOI: 10.1016/j.cyto.2022.155831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/17/2022] [Accepted: 02/09/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVE To investigate regulatory function and underlying mechanism of TRIM66 in non-small cell lung cancer (NSCLC). METHODS TRIM66 and MMP9 expression in NSCLC cells and tissues was assayed via qRT-PCR and western blot. CCK-8, colony formation, Transwell and flow cytometry assays were conducted to measure cell functional alternations in NSCLC. Western blot was employed to measure expression as well as phosphorylation levels of epithelial-mesenchymal transition-(EMT) and TGF-β/SMAD pathways-related proteins. Co-immunoprecipitation (Co-IP) assay was done to probe interaction between TRIM66 and MMP9. Xenograft in vivo experiment and tumor metastasis model in nude mice were utilized to investigate effects of TRIM66 on tumor growth of NSCLC. RESULTS TRIM66 and MMP9 were conspicuously highly expressed in NSCLC cells and tissues. High TRIM66 level was markedly correlated with metastasis. Silencing TRIM66 prominently repressed the proliferation, migration and invasion of transfected cells, while inducing cell apoptosis. Whereas forced expression of TRIM66 exerted the opposite effect. The aberrant expression of TRIM66 modulated EMT pathway. TRIM66 also regulated MMP9 expression, and the interaction between them was validated by Co-IP assay. Overexpression of MMP9 could activate TGF-β/SMAD pathway. Rescue experiments manifested that si-MMP9 or SB431542 could partially reverse phenotypes induced by TRIM66. In vivo experiments revealed that silencing TRIM66 could hamper NSCLC tumor growth and metastasis. CONCLUSION TRIM66 and MMP9 were up-regulated in NSCLC. TRIM66 facilitated the malignant progression of NSCLC through modulating MMP9-mediated TGF-β/SMAD pathway.
Collapse
Affiliation(s)
- Wenyu Chen
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Ye Zhang
- Department of General Practice, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Zhixian Fang
- Department of Respiratory, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Weibo Qi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China
| | - Yufen Xu
- Department of Oncology, Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang 314000, PR China.
| |
Collapse
|
24
|
Shan B, Qu S, Lv S, Fan D, Wang S. YY1-induced long non-coding RNA small nucleolar RNA host gene 8 promotes the tumorigenesis of melanoma via the microRNA-656-3p/SERPINE1 mRNA binding protein 1 axis. Bioengineered 2022; 13:4832-4843. [PMID: 35156513 PMCID: PMC8973976 DOI: 10.1080/21655979.2022.2034586] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long non-coding (lnc) RNA serves a vital role in the cellular processes of carcinoma. This study aimed to explore the accurate mechanism underlying lncRNA small nucleolar RNA host gene 8 (SNHG8) in melanoma. In this study, lncRNA SNHG8 expression were upregulated in melanoma tissues and cells, and lncRNA SNHG8 knockdown reduced melanoma cell viability, migration and invasion. Moreover, lncRNA SNHG8 expression could be induced by transcription factor YY1. In addition, we found that miR-656 could directly bind to lncRNA SNHG8 and SERPINE1 mRNA binding protein 1 (SERBP1). Rescue assays indicated that miR-656 overexpression inhibited the aforementioned cellular activities in melanoma cells, which were reversed by SERBP1 overexpression. In conclusion, this work elucidated that YY1-induced upregulation of lncRNA SNHG8 boosted the development of melanoma via the miR-656-3p/SERBP1 axis, providing a novel therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Baihui Shan
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Shengming Qu
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Sha Lv
- Department of Dermatology, The Second Hospital of Jilin University, China
| | - Dandan Fan
- Department of Dermatology, Jilin Province People’s Hospital, China
| | - Shu Wang
- Department of Radio Therapy, The Second Hospital of Jilin University, China
| |
Collapse
|
25
|
Wang BR, Chu DX, Cheng MY, Jin Y, Luo HG, Li N. Progress of HOTAIR-microRNA in hepatocellular carcinoma. Hered Cancer Clin Pract 2022; 20:4. [PMID: 35093153 PMCID: PMC8800341 DOI: 10.1186/s13053-022-00210-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 01/13/2022] [Indexed: 01/02/2023] Open
Abstract
The Hox transcript antisense intergenic RNA (HOTAIR) has been identified as a tumor gene, and its expression in HCC is significantly increased. HOTAIR is associated with the proliferation, invasion, metastasis and poor prognosis of HCC. In addition, HOTAIR can also regulate the expression and function of microRNA by recruiting the polycomb repressive complex 2 (PRC2) and competitive adsorption, thus promoting the occurrence and development of HCC. In this review, we discussed the two mechanisms of HOTAIR regulating miRNA through direct binding miRNA and indirect regulation, and emphasized the role of HOTAIR in HCC through miRNA, explained the regulatory pathway of HOTAIR-miRNA-mRNA and introduced the role of this pathway in HCC proliferation, drug resistance, invasion and metastasis.
Collapse
|
26
|
Wang R, Fan H, Sun M, Lv Z, Yi W. Roles of BMI1 in the Initiation, Progression, and Treatment of Hepatocellular Carcinoma. Technol Cancer Res Treat 2022; 21:15330338211070689. [PMID: 35072573 PMCID: PMC8793120 DOI: 10.1177/15330338211070689] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liver cancer has high rates of morbidity and mortality, and its treatment is a global health challenge. Hepatocellular carcinoma (HCC) accounts for 90% of all primary liver cancer cases. B-lymphoma Mo-MLV insertion region 1 (BMI1) has been identified as a proto-oncogene, which contributes to the initiation and progression of many malignant tumors. BMI1 expression is upregulated in HCC, and it influences the occurrence and development of HCC by various mechanisms, such as the INK4a/ARF locus, NF-κB signaling pathway, and PTEN/PI3K/AKT signaling pathway. In addition, the expression of BMI1 is related to prognosis and recurrence of HCC. Hence, there is clear evidence that BMI1 is a novel and valid therapeutic target for HCC. Accordingly, the development of therapeutic strategies targeting BMI1 has been a focus of recent research, providing new directions for HCC treatment. This review summarizes the role of BMI1 in the occurrence and treatment of HCC, which will provide a basis for using BMI1 as a potential target for the development of therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Ru Wang
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hengwei Fan
- 535219The Eastern Hepatobiliary Surgery Hospital, Navy Medical University (Second Military Medical University), Shanghai, China
| | - Ming Sun
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhongwei Lv
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wanwan Yi
- 278245Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Feng Z, Ye Z, Xie J, Chen W, Li W, Xing C. Study on the mechanism of LOXL1-AS1/miR-3614-5p/YY1 signal axis in the malignant phenotype regulation of hepatocellular carcinoma. Biol Direct 2021; 16:24. [PMID: 34863279 PMCID: PMC8645132 DOI: 10.1186/s13062-021-00312-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 11/16/2021] [Indexed: 01/29/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high mortality worldwide. Accumulating researches have indicated that long non‑coding RNAs (lncRNAs) are involved in varies human cancers, including HCC. Nevertheless, the specific molecular mechanism of lncRNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in HCC is still unclear. Methods LOXL1-AS1 expression was tested via qRT-PCR in HCC cells. Functional and mechanism assays were respectively done to evaluate the biological functions of HCC cells and the potential interaction of LOXL1-AS1 and other factors. Results We discovered that LOXL1-AS1 was high expressed in HCC cells. Inhibition of LOXL1-AS1 repressed cell proliferation, migration and invasion, but enhanced cell apoptosis in HCC. Further, miR-3614-5p was proven to be sponged by LOXL1-AS1. Additionally, Yin Yang 1 (YY1) was proven as the target gene of miR-3614-5p, and YY1 depletion could repress HCC cell malignant behaviors. YY1 could also transcriptionally activate LOXL1-AS1 expression. In rescue assays, we confirmed that overexpression of YY1 or miR-3614-5p inhibition could reverse the suppressive effects of LOXL1-AS1 silence on the malignant behaviors of HCC cells. Conclusion In short, LOXL1-AS1/miR-3614-5p/YY1 forms a positive loop in modulating HCC cell malignant behaviors. Supplementary Information The online version contains supplementary material available at 10.1186/s13062-021-00312-8.
Collapse
Affiliation(s)
- ZhenYu Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - ZhenYu Ye
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - JiaMing Xie
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Wei Chen
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - Wei Li
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, Jiangsu, China
| | - ChunGen Xing
- Department of General Surgery, The Second Affiliated Hospital of Soochow University, No. 1055 Sanxiang Road, Gusu District, Suzhou, 215004, Jiangsu, China.
| |
Collapse
|
28
|
Zhang D, Zhang Y, Zhang X, Zhai H, Sun X, Li Y. Circ_0046600 promotes hepatocellular carcinoma progression via up-regulating SERBP1 through sequestering miR-1258. Pathol Res Pract 2021; 228:153681. [PMID: 34784519 DOI: 10.1016/j.prp.2021.153681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/02/2021] [Accepted: 11/01/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Circ_0046600 was reported to promote hepatocellular carcinoma (HCC) cell migratory ability. However, the functional roles and mechanism of circ_0046600 in HCC remain largely unknown. METHODS Levels of genes and proteins were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. In vitro experiments were performed using cell counting kit-8 (CCK-8), colony formation, transwell, flow cytometry and Western blot assays, respectively. The direct interactions between miR-1258 and circ_0046600 or SERPINE1 mRNA-binding protein 1 (SERBP1) was verified using dual-luciferase reporter and RNA immunoprecipitation (RIP) assays. Xenograft tumor model was established to perform in vivo assay. Exosomes were obtained from culture media by using the commercial kit. RESULTS Circ_0046600 was highly expressed in HCC tissues and cells. Silencing of circ_0046600 impaired HCC cell growth and metastasis in vitro, as well as impeded HCC tumor growth in vivo. Mechanistically, circ_0046600 could competitively target miR-1258 to prevent the degradation of its target gene SERBP1. Rescue assay showed that miR-1258 inhibition reversed the inhibitory effects of circ_0046600 silencing on HCC cell. Moreover, ectopic overexpression of miR-1258 suppressed cell growth and metastasis in HCC, which was abolished by SERBP1 up-regulation. Furthermore, circ_0046600 was packaged into exosomes and could be derived from HCC cells. CONCLUSION Circ_0046600 promoted HCC progression via up-regulating SERBP1 through sequestering miR-1258; besides that, circ_0046600 was packaged into exosomes and could be released from HCC cells.
Collapse
Affiliation(s)
- Di Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xinwu Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Hongjun Zhai
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Xiaoli Sun
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China
| | - Yiming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710004, China.
| |
Collapse
|
29
|
Baudin A, Moreno-Romero AK, Xu X, Selig EE, Penalva LOF, Libich DS. Structural Characterization of the RNA-Binding Protein SERBP1 Reveals Intrinsic Disorder and Atypical RNA Binding Modes. Front Mol Biosci 2021; 8:744707. [PMID: 34631798 PMCID: PMC8497785 DOI: 10.3389/fmolb.2021.744707] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 09/07/2021] [Indexed: 11/18/2022] Open
Abstract
RNA binding proteins (RBPs) are essential for critical biological processes such as translation regulation and mRNA processing, and misfunctions of these proteins are associated with diseases such as cancer and neurodegeneration. SERBP1 (SERPINE1 mRNA Binding Protein 1) is an RBP that comprises two RG/RGG repeat regions yet lacks other recognizable RNA-binding motifs. It is involved in mRNA maturation, and translational regulation. It was initially identified as a hyaluronic acid binding protein, but recent studies have identified central roles for SERBP1 in brain function and development, especially neurogenesis and synaptogenesis. SERBP1 regulates One-carbon metabolism and epigenetic modification of histones, and increased SERBP1 expression in cancers such as leukemia, ovarian, prostate, liver and glioblastoma is correlated with poor patient outcomes. Despite these important regulatory roles for SERBP1, little is known about its structural and dynamic properties, nor about the molecular mechanisms governing its interaction with mRNA. Here, we define SERBP1 as an intrinsically disordered protein, containing highly conserved elements that were shown to be functionally important. The RNA binding activity of SERBP1 was explored using solution NMR and other biophysical techniques. The outcome of these experiments revealed that SERBP1 preferentially samples compact conformations including a central, stable α-helix and show that SERBP1 recognizes G-rich RNA sequences at the C-terminus involving the RGG box and neighboring residues. Despite the role in RNA recognition, the RGG boxes do not seem to stabilize the central helix and the central helix does not participate in RNA binding. Further, SERBP1 undergoes liquid-liquid phase separation, mediated by salt and RNA, and both RGG boxes are necessary for the efficient formation of condensed phases. Together, these results provide a foundation for understanding the molecular mechanisms of SERBP1 functions in physiological and pathological processes.
Collapse
Affiliation(s)
- Antoine Baudin
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Alma K Moreno-Romero
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Xiaoping Xu
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Emily E Selig
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Luiz O F Penalva
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Cell Systems and Anatomy, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - David S Libich
- Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.,Department of Biochemistry and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
30
|
Baudin A, Xu X, Libich DS. The 1H, 15N and 13C resonance assignments of the C-terminal domain of Serpine mRNA binding protein 1 (SERBP1). BIOMOLECULAR NMR ASSIGNMENTS 2021; 15:461-466. [PMID: 34436734 PMCID: PMC9990118 DOI: 10.1007/s12104-021-10046-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
SERBP1 is a multifunctional mRNA-binding protein that has been shown to play a regulatory role in a number of biological processes such as thrombosis, DNA damage repair, and the cellular response to nutrient deprivation. Additionally, SERBP1 is upregulated in glioblastoma, leukemia as well as liver, prostrate and ovarian cancers where it has been implicated in metastatic disease and poor patient outcomes. SERBP1 binds target mRNA, stabilizing and regulating the post-translational expression of the transcript. Since SERBP1 lacks canonical RNA-binding motifs such as RRM domains or zinc fingers, its target recognition and binding mechanisms are not well understood. Recent reports suggest that it is capable of recognizing both RNA sequence motifs and structured domains. Here we report the production and purification of the intrinsically disordered C-terminal domain of SERBP1, the assignment of the 1H, 13C, 15N backbone resonances of the protein by solution-state NMR, and secondary structure predictions. We show that the protein is not entirely disordered and identify an α-helix that was stable under the experimental conditions. This work is the first step toward understanding the structural basis underpinning the molecular mechanisms of SERBP1 functions, particularly interactions with mRNA targets.
Collapse
Affiliation(s)
- Antoine Baudin
- Department of Biochemistry and Structural Biology, and Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Xiaoping Xu
- Department of Biochemistry and Structural Biology, and Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - David S Libich
- Department of Biochemistry and Structural Biology, and Greehey Children's Cancer Research Institute, The University of Texas Health Science Center at San Antonio, 8403 Floyd Curl Dr., San Antonio, TX, 78229, USA.
| |
Collapse
|
31
|
He L, Pan X, Wang X, Cao Y, Chen P, Du C, Huang D. Rab6c is a new target of miR‑218 that can promote the progression of bladder cancer. Mol Med Rep 2021; 24:792. [PMID: 34515321 DOI: 10.3892/mmr.2021.12432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 07/08/2021] [Indexed: 11/05/2022] Open
Abstract
Bladder cancer has high morbidity and mortality rates among the male genitourinary system tumor types. MicroRNA‑218 (miR‑218) is associated with the development of a variety of cancer types, including bladder cancer. Rab6c is a member of the Rab family and is involved in drug resistance in MCF7 cells. The aim of the present study was to clarify the relationship between Rab6c and miR‑218 in bladder cancer cell lines. In this study, the expression levels of miR‑218 and Rab6c were evaluated via reverse transcription‑quantitative PCR and western blotting, respectively. The association between Rab6c and miR‑218 was recognized via TargetScan analysis and dual luciferase reporter gene detection. Cell proliferation was analyzed using Cell Counting Kit‑8 and colony formation assays, and the invasive ability was measured via Transwell assays. Rab6c was highly expressed in bladder cancer, while miR‑218 had abnormally low expression in bladder cancer. In addition, there was a mutual regulation between Rab6c and miR‑218 in bladder cancer. It was found that overexpression of Rab6c significantly enhanced the proliferation, colony formation and invasion of T24 and EJ cells. Furthermore, miR‑218 overexpression blocked the promoting effects of Rab6c on the malignant behavior of bladder cancer cells. Thus, Rab6c promotes the proliferation and invasion of bladder cancer cells, while miR‑218 has the opposite effect, which may provide a novel insight for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Long He
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225003, P.R. China
| | - Xiang Pan
- Department of Urology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu 225003, P.R. China
| | - Xialu Wang
- Key Laboratory of Pattern Recognition in Liaoning, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, P.R. China
| | - Yuhua Cao
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, National Center for Clinical Research of Geriatric Diseases, Shenyang, Liaoning 157099, P.R. China
| | - Peng Chen
- Department of Urology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110013, P.R. China
| | - Cheng Du
- Department of Oncology, General Hospital of Northern Theater Command, Shenyang, Liaoning 110013, P.R. China
| | - Daifa Huang
- Department of The Second Cadre Ward, General Hospital of Northern Theater Command, National Center for Clinical Research of Geriatric Diseases, Shenyang, Liaoning 157099, P.R. China
| |
Collapse
|
32
|
Wang H, Chen X, Calvisi DF. Hepatocellular carcinoma (HCC): the most promising therapeutic targets in the preclinical arena based on tumor biology characteristics. Expert Opin Ther Targets 2021; 25:645-658. [PMID: 34477018 DOI: 10.1080/14728222.2021.1976142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION : Hepatocellular carcinoma (HCC) is a malignant liver tumor characterized by high molecular heterogeneity, which has hampered the development of effective targeted therapies severely. Recent experimental data have unraveled novel promising targets for HCC treatment. AREAS COVERED : Eligible articles were retrieved from PubMed and Web of Science databases up to July 2021. This review summarizes the established targeted therapies for advanced HCC, focusing on the strategies to overcome drug resistance and the search for combinational treatments. In addition, conventional biomarkers holding the promises for HCC treatments and novel therapeutic targets from the research field are discussed. EXPERT OPINION : HCC is a molecularly complex disease, with several and distinct pathways playing critical roles in different tumor subtypes. Experimental models recapitulating the features of each tumor subset would be highly beneficial to design novel and more effective therapies against this disease. Furthermore, a deeper understanding of combinatorial drug synergism and the role of the tumor microenvironment in HCC will lead to improved therapeutic outcomes.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.,Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
33
|
Tao H, Li J, Liu J, Yuan T, Zhang E, Liang H, Huang Z. Construction of a ceRNA Network and a Prognostic lncRNA Signature associated with Vascular Invasion in Hepatocellular Carcinoma based on Weighted Gene Co-Expression Network Analysis. J Cancer 2021; 12:3754-3768. [PMID: 34093785 PMCID: PMC8176257 DOI: 10.7150/jca.57260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Understanding risk factors for vascular invasion (VI) is crucial for assessing the risk of recurrence and overall prognosis of hepatocellular carcinoma (HCC). This study aimed to construct a prognostic long non-coding RNA (lncRNA) signature and a ceRNA Network associated with vascular invasion in HCC. Methods: Differentially expressed genes (DEGs) of HCC patients associated with VI were identified by analyzing data from TCGA. Weighted gene co-expression network analysis (WGCNA) was used to identify associations between gene expression modules and clinical features. A VI-related prognostic lncRNA signature was then established using univariate, LASSO and multivariate Cox proportional hazards regression analyses. Based on the hub modules identified by the WGCNA, we constructed a VI-related lncRNA-miRNA-mRNA ceRNA network and screened hub lncRNAs for further research. Finally, we conducted in vitro and in vivo experiments to determine the biological roles of the identified hub gene BBOX1-AS1. Results: The key module related to VI and OS was identified using WGCNA, after which a prognostic model consisting of eight lncRNAs was established, and verified using time-dependent receiver operating characteristic (ROC) curve analysis. BBOX1-AS1 was confirmed to be highly expressed in HCC tissues, and its expression was significantly correlated with a poor prognosis. Silencing BBOX1-AS1 in vitro significantly suppressed the proliferation, migration and invasion of HCC cells. In vivo experiments demonstrated that knocking down of BBOX1-AS1 could result in significant decrease of tumor volume and tumor weight. Conclusions: The VI-related lncRNA signature established in this study can be used to predict the clinical outcomes of HCC patients. In addition, we constructed a VI-related lncRNA-miRNA-mRNA ceRNA network and demonstrated that BBOX1-AS1 might be a novel biomarker associated with VI in HCC.
Collapse
Affiliation(s)
- Haisu Tao
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
34
|
CircRNA circBACH1 (hsa_circ_0061395) serves as a miR-656-3p sponge to facilitate hepatocellular carcinoma progression through increasing SERBP1 expression. Biochem Biophys Res Commun 2021; 556:1-8. [PMID: 33831787 DOI: 10.1016/j.bbrc.2021.03.136] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/17/2022]
Abstract
Hsa_circ_0061395(circBACH1) and SERBP1(SERPINE1 mRNA binding protein 1) have been reported to play a carcinogenic role in HCC.In this study, circBACH1, microRNA(miR)-656-3p, and SERBP1 expression levels with quantitative real-time polymerase chain reaction (qRT-PCR) in HCC tissue specimens and cells.The protein levels of SERBP1, E-Cadherin, vimentin, and N-Cadherin were detected with western blotting.Cell proliferation, migration, invasion, and apoptosis were determined with CCK-8, colony formation, transwell, and flow cytometry assays.The targeting relatio-nship between circBACH1 or SERBP1 and miR-656-3p was verified by dual-lucifer- ase reporter assay.The role of circBACH1 was validated by xenograft assay.CircBAC- H1 and SERBP1 were upregulated in HCC tissues and cells.Both circBACH1 and SERBP1 knockdown constrained proliferation, migration, invasion, and EMT(epithel-ial-mesenchymal transition), and facilitated apoptosis of HCC cells in vitro.Knockdo-wn of circBACH1 reduced HCC growth in vivo. SERBP1 overexpression partially neutralized the repressive effect of circBACH1 silencing on malignant behaviors of HCC cells.CircBACH1 sponged miR-656-3p to elevate SERBP1 expression, thereby accelerating the progression of HCC.The research provided a new evidence to support the role of circBACH1 in HCC.
Collapse
|
35
|
Li X, Guo Y, Wang X, Ge A, Wang H, Fan K, Guo C. Clinical significance of serum miR-487b in HBV-related hepatocellular carcinoma and its potential mechanism. Infect Dis (Lond) 2021; 53:546-554. [PMID: 33783293 DOI: 10.1080/23744235.2021.1901981] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a malignant tumour with high mortality. In recent years, microRNA (miRNA) has been recognized in the diagnosis and prognosis of cancer. miR-487b has been found to play a role in a variety of cancers. The purpose of this study is to explore the role of miR-487b in the diagnosis and prognosis of hepatitis B virus (HBV)-related HCC, and its influence on the biological behaviour of HCC cells. METHODS Quantitative real-time polymerase chain reaction (qRT-PCR) method was used to detect the expression level of miR-487b in the serum of HCC patients, HBV patients, and healthy people. The ROC curve was used to evaluate the role of miR-487b in the diagnosis of HCC. The prognostic significance of miR-487b in HCC was analyzed by the Kaplan-Meier survival curve and Cox regression model. The effects of miR-487b on cell proliferation, migration, and invasion were explored through MTT assay and transwell assays. RESULTS The expression level of miR-487b in the serum of HBV-related HCC patients was significantly higher than that of CHB patients and normal healthy people. The expression level of miR-487b can distinguish HCC patients from CHB patients or normal healthy people. High expression of miR-487b was associated with poor prognosis, which could be used as an independent prognostic factor for HCC. The upregulation of miR-487b promoted cell proliferation, migration, and invasion. CONCLUSION miR-487b can be used as a biomarker for the diagnosis and prognosis of HCC.
Collapse
Affiliation(s)
- Xiuping Li
- Department of Laboratory, Zibo Municipal Hospital, Zibo, Shandong, China
| | - Yuzhen Guo
- Department of Laboratory, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Xiyan Wang
- Department of Gastroenterology, Rizhao Central Hospital, Rizhao, Shandong, China
| | - Anning Ge
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Hui Wang
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Kaiyun Fan
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| | - Changtong Guo
- Department of Infectious Diseases, People's Hospital of Rizhao, Rizhao, Shandong, China
| |
Collapse
|
36
|
Ma R, Zhao M, Zou X, Zhou J, Bai Z. MicroRNA polymorphism: A target for diagnosis and prognosis of hepatocellular carcinoma? Oncol Lett 2021; 21:324. [PMID: 33692856 DOI: 10.3892/ol.2021.12586] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a life-threatening cancer of the digestive system, with complex pathogenesis affected by a broad spectrum of genetic and epigenetic factors. Among several factors, microRNAs (miRNAs), which are considered regulators of the post-transcriptional gene expression, play important roles in determining the malignant phenotype of HCC. In recent years, the advances in molecular genetics have resulted in the characterization of complex genetic factors and in the identification of epigenetic mechanisms of diseases. Accumulating data have suggested that miRNA polymorphisms are involved in tumorigenesis and prognosis, suggesting that the miRNAs may serve as a target for HCC with regard to pathogenesis and prognosis. In the present review, a comprehensive and detailed literature search was conducted and the role of miRNA polymorphisms in the pathogenesis and prognosis of HCC is summarized. The data proposed the use of miRNAs as targets for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Ruixia Ma
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Maomao Zhao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Xin Zou
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Jianye Zhou
- Key Laboratory of Stomatology of State Ethnic Affairs Commission, Northwest Minzu University, Lanzhou, Gansu 730000, P.R. China
| | - Zhongtian Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.,The General Surgery Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
37
|
Cao S, Li N, Liao X. miR-362-3p acts as a tumor suppressor by targeting SERBP1 in ovarian cancer. J Ovarian Res 2021; 14:23. [PMID: 33526047 PMCID: PMC7851903 DOI: 10.1186/s13048-020-00760-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Ovarian cancer is the leading lethal gynecological cancer and is generally diagnosed during late-stage presentation. In addition, patients with ovarian cancer still face a low 5-year survival rate. Thus, innovative molecular targeting agents are required to overcome this disease. The present study aimed to explore the function of miR-362-3p and the underlying molecular mechanisms influencing ovarian cancer progression. METHODS The expression levels of miR-362-3p were determined using qRT-PCR. Gain-of-function and loss-of-function methods were used to detect the effects of miR-362-3p on cell proliferation, cell migration, and tumor metastasis in ovarian cancer. A luciferase reporter assay was performed to confirm the potential target of miR-362-3p, and a rescue experiment was employed to verify the effect of miR-362-3p on ovarian cancer by regulating its target gene. RESULTS miR-362-3p was significantly downregulated in ovarian cancer tissues and cell lines. In vitro, our data showed that miR-362-3p suppressed cell proliferation and migration. In vivo, miR-362-3p inhibited ovarian cancer growth and metastasis. Mechanistically, SERBP1 was identified as a direct target and functional effector of miR-362-3p in ovarian cancer. Moreover, SERBP1 overexpression rescued the biological function of miR-362-3p. CONCLUSIONS Our data reveal that miR-362-3p has an inhibitory effect on ovarian cancer. miR-362-3p inhibits the development and progression of ovarian cancer by directly binding its target gene SERBP1.
Collapse
Affiliation(s)
- Shujun Cao
- Department of Obstetrics and Gynecology, Shanghai Songjiang District Central Hospital, 748, Zhongshan Middle Road, Songjiang District, Shanghai, China
| | - Na Li
- Department of Obstetrics and Gynecology, the First People's Hospital of Chenzhou, Southern Medical University, Chenzhou, China
| | - Xihong Liao
- Department of Obstetrics and Gynecology, Shanghai Songjiang District Central Hospital, 748, Zhongshan Middle Road, Songjiang District, Shanghai, China.
| |
Collapse
|
38
|
Shu J, Du J, Wang F, Cheng Y, Chen G, Xu B, Zhang D, Chen S. Circ_0091579 enhances the malignancy of hepatocellular carcinoma via miR-1287/PDK2 axis. Open Life Sci 2021; 16:69-83. [PMID: 33817300 PMCID: PMC7874672 DOI: 10.1515/biol-2021-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 01/03/2023] Open
Abstract
Several articles have indicated that circular RNAs are involved in pathogenesis of human cancers. Nevertheless, the role of circ_0091579 in hepatocellular carcinoma (HCC) progression remains to be revealed. Quantitative reverse transcriptase polymerase chain reaction was carried out to examine the expression of circ_0091579 and miR-1287. The proliferation of HCC cells was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Flow cytometry was performed to analyze cell cycle progression and apoptosis. Western blot assay was conducted to detect the protein expression of CyclinD1, Cleaved caspase3, and pyruvate dehydrogenase kinase 2 (PDK2). Cell glycolysis was evaluated by measuring the uptake of glucose, the production of lactate, and extracellular acidification rate. The target relationship between miR-1287 and circ_0091579 or PDK2 was verified by dual-luciferase reporter assay, RNA immunoprecipitation assay, and RNA-pull down assay. The enrichment of circ_0091579 was enhanced in HCC tissues (n = 77) and four HCC cell lines (HB611, Huh-7, MHCC97, and SNU423) compared with adjacent non-tumor tissues (n = 77) and normal human liver cell line THLE-2. Circ_0091579 mediated the promotion of proliferation and glycolysis and the suppression of apoptosis of HCC cells. MiR-1287 was a direct target of circ_0091579 in HCC cells. MiR-1287 knockdown reversed the effects caused by circ_0091579 interference on the functions of HCC cells. PDK2 could bind to miR-1287 in HCC cells. Circ_0091579 upregulated the enrichment of PDK2 by acting as a sponge of miR-1287 in HCC cells. The influence caused by circ_0091579 intervention on HCC cells was attenuated by overexpression of PDK2. Circ_0091579 interference impeded the progression of HCC in vivo. Circ_0091579 deteriorated HCC by promoting the proliferation and glycolytic metabolism and suppressing the apoptosis of HCC cells via miR-1287/PDK2 axis.
Collapse
Affiliation(s)
- Junwei Shu
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Jiayuan Du
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Futao Wang
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Yong Cheng
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Gangxin Chen
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Bing Xu
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Dianpeng Zhang
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| | - Shuangjiang Chen
- Department of General Surgery, Ankang People's Hospital of Shanxi Province, Ankang, 6-1-3302, Shifu Courtyard, High-Tech Zone, Ankang 725000, Shanxi Province, China
| |
Collapse
|
39
|
Zhu C, Su Y, Liu L, Wang S, Liu Y, Wu J. Circular RNA hsa_circ_0004277 Stimulates Malignant Phenotype of Hepatocellular Carcinoma and Epithelial-Mesenchymal Transition of Peripheral Cells. Front Cell Dev Biol 2021; 8:585565. [PMID: 33511111 PMCID: PMC7835424 DOI: 10.3389/fcell.2020.585565] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 12/07/2020] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence shows that exosomal circRNAs reflect the physiological status of donor cells, and various cell reactions are induced after exosomal circRNAs are captured by recipient cells. In this study, qRT-PCR was performed to detect circ-0004277 expression in hepatocellular carcinoma (HCC) cell lines, tissues, and plasma exosomes. The effects of circ-0004277 on the proliferation and migration of HCC cells were assessed by cell counting, 5-ethynyl-2'-deoxyuridine assays, Transwell migration assays, and tumor formation in nude mice. We found that circ-0004277 was significantly upregulated in HCC cells, tissues, and plasma exosomes compared to that in normal controls. Overexpression of circ-0004277 enhanced the proliferation, migration, and epithelial-mesenchymal transition (EMT) of HCC cells in vivo and in vitro. Furthermore, exosomes from HCC cells enhanced circ-0004277 expression in surrounding normal cells and stimulated EMT progression. ZO-1, a tight junction adapter protein, was downregulated in HCC tissues. In conclusion, our findings suggest that circ-0004277 promotes the malignant phenotype of HCC cells via inhibition of ZO-1 and promotion of EMT progression. In addition, exosomal circ-0004277 from HCC cells stimulates EMT of peripheral cells through cellular communication to further promote the invasion of HCC into normal surrounding tissues.
Collapse
Affiliation(s)
- Chuanrong Zhu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yang Su
- Department of Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Lei Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Shaochuang Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Yuting Liu
- Department of Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| | - Jinsheng Wu
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huai'an, China
| |
Collapse
|
40
|
Chen Y, Yang JL, Xue ZZ, Cai QC, Hou C, Li HJ, Zhao LX, Zhang Y, Gao CW, Cong L, Wang TZ, Chen DM, Li GS, Luo SQ, Yao Q, Yang CJ, Zhu QS, Cao CH. Effects and mechanism of microRNA‑218 against lung cancer. Mol Med Rep 2020; 23:28. [PMID: 33179084 PMCID: PMC7673340 DOI: 10.3892/mmr.2020.11666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 07/08/2020] [Indexed: 12/22/2022] Open
Abstract
Lung cancer is the most prevalent and observed type of cancer in Xuanwei County, Yunnan, South China. Lung cancer in this area is called Xuanwei lung cancer. However, its pathogenesis remains largely unknown. To date, a number of studies have shown that microRNA (miR)‑218 functions as a tumor suppressor in multiple types of cancer. However, the role of miR‑218 and its regulatory gene network in Xuanwei lung cancer have yet to be investigated. The current study identified that the expression levels of miR‑218 in XWLC‑05 cells were markedly lower compared with those in immortalized lung epithelial BEAS‑2B cells. The present study also demonstrated that overexpression of miR‑218 could decrease cell proliferation, invasion, viability and migration in Xuanwei lung cancer cell line XWLC‑05 and NSCLC cell line NCI‑H157. Additionally, the results revealed that overexpression of miR‑218 could induce XWLC‑05 and NCI‑H157 cell apoptosis by arresting the cell cycle at G2/M phase. Finally, the present study demonstrated that overexpression of miR‑218 could lead to a significant increase in phosphatase and tensin homolog (<em>PTEN</em>) and YY1 transcription factor (<em>YY1</em>), and a decrease in B‑cell lymphoma 2 (<em>BCL‑2</em>) and BMI1 proto‑oncogene, polycomb ring finger (<em>BMI‑1</em>) at the mRNA and protein level in XWLC‑05 and NCI‑H157 cell lines. However, we did not observe any remarkable difference in the roles of miR‑218 and miR‑218‑mediated regulation of <em>BCL‑2</em>, <em>BMI‑1</em>, <em>PTEN</em> and <em>YY1</em> expression in the progression of Xuanwei lung cancer. In conclusion, miR‑218 could simultaneously suppress cell proliferation and tumor invasiveness and induce cell apoptosis by increasing <em>PTEN</em> and <em>YY1</em> expression, while decreasing <em>BCL‑2</em> and <em>BMI‑1</em> in Xuanwei lung cancer. The results demonstrated that miR‑218 might serve a vital role in tumorigenesis and progression of Xuanwei lung cancer and overexpression of miR‑218 may be a novel approach for the treatment of Xuanwei lung cancer.
Collapse
Affiliation(s)
- Yan Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Ji-Lin Yang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650031, P.R. China
| | - Zhen-Zhen Xue
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Qiu-Chen Cai
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Chun Hou
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Hong-Juan Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Liu-Xin Zhao
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Yin Zhang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Cheng-Wei Gao
- School of Chemical Science and Technology, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Li Cong
- YinMore Biotech Co., Ltd., Kunming, Yunnan 650224, P.R. China
| | - Tian-Zuo Wang
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Dong-Mei Chen
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Guo-Sheng Li
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Shi-Qing Luo
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Qian Yao
- Yunnan Cancer Hospital and The Third Affiliated Hospital of Kunming Medical University and Yunnan Cancer Center, Kunming, Yunnan 650118, P.R. China
| | - Chan-Juan Yang
- YinMore Biotech Co., Ltd., Kunming, Yunnan 650224, P.R. China
| | - Qi-Shun Zhu
- School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, P.R. China
| | - Chuan-Hai Cao
- Byrd Alzheimer's Institute, University of South Florida, Tampa, FL 33613, USA
| |
Collapse
|
41
|
Glucose-induced microRNA-218 suppresses the proliferation and promotes the apoptosis of human retinal pigment epithelium cells by targeting RUNX2. Biosci Rep 2020; 39:221484. [PMID: 31830266 PMCID: PMC6928524 DOI: 10.1042/bsr20192580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 11/20/2019] [Accepted: 12/12/2019] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVE MicroRNA-218 (miR-218) critical for preventing the progression of numerous diseases, including diseases of the retinal pigment epithelium (RPE). However, the mechanism by which miR-218 regulates the PRE in humans remains largely unknown. Our study investigated the effects of glucose-induced miR-218 expression on human RPE cells (ARPE-19), as well as its targeted regulatory effect. METHODS The levels of miR-218 and runt-related transcription factor 2 (RUNX2) expression were investigated by RT-qPCR or Western blot assays. Cell viability and apoptosis were assessed by CCK-8 assays, flow cytometry, and Hoechst staining. A luciferase reporter assay was performed to determine whether Runx2 is a target gene of miR-218. RESULTS Our results showed that glucose up-regulated miR-218 expression, suppressed proliferation, and induced the apoptosis of ARPE-19 cells. We verified that miR-218 could inhibit the proliferation and facilitate the apoptosis of ARPE-19 cells, while inhibition of miR-218 expression produced the opposite effects. In terms of mechanism, we demonstrated that RUNX2 was a direct target of miR-218. Functional experiments showed that Runx2 served as a miR-218 target to help inhibit the proliferation and induction of apoptosis in ARPE-19 cells. CONCLUSION Our findings suggest the miR-218/Runx2 axis as a potential target for treating diabetic retinopathy (DR).
Collapse
|
42
|
Kang C, Jia X, Liu H. Development and validation of a RNA binding protein gene pair-associated prognostic signature for prediction of overall survival in hepatocellular carcinoma. Biomed Eng Online 2020; 19:68. [PMID: 32873282 PMCID: PMC7461748 DOI: 10.1186/s12938-020-00812-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 08/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Increasing evidence has demonstrated the correlation between hepatocellular carcinoma (HCC) prognosis and RNA binding proteins (RBPs) dysregulation. Thus, we aimed to develop and validate a reliable prognostic signature that can estimate the prognosis for HCC. METHODS Gene expression profiling and clinical information of 374 HCC patients were derived from the TCGA data portal. The survival-related RBP pairs were determined using univariate cox-regression analysis and the signature was built based on LASSO analysis. All patients were divided patients into high-and low-risk groups according to the optimal cut off of the signature score determined by time-dependent receiver operating characteristic (ROC) curve analysis. The predictive value of the signature was further validated in an independent cohort. RESULTS A 37-RBP pairs signature consisting of 61 unique genes was constructed which was significantly associated with the survival. The RBP-related signature accurately predicted the prognosis of HCC patients, and patients in high-risk groups showed poor survival in two cohorts. The novel signature was an independent prognostic factor of HCC in two cohorts (all P < 0.001). Furthermore, the C-index of the prognostic model was 0.799, which was higher than that of many established risk models. Pathway and process enrichment analysis showed that the 61 unique genes were mainly enriched in translation, ncRNA metabolic process, RNA splicing, RNA modification, and translational termination. CONCLUSION The novel proposed RBP-related signature based on relative expression orderings could serve as a promising independent prognostic biomarker for patients with HCC, and could improve the individualized survival prediction in HCC.
Collapse
Affiliation(s)
- Chunmiao Kang
- Department of Ultrasound, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Xuanhui Jia
- Department of Ultrasound, Shaanxi Provincial People's Hospital, Xi'an, 710068, China
| | - Hongsheng Liu
- Department of Radiology, Xi'an Central Hospital Affiliated to Xi'an Jiaotong University, No. 161, Xiwu Road, Xincheng District, Xi'an, 710003, Shaanxi, PR China.
| |
Collapse
|
43
|
Kosti A, de Araujo PR, Li WQ, Guardia GDA, Chiou J, Yi C, Ray D, Meliso F, Li YM, Delambre T, Qiao M, Burns SS, Lorbeer FK, Georgi F, Flosbach M, Klinnert S, Jenseit A, Lei X, Sandoval CR, Ha K, Zheng H, Pandey R, Gruslova A, Gupta YK, Brenner A, Kokovay E, Hughes TR, Morris QD, Galante PAF, Tiziani S, Penalva LOF. The RNA-binding protein SERBP1 functions as a novel oncogenic factor in glioblastoma by bridging cancer metabolism and epigenetic regulation. Genome Biol 2020; 21:195. [PMID: 32762776 PMCID: PMC7412812 DOI: 10.1186/s13059-020-02115-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/22/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND RNA-binding proteins (RBPs) function as master regulators of gene expression. Alterations in RBP expression and function are often observed in cancer and influence critical pathways implicated in tumor initiation and growth. Identification and characterization of oncogenic RBPs and their regulatory networks provide new opportunities for targeted therapy. RESULTS We identify the RNA-binding protein SERBP1 as a novel regulator of glioblastoma (GBM) development. High SERBP1 expression is prevalent in GBMs and correlates with poor patient survival and poor response to chemo- and radiotherapy. SERBP1 knockdown causes delay in tumor growth and impacts cancer-relevant phenotypes in GBM and glioma stem cell lines. RNAcompete identifies a GC-rich region as SERBP1-binding motif; subsequent genomic and functional analyses establish SERBP1 regulation role in metabolic routes preferentially used by cancer cells. An important consequence of these functions is SERBP1 impact on methionine production. SERBP1 knockdown decreases methionine levels causing a subsequent reduction in histone methylation as shown for H3K27me3 and upregulation of genes associated with neurogenesis, neuronal differentiation, and function. Further analysis demonstrates that several of these genes are downregulated in GBM, potentially through epigenetic silencing as indicated by the presence of H3K27me3 sites. CONCLUSIONS SERBP1 is the first example of an RNA-binding protein functioning as a central regulator of cancer metabolism and indirect modulator of epigenetic regulation in GBM. By bridging these two processes, SERBP1 enhances glioma stem cell phenotypes and contributes to GBM poorly differentiated state.
Collapse
Affiliation(s)
- Adam Kosti
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Patricia Rosa de Araujo
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Wei-Qing Li
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Gabriela D. A. Guardia
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Jennifer Chiou
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712 USA
| | - Caihong Yi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Fabiana Meliso
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Yi-Ming Li
- Shanghai Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Talia Delambre
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Mei Qiao
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Suzanne S. Burns
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Franziska K. Lorbeer
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Fanny Georgi
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Markus Flosbach
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Sarah Klinnert
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Anne Jenseit
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Xiufen Lei
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | | | - Kevin Ha
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
| | - Renu Pandey
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | | | - Yogesh K. Gupta
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Andrew Brenner
- Mays Cancer Center, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Erzsebet Kokovay
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| | - Timothy R. Hughes
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Canadian Institute for Advanced Research, MaRS Centre, West Tower, 661 University Avenue, Suite 505, Toronto, ON M5G 1M1 Canada
| | - Quaid D. Morris
- Donnelly Centre, University of Toronto, Toronto, ON M5S 3E1 Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8 Canada
- Department of Computer Science, University of Toronto, Toronto, ON M5T 3A1 Canada
| | - Pedro A. F. Galante
- Centro de Oncologia Molecular, Hospital Sírio-Libanês, São Paulo, São Paulo 01309-060 Brazil
| | - Stefano Tiziani
- Department of Nutritional Sciences, Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX 78712 USA
| | - Luiz O. F. Penalva
- Children’s Cancer Research Institute, UT Health San Antonio, San Antonio, TX 78229 USA
- Department of Cell Systems and Anatomy, UT Health San Antonio, San Antonio, TX 78229 USA
| |
Collapse
|
44
|
Wang Z, Huang D, Huang J, Nie K, Li X, Yang X. lncRNA TMPO-AS1 Exerts Oncogenic Roles in HCC Through Regulating miR-320a/SERBP1 Axis. Onco Targets Ther 2020; 13:6539-6551. [PMID: 32753892 PMCID: PMC7342364 DOI: 10.2147/ott.s250355] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 05/05/2020] [Indexed: 12/13/2022] Open
Abstract
Background Previous evidence have shown that long non-coding RNA (lncRNA) TMPO antisense RNA 1 (TMPO-AS1) is involved in the aggressiveness of several cancers. Nevertheless, the precise functions of TMOP-AS1 in hepatocellular carcinoma (HCC) are still unresolved. Materials and Methods The expressions of TMPO-AS1 and miR-320a were detected in HCC tissues and cells by qRT-RCR. The cell growth, migration and invasion were detected by colony formation, wound healing assay and Transwell assay, respectively. The targeting relation between miR-320a and TMPO-AS1 was predicted by bioinformatics analysis and identified by luciferase reporter gene as well as FISH assay. The expression of SERPINE1 MRNA Binding Protein 1 (SERBP1) was detected by Western blot. The growth of HCC cell was analyzed using transplanted tumor model. Results Currently, we revealed that TMPO-AS1 was overexpressed in clinical HCC samples and a panel of HCC cell lines. Clinically, a higher level of TMPO-AS1 was connected to the advanced stage of HCC and worse prognosis of patients. Depletion of TMPO-AS1 repressed HCC cell viability, migration ability and invasiveness. Nevertheless, upregulation of TMPO-AS1 caused opposite results. Further studies revealed that lncRNA TMPO-AS1 was largely located in the cytoplasm of HCC cell and sponge miR-320a, resulting in increasing the level of SERBP1 in HCC cell. Finally, TMPO-AS1 silencing suppressed tumor growth of HCC cell in vivo. Conclusion Collectively, our results suggested that TMPO-AS1 was a promoting factor for the aggressive behaviors of HCC cell.
Collapse
Affiliation(s)
- Zhenchang Wang
- Department of Spleen and Stomach Liver Disease, International Zhuang Hospital District of Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - DanDan Huang
- Basic Medical Science College, North Sichuan Medical College, Nanchong, People's Republic of China
| | - Jingjing Huang
- Department of Spleen and Stomach Liver Disease, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Kunmei Nie
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Xiaofan Li
- Graduate School, Guangxi University of Chinese Medicine, Nanning, Guangxi, People's Republic of China
| | - Xiaojin Yang
- Department of Infection Diseases, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
45
|
Hu W, Yao W, Li H, Chen L. MiR-30e-5p inhibits the migration and invasion of nasopharyngeal carcinoma via regulating the expression of MTA1. Biosci Rep 2020; 40:BSR20194309. [PMID: 32458989 PMCID: PMC7253402 DOI: 10.1042/bsr20194309] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/14/2020] [Accepted: 04/21/2020] [Indexed: 11/17/2022] Open
Abstract
The study explored the effect of miR-30e-5p on nasopharyngeal carcinoma (NPC). MiR-30e-5p levels in NPC cancer and adjacent normal samples, in metastatic and non-metastatic cancer samples of NPC, and in NP69 cell and five NPC cell lines were determined by quantitative real-time polymerase chain reaction (qRT-PCR). The relationship between miR-30e-5p and MTA1 was confirmed by dual-luciferase reporter assay, Western blot and qRT-PCR. The viability, migration and invasion of 5-8F and 6-10B cells were determined by CCK-8, scratch test and transwell assays, respectively. The levels of migration-related proteins (vimentin and Snail) and invasion-related proteins (MMP2 and MMP3) in NPC cells were detected by Western blot. The results showed that low expression of miR-30e-5p was associated with HNSC cancer, NPC, metastasis of NPC and NPC cell lines. Overexpressed miR-30e-5p in HNSC cancer and NPC was predictive of a better prognosis of patients. In addition, the viability, migration and invasion were reduced by up-regulating miR-30e-5p in 5-8F cells, but promoted by down-regulated miR-30e-5p in 6-10B cells. MiR-30e-5p reversed the migration and invasion of NPC cells regulated by MTA1, and inhibited migration and invasion of NPC cells via regulating MTA1 expression.
Collapse
Affiliation(s)
- Weiqun Hu
- Department of Otorhinolaryngology, The Affiliated Hospital of Putian University, China
| | - Wenfeng Yao
- Department of Otorhinolaryngology, Xinxiang First People’s Hospital, China
| | - Haolin Li
- Department of Otorhinolaryngology, Xinxiang First People’s Hospital, China
| | - Li Chen
- Department of Otorhinolaryngology, Zaozhuang Municipal Hospital, China
| |
Collapse
|
46
|
Zhang S, Zhou Y, Wang Y, Wang Z, Xiao Q, Zhang Y, Lou Y, Qiu Y, Zhu F. The mechanistic, diagnostic and therapeutic novel nucleic acids for hepatocellular carcinoma emerging in past score years. Brief Bioinform 2020; 22:1860-1883. [PMID: 32249290 DOI: 10.1093/bib/bbaa023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/09/2020] [Accepted: 02/12/2020] [Indexed: 02/07/2023] Open
Abstract
Despite The Central Dogma states the destiny of gene as 'DNA makes RNA and RNA makes protein', the nucleic acids not only store and transmit genetic information but also, surprisingly, join in intracellular vital movement as a regulator of gene expression. Bioinformatics has contributed to knowledge for a series of emerging novel nucleic acids molecules. For typical cases, microRNA (miRNA), long noncoding RNA (lncRNA) and circular RNA (circRNA) exert crucial role in regulating vital biological processes, especially in malignant diseases. Due to extraordinarily heterogeneity among all malignancies, hepatocellular carcinoma (HCC) has emerged enormous limitation in diagnosis and therapy. Mechanistic, diagnostic and therapeutic nucleic acids for HCC emerging in past score years have been systematically reviewed. Particularly, we have organized recent advances on nucleic acids of HCC into three facets: (i) summarizing diverse nucleic acids and their modification (miRNA, lncRNA, circRNA, circulating tumor DNA and DNA methylation) acting as potential biomarkers in HCC diagnosis; (ii) concluding different patterns of three key noncoding RNAs (miRNA, lncRNA and circRNA) in gene regulation and (iii) outlining the progress of these novel nucleic acids for HCC diagnosis and therapy in clinical trials, and discuss their possibility for clinical applications. All in all, this review takes a detailed look at the advances of novel nucleic acids from potential of biomarkers and elaboration of mechanism to early clinical application in past 20 years.
Collapse
Affiliation(s)
- Song Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yanan Wang
- School of Life Sciences in Nanchang University, China
| | - Zhengwen Wang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Qitao Xiao
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Ying Zhang
- College of Pharmaceutical Sciences in Zhejiang University, China
| | - Yan Lou
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Yunqing Qiu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China
| | - Feng Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Disease, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital in Zhejiang University, China.,College of Pharmaceutical Sciences in Zhejiang University, China
| |
Collapse
|
47
|
Hu J, Wang L, Guan C. MiR-532-5p Suppresses Migration and Invasion of Lung Cancer Cells Through Inhibiting CCR4. Cancer Biother Radiopharm 2020; 35:673-681. [PMID: 32228308 DOI: 10.1089/cbr.2019.3258] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Studies showed that miR-532-5p suppresses proliferation and induces apoptosis of lung cancer (LC) cells; its role in LC is not fully understood. Therefore, this research aimed to reveal the effect and mechanism of miR-532-5p on migration and invasion of LC cells. Materials and Methods: The transfection efficiencies of miR-532-5p mimic, inhibitor, and overexpressed CCR4 were measured by quantitative real-time polymerase chain reaction (qRT-PCR). The relationships between miR-532-5p and CCR4 in A549 and SBC-5 cells were predicted by targetScan and verified by dual-luciferase reporter assay, Western blot, and qRT-PCR. Migration and invasion of cells transfected with miR-532-5p mimic, inhibitor, and CCR4 were determined by scratch test and transwell assay, respectively. The levels of epithelial-to-mesenchymal transition (EMT)-related proteins (E-cadherin (E-Cad)), N-catenin (N-Cad), and vimentin) in cells were measured by Western blot. Results: MiR-532-5p mimic suppressed migration and invasion, while miR-532-5p inhibitor promoted migration and invasion of cells. CCR4 was a downstream target of miR-532-5p and both its protein and mRNA expressions were inhibited by miR-532-5p mimic, but promoted by miR-532-5p inhibitor. CCR4 promoted migration, invasion, and EMT process, and such effects of CCR4 were reversed by miR-532-5p mimic. Conclusion: MiR-532-5p functioned as a cancer suppressor by negatively regulating CCR4 in LC cells, pointing to a potential protective mechanism of miR-532-5p to LC patients.
Collapse
Affiliation(s)
- Jingjing Hu
- Department of Respiratory Medicine, Hangzhou Dingqiao Hospital, Hangzhou, China
| | - Lu Wang
- Department of Emergency, Hangzhou Dingqiao Hospital, Hangzhou, China
| | - Caihong Guan
- Department of Respiratory, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou, China
| |
Collapse
|
48
|
Zhao H, Xie Z, Tang G, Wei S, Chen G. Knockdown of terminal differentiation induced ncRNA (TINCR) suppresses proliferation and invasion in hepatocellular carcinoma by targeting the miR-218-5p/DEAD-box helicase 5 (DDX5) axis. J Cell Physiol 2020; 235:6990-7002. [PMID: 31994189 DOI: 10.1002/jcp.29595] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 01/13/2020] [Indexed: 12/12/2022]
Abstract
Terminal differentiation induced ncRNA (TINCR), a newly identified lncRNA, has been found to be associated with different human cancers including hepatocellular carcinoma (HCC). However, little is known regarding the pathological mechanisms of TINCR in HCC progression. In this study, we confirmed that TINCR expression was upregulated in HCC tumors and cell lines, and high TINCR expression was associated with larger tumor size, advanced tumor node metastasis stage, and poor prognosis. Functionally, knockdown of TINCR facilitated apoptosis and suppressed viability, colony formation and invasion in Huh7 and Hep3B cells. Mechanically, TINCR functioned as competing endogenous RNA (ceRNA) to regulate DEAD-box helicase 5 (DDX5) expression through sponging miR-218-5p. Moreover, the miR-218-5p expression was downregulated and DDX5 expression was upregulated in HCC tumors. The silencing of miR-218-5p or ectopic expression of DDX5 abated the tumor-suppressive effect of TINCR knockdown in vitro. Furthermore, si-TINCR-induced inactivation of AKT signaling was rescued by suppression of miR-218-5p or overexpression of DDX5. Also, the silencing of TINCR resulted in tumor growth inhibition in vivo. In summary, knockdown of TINCR suppressed HCC progression presumably by inactivation of AKT signaling through targeting the miR-218-5p/DDX5 axis, suggesting a novel TINCR/miR-218-5p/DDX5 pathway and therapy target for HCC.
Collapse
Affiliation(s)
- Huibo Zhao
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhantao Xie
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Gaofeng Tang
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Sidong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| | - Guoyong Chen
- Department of Hepatobiliary and Pancreatic Surgery, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
49
|
Li H, Guo D, Zhang Y, Yang S, Zhang R. miR-664b-5p Inhibits Hepatocellular Cancer Cell Proliferation Through Targeting Oncogene AKT2. Cancer Biother Radiopharm 2020; 35:605-614. [PMID: 31967930 DOI: 10.1089/cbr.2019.3043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: miR-664b-5p accelerates the development of certain cancers, but the role of miR-664b-5p in hepatocellular carcinoma (HCC) has been less reported. Therefore, the authors aimed to study the role of miR-664b-5p in HCC progression. Materials and Methods: miR-664b-5p expression in liver cancer and adjacent tissues, and in HepG2 and SUN-475 cells, was measured by quantitative real-time polymerase chain reaction (qRT-PCR). Relationship between miR-664b-5p and AKT2 was predicted by TargetScan and confirmed by dual-luciferase reporter assay, and gene or protein expressions were determined by performing qRT-PCR and Western blotting. The viability and apoptosis, and the migration and invasion of HepG2 and SUN-475 cells were determined by CCK-8 assay and flow cytometry, and transwell assay, respectively. Results: Downregulated miR-664b-5p was observed in hepatocellular cancer tissues. Functional analyses revealed that miR-664b-5p mimic suppressed viability, migration, and invasion, but promoted apoptosis in HepG2 and SUN-475 cells. AKT2 was a target of miR-664b-5p, whose mimics inhibited the expression of AKT2. However, upregulated AKT2 promoted viability, migration, and invasion, but inhibited apoptosis in HepG2 and SUN-475 cells, and such effects were reversed by miR-664b-5p mimics. Conclusions: miR-664b-5p acts as a cancer suppressor through negatively regulating AKT2 expression in HepG2 and SUN-475 cells, suggesting that miR-664b-5p could be a protective target for HCC patients.
Collapse
Affiliation(s)
- Hongwei Li
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Dawei Guo
- The First Department of General surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yuhong Zhang
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Shiming Yang
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| | - Rui Zhang
- The First Inpatient Ward of General Surgery, Shanxi Provincial People's Hospital, Taiyuan, China
| |
Collapse
|
50
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|