1
|
Guo X, Fan X, Xie C, Afe AE, Yang Y, Zhou R. Suppressing IGF2R mitigates hypoxia-induced apoptosis by reducing the expression of pro-apoptotic factor BAX. Int J Biol Macromol 2025; 284:137785. [PMID: 39557264 DOI: 10.1016/j.ijbiomac.2024.137785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 10/30/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Oxidative stress caused by hypoxia can lead to serious bodily damage and functional degradation. Our previous study in pigs showed that the insulin-like growth factor II receptor (IGF2R) gene might participate in the process of hypoxia adaptability. To investigate the function and mechanism of IGF2R in cellular hypoxia tolerance, we analyze the effect of IGF2R on cell survival capacity under hypoxia conditions in intestinal porcine enterocyte cell line (IPEC-J2) cells. The results show that under hypoxia condition (3% O2), cell viability is significantly reduced, the expression of IGF2R and cell apoptosis are significantly increased. Functional analysis suggests that suppressing IGF2R expression under hypoxia does not affect cell cycle and cell proliferation but increases cellular viability. Meanwhile, the expression of the pro-apoptotic gene BAX is reduced, the hypoxia-induced apoptosis is rescued, and cell survival is significantly improved. Transcriptome analysis suggests that global gene expression changes in knockdown IGF2R under hypoxia, IGF2R may regulate apoptosis through oxidative phosphorylation. Our findings demonstrate that suppressing IGF2R expression under hypoxia can rescue hypoxia-induced cell injury by reducing the expression of BAX, highlighting the potential ability of IGF2R regulation for the treatment of hypoxia stress.
Collapse
Affiliation(s)
- Xiaorong Guo
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Liaocheng University, Liaocheng, 252059, PR China
| | - Xinhao Fan
- Kunpeng Institute of Modern Agriculture at Foshan, Institute of Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, PR China
| | - Chundi Xie
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Ayoola Ebenezer Afe
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Yalan Yang
- Kunpeng Institute of Modern Agriculture at Foshan, Institute of Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Foshan 528226, PR China.
| | - Rong Zhou
- The State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China; Liaocheng University, Liaocheng, 252059, PR China.
| |
Collapse
|
2
|
Zhang W, Liao Z, Xu C, Lin X. Salidroside rescues hypoxic cardiomyocytes by regulating the EGLN1/HIF‑1α pathway. Biomed Rep 2024; 21:180. [PMID: 39387002 PMCID: PMC11462497 DOI: 10.3892/br.2024.1868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/12/2024] [Indexed: 10/12/2024] Open
Abstract
Myocardial infarction is characterized by oxygen deficiency caused by arterial flow restriction. Salidroside (SAL) protects against myocardial damage via antioxidant production and inhibition of apoptosis. The present study aimed to investigate potential rescue mechanism of SAL on hypoxic cardiomyocytes. H9C2 cardiomyocytes were divided into normoxia, hypoxia and hypoxia + SAL groups. The inhibitory rate of hypoxia and the optimal concentration and rescue effect of SAL were determined using Cell Counting Kit-8 assay and flow cytometry. Ca2+ concentration following hypoxia treatment and SAL intervention were detected by Fluo-4/acetoxymethyl. Tandem mass tag (TMT) proteomics was used to analyze the differential expression of hypoxia-associated proteins among the three groups. SAL exerted a protective effect on hypoxia-injured cardiomyocytes by enhancing aerobic metabolism during hypoxia and rescuing cardiomyocytes from hypoxic damage. SAL promoted cell proliferation, decreased apoptosis and increased Ca2+ levels in cell membranes of hypoxic cardiomyocytes. TMT proteomics results showed that the expression levels of intracellular hypoxia inducible factor-1 (HIF)-1α and Egl-9 family HIF 1 (EGLN1) in H9C2 cells were elevated under hypoxic conditions. However, SAL significantly decreased expression levels of HIF-1α and EGLN1. SAL inhibited mitochondrial calcium overload in hypoxic cardiomyocytes and attenuated expression of hypoxia-associated factors. SAL exerted its rescue effect on hypoxic cardiomyocytes through the EGLN1/HIF-1α pathway, thereby suppressing cardiomyocyte apoptosis, improving mitochondrial energy metabolism efficiency and rescuing cardiomyocytes from hypoxic injury.
Collapse
Affiliation(s)
- Wenmao Zhang
- Department of Scientific Research, Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan 414000, P.R. China
| | - Ziling Liao
- Department of Scientific Research, Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan 414000, P.R. China
| | - Chengfeng Xu
- Department of Research and Development, Beijing Zhongwei Research Center of Biological and Translational Medicine, Beijing 100000, P.R. China
| | - Xinping Lin
- Department of Scientific Research, Yueyang Maternal and Child Health-Care Hospital, Yueyang, Hunan 414000, P.R. China
| |
Collapse
|
3
|
Xing Y, Wang Y, Wang R, Sun X, Min Z, Tian W, Jing G. The study on 4D culture system of squamous cell carcinoma of tongue. Biomed Mater 2024; 19:065006. [PMID: 39208843 DOI: 10.1088/1748-605x/ad7555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Traditional cell culture methods often fail to accurately replicate the intricate microenvironments crucial for studying specific cell growth patterns. In our study, we developed a 4D cell culture model-a precision instrument comprising an electromagnet, a force transducer, and a cantilever bracket. The experimental setup involves placing a Petri dish above the electromagnet, where gel beads encapsulating magnetic nanoparticles and tongue cancer cells are positioned. In this model, a magnetic force is generated on the magnetic nanoparticles in the culture medium to drive the gel to move and deform when the magnet is energized, thereby exerting an external force on the cells. This setup can mimic the microenvironment of tongue squamous cell carcinoma CAL-27 cells under mechanical stress induced by tongue movements. Electron microscopy and rheological analysis were performed on the hydrogels to confirm the porosity of alginate and its favorable viscoelastic properties. Additionally, Calcein-AM/PI staining was conducted to verify the biosafety of the hydrogel culture system. It mimics the microenvironment where tongue squamous cell carcinoma CAL-27 cells are stimulated by mechanical stress during tongue movement. Electron microscopy and rheological analysis experiments were conducted on hydrogels to assess the porosity of alginate and its viscoelastic properties. Calcein-AM/PI staining was performed to evaluate the biosafety of the hydrogel culture system. We confirmed that the proliferation of CAL-27 tongue squamous cells significantly increased with increased matrix stiffness after 5 d as assessed by MTT. After 15 d of incubation, the tumor spheroid diameter of the 1%-4D group was larger than that of the hydrogel-only culture. The Transwell assay demonstrated that mechanical stress stimulation and increased matrix stiffness could enhance cell aggressiveness. Flow cytometry experiments revealed a decrease in the number of cells in the resting or growth phase (G0/G1 phase), coupled with an increase in the proportion of cells in the preparation-for-division phase (G2/M phase). RT-PCR confirmed decreased expression levels of P53 and integrinβ3 RNA in the 1%-4D group after 21 d of 4D culture, alongside significant increases in the expression levels of Kindlin-2 and integrinαv. Immunofluorescence assays confirmed that 4D culture enhances tissue oxygenation and diminishes nuclear aggregation of HIF-1α. This device mimics the microenvironment of tongue cancer cells under mechanical force and increased matrix hardness during tongue movement, faithfully reproducing cell growthin vivo, and offering a solid foundation for further research on the pathogenic matrix of tongue cancer and drug treatments.
Collapse
Affiliation(s)
- Yuhang Xing
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Yuezhu Wang
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Ruiqi Wang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Xiangyu Sun
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Zhang Min
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| | - Weiming Tian
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, People's Republic of China
| | - Guangping Jing
- The First Affiliated Hospital of Harbin Medical University, Harbin 150001, People's Republic of China
- School of Stomatology, Harbin Medical University, Harbin 150001, People's Republic of China
| |
Collapse
|
4
|
Zhu Z, Pu J, Li Y, Chen J, Ding H, Zhou A, Zhang X. RBM25 regulates hypoxic cardiomyocyte apoptosis through CHOP-associated endoplasmic reticulum stress. Cell Stress Chaperones 2023; 28:861-876. [PMID: 37736860 PMCID: PMC10746693 DOI: 10.1007/s12192-023-01380-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/15/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Ischemic heart failure (HF) is one of the leading causes of global morbidity and mortality; blocking the apoptotic cascade could help improve adverse outcomes of it. RNA-binding motif protein 25 (RBM25) is an RNA-binding protein related to apoptosis; however, its role remains unknown in ischemic HF. The main purpose of this study is to explore the mechanism of RBM25 in ischemic HF. Establishing an ischemic HF model and oxygen-glucose deprivation (OGD) model. ELISA was performed to evaluate the BNP level in the ischemic HF model. Echocardiography and histological analysis were performed to assess cardiac function and infarct size. Proteins were quantitatively and locationally analyzed by western blotting and immunofluorescence. The morphological changes of endoplasmic reticulum (ER) were observed with ER-tracker. Cardiac function and myocardial injury were observed in ischemic HF rats. RBM25 was elevated in cardiomyocytes of hypoxia injury hearts and localized in nucleus both in vitro and in vivo. In addition, cell apoptosis was significantly increased when overexpressed RBM25. Moreover, ER stress stimulated upregulation of RBM25 and promoted cell apoptosis through the CHOP related pathway. Finally, inhibiting the expression of RBM25 could ameliorate the apoptosis and improve cardiac function through blocking the activation of CHOP signaling pathway. RBM25 is significantly upregulated in ischemic HF rat heart and OGD model, which leads to apoptosis by modulating the ER stress through CHOP pathway. Knockdown of RBM25 could reverse apoptosis-mediated cardiac dysfunction. RBM25 may be a promising target for the treatment of ischemic HF.
Collapse
Affiliation(s)
- Ziwei Zhu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jie Pu
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Yongnan Li
- Department of Cardiac Surgery, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Jianshu Chen
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Hong Ding
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China
| | - Anyu Zhou
- Department of Cardiology, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | - XiaoWei Zhang
- Department of Cardiovascular Medicine, Lanzhou University Second Hospital, Lanzhou, 730000, China.
| |
Collapse
|
5
|
Han X, Guo X, Chang J, Zhang J, Chen L, Wang H, Du F, Zeng X, Guo C. Integrinβ3 mediates the protective effects of soluble receptor for advanced glycation end-products during myocardial ischemia/reperfusion through AKT/STAT3 signaling pathway. Apoptosis 2022; 27:354-367. [PMID: 35359221 DOI: 10.1007/s10495-022-01724-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Soluble receptor for advanced glycation end-product (sRAGE) was reported to protect myocardial ischemia/reperfusion (I/R) injuries via directly interacting with cardiomyocytes besides competing with RAGE for AGEs. However, the specific molecule for the interaction between sRAGE and cardiomyocytes are not clearly defined. Integrins which were reported to interact with RAGE on leukocytes were also expressed on myocardial cells, therefore it was supposed that sRAGE might interact with integrins on cardiomyocytes to protect hearts from ischemia/reperfusion injuries. The results showed that sRAGE increased the expression of integrinβ3 but not integrinβ1, β2, β4 or β5 in cardiomyocytes during I/R injuries. Meanwhile, the suppressive effects of sRAGE on cardiac function, cardiac infraction size and apoptosis in mice were cancelled by inhibition of integrinβ3 with cilengitide (CLG, 75 mg/kg). The results from cultured cardiomyocytes also proved that sRAGE attenuated myocardial apoptosis and autophagy through interacting with integrinβ3 to activate Akt and STAT3 pathway during oxygen and glucose deprivation/reperfusion (OGD/R) treatment. Furthermore, the phosphorylation of STAT3 was significantly downregulated by the inhibition of Akt (LY294002, 10 μM) in OGD/R and sRAGE treated cardiomyocytes, which suggested that STAT3 pathway was induced by Akt in I/R and sRAGE treated cardiomyocytes. The present study contributes to the understanding of myocardial I/R pathogenesis and provided a novel integrinβ3-dependent therapy strategy for sRAGE ameliorating I/R injuries.
Collapse
Affiliation(s)
- Xuejie Han
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Xinying Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Jing Chang
- Department of Pathology, Beijing Youan Hospital, Capital Medical University, No. 8 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Jie Zhang
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Lu Chen
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China
| | - Hongxia Wang
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China
| | - Fenghe Du
- Department of Geriatrics, Beijing Tiantan Hospital, Capital Medical University, No. 119 South 4th Ring West Road, Fengtai District, Beijing, 100070, People's Republic of China
| | - Xiangjun Zeng
- Department of Physiology and Pathophysiology, Capital Medical University, No. 10 You An Men Wai Xi Tou Tiao, Fengtai District, Beijing, 100069, People's Republic of China.
| | - Caixia Guo
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 1 Dongjiaomin Lane, Dongcheng District, Beijing, 100730, People's Republic of China.
| |
Collapse
|
6
|
Schussler O, Chachques JC, Alifano M, Lecarpentier Y. Key Roles of RGD-Recognizing Integrins During Cardiac Development, on Cardiac Cells, and After Myocardial Infarction. J Cardiovasc Transl Res 2021; 15:179-203. [PMID: 34342855 DOI: 10.1007/s12265-021-10154-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Cardiac cells interact with the extracellular matrix (ECM) proteins through integrin mechanoreceptors that control many cellular events such as cell survival, apoptosis, differentiation, migration, and proliferation. Integrins play a crucial role in cardiac development as well as in cardiac fibrosis and hypertrophy. Integrins recognize oligopeptides present on ECM proteins and are involved in three main types of interaction, namely with collagen, laminin, and the oligopeptide RGD (Arg-Gly-Asp) present on vitronectin and fibronectin proteins. To date, the specific role of integrins recognizing the RGD has not been addressed. In this review, we examine their role during cardiac development, their role on cardiac cells, and their upregulation during pathological processes such as heart fibrosis and hypertrophy. We also examine their role in regenerative and angiogenic processes after myocardial infarction (MI) in the peri-infarct area. Specific targeting of these integrins may be a way of controlling some of these pathological events and thereby improving medical outcomes.
Collapse
Affiliation(s)
- Olivier Schussler
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.
| | - Juan C Chachques
- Department of Cardiac Surgery Pompidou Hospital, Laboratory of Biosurgical Research, Carpentier Foundation, University Paris Descartes, 75015, Paris, France
| | - Marco Alifano
- Thoracic Surgery Department, Cochin Hospital, APHP Centre, University of Paris, Paris, France.,INSERM U1138 Team "Cancer, Immune Control, and Escape", Cordeliers Research Center, University of Paris, Paris, France
| | - Yves Lecarpentier
- Centre de Recherche Clinique, Grand Hôpital de l'Est Francilien, Meaux, France
| |
Collapse
|
7
|
Sun T, Wei L, Tian H, Zhan W, Ma H, Nie D, Wang S, Chen X, Tang G. Novel PET/CT tracers for targeted imaging of membrane receptors to evaluate cardiomyocyte apoptosis and tissue repair process in a rat model of myocardial infarction. Apoptosis 2021; 26:460-473. [PMID: 34185202 DOI: 10.1007/s10495-021-01681-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2021] [Indexed: 12/12/2022]
Abstract
The purpose of this study was to employ novel tracers PET imaging approach to define the time course and intensity of myocardial repair after apoptosis and to correlate the imaging signal to immunohistochemical staining in myocardial infarction (MI). We designed novel αVβ3-targeted and radio-functionalized tracers for detection of apoptosis in H9C2 cells and myocardial tissue. MI rats were imaged with [18F]FDG, [18F]ANP-Cin or [18F]ANP-RGD2 using a small-animal PET/CT device. Rats were sacrificed, and tissue samples from viable and injured myocardial areas were sectioned for TUNEL assay and histology. The uncorrected radiochemical yield of [18F]ANP-Cin and [18F]ANP-RGD2 were 41.3 ± 5.4% and 21.17 ± 4.7%, respectively. Two tracers meet many criteria for cardiac imaging, including high stability, high binding, no toxicity, fast renal clearance and excellent biodistribution in rat models. The uptake of [18F]ANP-Cin was significantly higher on the 1st and 3rd day than the 7th or 28th day after MI induction, a timeframe associated with increased cardiomyocyte apoptosis. Higher uptake of [18F]ANP-Cin was observed in MI rats than in N-acetylcysteine (NAC)-treated rats on the 3rd days. In contrast with [18F]ANP-Cin, no hot-spots was observed with [18F]ANP-RGD2 on the 1st day and more hot-spots was observed from the 3rd day to the 7th day, then less on the 28th days in the high apoptotic site. There was no uptake of [18F]FDG in or around the apoptotic region. On the 7th day the uptake of [18F]ANP-RGD2 was higher in NAC-treated rats than MI rats. [18F]ANP-Cin and [18F]ANP-RGD2 are superior to [18F]FDG for PET/CT imaging for evaluation of cardiomyocyte apoptosis and tissue repair processes in the MI rats.
Collapse
Affiliation(s)
- Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Lijiang Wei
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.,Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200032, China.
| | - Wanlin Zhan
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Hui Ma
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Dahong Nie
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shilin Wang
- Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xin Chen
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ganghua Tang
- Nanfang PET Center and Department of Nuclear Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China. .,Department of Radiotherapy and Medical Imaging, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China.
| |
Collapse
|
8
|
Si Q, Shi Y, Huang D, Zhang N. Diosmetin alleviates hypoxia‑induced myocardial apoptosis by inducing autophagy through AMPK activation. Mol Med Rep 2020; 22:1335-1341. [PMID: 32627001 PMCID: PMC7339627 DOI: 10.3892/mmr.2020.11241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 08/08/2019] [Indexed: 12/12/2022] Open
Abstract
Diosmetin has shown great potential in the control of several diseases. The aim of the present study was to evaluate the role of diosmetin as a candidate agent for the treatment of myocardial infarction which was mainly caused by hypoxia. The model of hypoxia‑injured myocardial cells was established using the H9c2 cell line. Cell viability was determined using Cell Counting Kit‑8, cell apoptosis was determined by Annexin V‑FITC Apoptosis Detection Kit and cleaved caspase‑3 level was assessed by western blot analysis. Autophagy was monitored using a commercial kit, and a well‑established reporter system was used to confirm the role of diosmetin in autophagy. The activity of adenosine 5'‑monophosphate‑activated protein kinase (AMPK) signaling was detected by western blot analysis. Cell viability assay indicated that diosmetin alleviated hypoxia‑induced cell death of H9c2 cells in a dose‑dependent manner. Data of the apoptosis assay revealed that diosmetin reduced the proportion of apoptotic cells in the hypoxia‑injured H9c2 cells. It was also found that the occurrence of autophagy was promoted when hypoxia‑injured cells were treated with diosmetin alone, and results of the western blot analysis revealed that AMPK signaling was activated by diosmetin. Administration of diosmetin together with an inhibitor of autophagy (3‑methyladenine, 3‑MA) or AMPK (Compound C) was able to decrease the diosmetin‑induced autophagy as well as the cytoprotective effects in the hypoxia‑injured cells. Our study concluded that diosmetin exhibits a cytoprotective effect on hypoxia‑injured myocardial cells by inducing autophagy and alleviating apoptosis. AMPK was demonstrated to regulate the observed effects caused by diosmetin. This investigation confirmed diosmetin as a promising drug candidate for myocardial infarction treatment. The present findings regarding the inherent molecular mechanisms involved in the protective effects of diosmetin promote the clinical application of diosmetin.
Collapse
Affiliation(s)
- Qijun Si
- Clinical Laboratory, Zhuji People's Hospital, Zhuji, Zhejiang 311800, P.R. China
| | - Yujie Shi
- Cardiovascular Disease Institute, PLA Army General Hospital, Beijing 100000, P.R. China
| | - Dandan Huang
- Preclinical School, North Sichuan Medical College, Nanchong, Sichuan 637000, P.R. China
| | - Na Zhang
- Department of Internal Medicine, The Hospital of Wuhan University, Wuhan, Hubei 430000, P.R. China
| |
Collapse
|
9
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
10
|
Wei L, Zhou Q, Tian H, Su Y, Fu GH, Sun T. Integrin β3 promotes cardiomyocyte proliferation and attenuates hypoxia-induced apoptosis via regulating the PTEN/Akt/mTOR and ERK1/2 pathways. Int J Biol Sci 2020; 16:644-654. [PMID: 32025212 PMCID: PMC6990915 DOI: 10.7150/ijbs.39414] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/02/2019] [Indexed: 12/13/2022] Open
Abstract
Objective: Integrin β3 is one of the main integrin heterodimer receptors on the surface of cardiac myocytes. Our previous studies showed that hypoxia induces apoptosis and increases integrin β3 expression in cardiomyocytes. However, the exact mechanism by which integrin β3 protects against apoptosis remains unclear. Hence, the present investigation aimed to explore the mechanism of integrin β3 in cardiomyocyte proliferation and hypoxia-induced cardiomyocyte apoptosis. Methods: Stable cells and in vivo acute and chronic heart failure rat models were generated to reveal the essential role of integrin β3 in cardiomyocyte proliferation and apoptosis. Western blotting and immunohistochemistry were employed to detect the expression of integrin β3 in the stable cells and rat cardiac tissue. Flow cytometer was used to investigate the role of integrin β3 in hypoxia-induced cardiomyocyte apoptosis. Confocal microscopy was used to detect the localization of integrin β3 and integrin αv in cardiomyocytes. Results: A cobaltous chloride-induced hypoxic microenvironment stimulated cardiomyocyte apoptosis and increased integrin β3 expression in H9C2 cells, AC16 cells, and cardiac tissue from acute and chronic heart failure rats. The overexpression of integrin β3 promoted cardiomyocyte proliferation, whereas silencing integrin β3 expression resulted in decreased cell proliferation in vitro. Furthermore, knocking down integrin β3 expression using shRNA or the integrin β3 inhibitor cilengitide exacerbated cobaltous chloride-induced cardiomyocyte apoptosis, whereas overexpression of integrin β3 weakened cobaltous chloride-induced cardiomyocytes apoptosis. We found that integrin β3 promoted cardiomyocytes proliferation through the regulation of the PTEN/Akt/mTOR and ERK1/2 signaling pathways. In addition, we found that knockdown of integrin αv or integrin β1 weakened the effect of integrin β3 in cardiomyocyte proliferation. Conclusion: Our findings revealed the molecular mechanism of the role of integrin β3 in cardiomyocyte proliferation and hypoxia-induced cardiomyocyte apoptosis, providing new insights into the mechanisms underlying myocardial protection.
Collapse
Affiliation(s)
- Lijiang Wei
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine. Shanghai, 200025, China
| | - Qingqing Zhou
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 20032, China
| | - Hua Tian
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 20032, China
| | - Yifan Su
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine. Shanghai, 200025, China
| | - Guo-Hui Fu
- Pathology Center, Shanghai General Hospital/Faculty of Basic Medicine, Shanghai Jiaotong University School of Medicine, No.280, South Chong-Qing Road, Shanghai 200025, People's Republic of China
| | - Ting Sun
- Department of Cardiology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine. Shanghai, 200025, China
| |
Collapse
|
11
|
Sun Y, Jiang C, Hong H, Liu J, Qiu L, Huang Y, Ye L. Effects of hypoxia on cardiomyocyte proliferation and association with stage of development. Biomed Pharmacother 2019; 118:109391. [PMID: 31545287 DOI: 10.1016/j.biopha.2019.109391] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/14/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hypoxia has been suggested to be both beneficial and harmful to the proliferation of cardiomyocytes. This controversy remains unresolved, and the underlying mechanism by which hypoxia exerts its effects remains unclear. We here hypothesize that cardiomyocyte developmental stage may play a role. METHODS AND RESULTS The embryonic ventricular myocyte cell line H9C2, primary isolated fetal cardiomyocytes, and neonatal cardiomyocytes were cultured with normal O2 (21% O2) or under hypoxic conditions (10% O2) for 7 days, and then harvested for Western blotting, qRT-PCR, and immunostaining. When cultured under hypoxic conditions, proliferating marker-Ki67, mRNA level, and the percentage of Ki67-positive cardiomyocytes were significantly lower in H9C2 and fetal cardiomyocytes but higher in neonatal cardiomyocytes. Consistently, the mRNA and protein levels and induced nuclear localization of yes associated protein 1(YAP1), one of the most important regulators of cardiomyocyte proliferation, were significantly lower in H9C2 and fetal cardiomyocytes but up-regulated in neonatal cardiomyocytes when treated with hypoxia. Compared to neonatal cardiomyocytes, there was a lower level of troponin T mRNA and protein expression in H9C2 and fetal cardiomyocytes. When H9C2 or fetal cardiomyocytes overexpressing troponin T in were cultured under hypoxic condition, their ability to proliferate increased. CONCLUSIONS The effect of hypoxia on the proliferation of cardiomyocyte is associated with their developmental stage. YAP1 expression is positively correlated with the change in cardiomyocyte proliferation in response to hypoxia. Developmental stage- specific sarcomere component troponin T may partly account for the underlying mechanism.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Chuan Jiang
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Haifa Hong
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jinfen Liu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lisheng Qiu
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yanhui Huang
- Department of anesthesiology, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lincai Ye
- Department of Thoracic and Cardiovascular Surgery, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Institute of Pediatric Translational Medicine, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China; Shanghai Pediatric Congenital Heart Disease Institute, Shanghai Children's Medical Center, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
12
|
Gu Y, Geng J, Xu Z, Chen Y, Zhang XW. Neutrophil Gelatinase-Associated Lipocalin2 Exaggerates Cardiomyocyte Hypoxia Injury by Inhibiting Integrin β3 Signaling. Med Sci Monit 2019; 25:5426-5434. [PMID: 31327865 PMCID: PMC6668495 DOI: 10.12659/msm.915108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background The neutrophil inflammatory protein, lipocalin-2 (NGAL), is elevated in certain forms of cardiac hypertrophy and acute heart failure. However, the specific role of NGAL in cardiac hypoxia injury is unclear. This study aimed to elucidate the functional role of NGAL in cardiomyocyte hypoxia injury. Material/Methods Neonatal rat cardiomyocytes were transfected with adenovirus [(Ad-NGAL] to overexpress human-NGAL and then were exposed to hypoxia for 24 h to establish a hypoxia model. Cell inflammation was detected by RT-PCT and ELISA assay. Cell apoptosis was detected by TUNEL assay. Oxidative stress was also detected by commercial kits. Results An increased inflammatory response, apoptosis, and augmented oxidative stress were observed after exposure to hypoxia, while NGAL overexpression in cells increased the expression and release of inflammatory cytokines. NGAL overexpression also increased the number of apoptotic cells and the imbalance of Bax/Bcl-2 protein expression. Moreover, NGAL overexpression increased the levels of reactive oxygen species and oxidase activity, but reduced anti-oxidase activity. Mechanistically, we found that NGAL decreased the expression of integrin β3, but not the expression of integrin avβ3 and avβ5, thus inhibiting the downstream protein AKT. When we used the constitutively activated AKT overexpression adenovirus to activate AKT, the deteriorated phenotype by NGAL was counteracted. Conclusions NGAL can directly affect cardiomyocytes and cause cardiomyocyte deteriorated hypoxia injury through inhibiting integrin β3 signaling.
Collapse
Affiliation(s)
- Yang Gu
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Jin Geng
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Zhuo Xu
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Yu Chen
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| | - Xi-Wen Zhang
- Department of Cardiology, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, China (mainland)
| |
Collapse
|
13
|
Faridvand Y, Nozari S, Atashkhoei S, Nouri M, Jodati A. Amniotic membrane extracted proteins protect H9c2 cardiomyoblasts against hypoxia-induced apoptosis by modulating oxidative stress. Biochem Biophys Res Commun 2018; 503:1335-1341. [DOI: 10.1016/j.bbrc.2018.07.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 07/09/2018] [Indexed: 02/07/2023]
|